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Figure 1: Our method interpolates between two shapes by preserving the volume when no correspondences are available. Here the kitten is
morphed into a fandisk and the morphing is only dependent on the relative positions of the source and target shapes. The bottom row shows
the same morphing combined with a rotation for better visualization.

Abstract
Shape interpolation is a long standing challenge of geometry processing. As it is ill-posed, shape interpolation methods always
work under some hypothesis such as semantic part matching or least displacement. Among such constraints, volume preserva-
tion is one of the traditional animation principles. In this paper we propose a method to interpolate between shapes in arbitrary
poses favoring volume and topology preservation. To do so, we rely on a level set representation of the shape and its advection
by a velocity field through the level set equation, both shape representation and velocity fields being parameterized as neural
networks. While divergence free velocity fields ensure volume and topology preservation, they are incompatible with the Eikonal
constraint of signed distance functions. This leads us to introduce the notion of adaptive divergence velocity field, a construction
compatible with the Eikonal equation with theoretical guarantee on the shape volume preservation. In the non constant volume
setting, our method is still helpful to provide a natural morphing, by combining it with a parameterization of the volume change
over time. We show experimentally that our method exhibits better volume preservation than other recent approaches, limits
topological changes and preserves the structures of shapes better without landmark correspondences.

CCS Concepts
• Mathematics of computing → Partial differential equations; • Computing methodologies → Parametric curve and surface
models; Neural networks;

1. Introduction

Morphing between geometric shapes, when no correspondences are
available is an ill-posed problem. As such, all methods have intro-
duced some hypothesis on the deformation, by constraining it to

be as rigid as possible or by imposing least displacement. Among
all these hypotheses, the volume preserving constraint is rooted in
the celebrated 12 principles of animation [Tho95], where the first
principle, squash and stretch, recommends keeping the volume con-
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stant. Another interesting constraint is to avoid unnecessary topo-
logical changes, e.g. avoiding a shape to disappear and reappear out
of the blue elsewhere.

In this paper, we tackle the problem of interpolating between
arbitrary shapes in arbitrary poses by relying on a neural im-
plicit shape representation and leveraging the level set equa-
tion [BCOS01] which links the spatio-temporal implicit representa-
tion with an explicit velocity field. We first illustrate that enforcing
the whole velocity field to be divergence-free is incompatible with
obtaining a signed distance field. Indeed a divergence-free velocity
field preserves the volume of all level sets when we are only inter-
ested in preserving the volume of the level set corresponding to the
deforming object. Hence we introduce the notion of adaptive diver-
gence velocity field, which preserves the 0 level set volume, and
show much better volume and topolgical preservation than com-
peting methods experimentally. As a side product, we also adapt
our method to non-constant volume deformations by combining the
constant volume evolution with a progressive rescaling.

To summarize we make the following contributions:

• The definition of adaptative divergence vector fields, a relaxation
of divergence free vector field for which we prove the shape vol-
ume preservation.

• A neural framework combining a learned adaptive divergence
vector field and a time-varying approximate signed distance
field.

• A framework that strongly favors topology preservation while
still allowing some topology change if required or if it offers a
better compromise.

2. Related Work

Shape Morphing using explicit methods In Computer Graphics,
shapes are commonly described by meshes, and several approaches
have been developed to deform one mesh into another. This often
requires the source and target meshes to share the same topology.
Alexa et al. [ACOL00] first build a common triangulation of the in-
terior of the shapes putting tetrahedra in one-to-one correspondence
and computing an as-rigid-as possible deformation between them.
But this method requires boundary vertex correspondences. Inter-
polating between several meshes as also been tackled by minimiz-
ing the elastic deformation to each input mesh [VTSSH15], with
the constraint that the meshes need to be embeddings of the same
topological mesh, hence giving the vertex correspondences implic-
itly. This approach can be applied to volume or surface meshes.
Volume preservation requires the use of volume tetrahedral meshes.
In this case, Aharon et al [ACZW19] exploits the fact that the space
of metrics with bounded isometric and angular distortion is convex
to interpolate between two or more shapes while preserving fea-
tures. When vertex correspondences are not given, they must be
estimated. Huang et al. [HAWG08], for example, recover corre-
spondences between meshes under the isometric deformation hy-
pothesis. Correspondences can also be recovered as a result of a
divergence-free shape deformation. Given two compatible input
shapes, Eisenberger et al. [ELC18] progressively construct a vol-
ume preserving deformation field by imposing a zero-divergence
constraint. This method alternates between optimizing the defor-

mation field and calculating correspondences for a small subset of
keypoints based on feature description.

When correspondences are hard or impossible to compute due
to shapes being unrelated or having different topological genus, it
is still possible to perform interpolation in the sense of Optimal
Transport (OT), considering the shapes as mass distributions (e.g.
[Lév15], [FCVP17]). A drawback of these approaches is that the
trajectories of the points will be solely guided by the minimization
of their lengths, hence producing tearings in the shape. A dynamic
formulation of OT was proposed by Benamou and Brenier [BB00]
to preserve the mass when morphing from one density distribution
to another, by optimizing the displacement vector field and not only
the transport map.

Shape Morphing using implicit methods Implicit functions are
also popular to describe shapes as level sets of some scalar field.
They are interesting to design shapes that break or merge, or change
topology, without requiring to maintain a mesh structure. However,
directly interpolating between two existing implicit functions for
shape morphing gives no control over the intermediate shapes and
their volumes. It can be improved by defining a relevant veloc-
ity field at each surface point and some surface tension [DC98].
If the scalar field corresponds to a signed distance, Cohen-Or et
al [COSL98] guide the interpolation with a warp function con-
trolled by a set of corresponding anchor points, including a rigid
rotational part and a minimal elastic part. Finally, Turk and O’Brien
[TO99] directly compute a transformation between two 3D shapes
by casting the problem as a scattered data interpolation problem
in spacetime (4D) and using radial basis functions for the implicit
surface representation. Tao et al. [TSB16] seek to learn the most
rigid deformation between two shapes. To do so, they perform ex-
plicit level set tracking by computing a discrete solution to the level
set equation under the constraint that the velocity field must be an
approximate Killing vector field. In a broader context, Osher and
Sethian [OF04] developped the level set method in order to track
the motion of an interface under a velocity field, following the level
set equation (LSE). The interface is defined as the zero level set of
an implicit function with Lipschitz properties, usually a signed dis-
tance function. Bertalmio et al. [BCOS01] also introduced the use
of partial differential equations to solve variational problems on
implicit surfaces.

Implicit Neural Fields and shape deformation Recently, the
idea has emerged to use a neural network to represent the im-
plicit function encoding the shape (see e.g. [XTS∗22] for a sur-
vey of this trend). This permits to be invariant of the surface dis-
cretization [YBHK21]. During training, an Eikonal regularization
term brings this function as close as possible to a signed dis-
tance function [GYH∗20]. Categories of shapes can also be taken
into account by using latent code-conditioned decoder networks
[PFS∗19,MON∗19]. Depending on the architecture of the network
and activation functions (eg. SIREN [SMB∗20]), there may be
more or less fine-grained surface details and possible guarantees on
the Lipschitz properties of the implicit function [CB24,WWY∗25].
Neural Implicits have also proven useful where the input informa-
tion is limited to a set of geometric design requirements. In that set-
ting, Geometry-Informed Neural Networks [BRV∗24] can be used
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to solve a topology optimization problem using neural fields that
approximate a signed-distance function.

Shape interpolation can be done in latent space, by interpolat-
ing the latent codes [CZ19]. It is also possible to add constraints
to get better interpolations. For example, Atzmon et al. [ANVL21]
add multiple deformation priors allowing to interpolate plausibly
between shapes. However this interpolation requires a database to
build the latent space. Liu et al. [LWJ∗22] propose to control the
variations of the implicit function with respect to a varying param-
eter such as a latent variable in the latent space setting. This can
be also used for shape morphing by using the time as the varying
parameter. This is done by constraining the Lipschitz constant w.r.t.
the parameter to be as low as possible. However, this approach does
not offer any control over the volume.

Dynamic implicit functions have also been tackled using the
Level Set Equation framework. Given a set of points sampled on a
shape and a velocity field, Mehta et al. [MCR22] alternate between
advecting sample points, learning the updated signed distance field
using the advected points and resampling the surface for the next
time step. Another approach [NDSS∗23] is to directly learn the so-
lution of the level set equation under the form of an implicit neural
function that is fully continuous, both in time and space (NISE).
This method can perform shape deformation driven by any given
vector field, including an adhoc field proposed for interpolating be-
tween two different shapes, without any control on the properties
and the volume of the intermediate shapes. In particular, the solu-
tion is not constrained to be a signed distance field for intermediate
times.

Very recently, Sang et al. introduced an additional neural net-
work to learn the velocity field to be used in the level set equa-
tion [SCC∗25]. This method adds a penalization on the divergence
of the velocity field to favor volume preservation, as well as a
smoothness regularization. Through a modified LSE, it builds a
time-varying signed distance field with lower volume variation than
any method before. Dense correspondences between the two shapes
are also handled through the flow of a dense set of landmarks. How-
ever, this approach offers no strong guarantee on the divergence of
the velocity field and the preservation of the volume. We call this
method INSD (Implicit Neural Surface Deformation) and compare
to it. For comparison purposes, we also introduce a landmark-free
version of INSD, denoted as LF-INSD in our experiments.

Finally working on implicit vector fields using Neural Networks
has been explored in the Optimal Transport setting. Richter-Powell
et al. [RPLC22] propose to constrain a neural network to build a
divergence free vector field, an idea that is also exploited in our
work.

3. Neural Shape Morphing

Our method builds on the level set framework to describe shapes
and their evolution. Let us assume that we have two shapes in Rd

(with d = 2 or 3): a source shape S0 at t = 0, and a target shape S1
at t = 1, with g0 and g1 their respective signed distance functions
(SDF). We always assume that the time interval is [0,1], without
loss of generality. Let x(t) be the trajectory of a point from S0 to
S1. A scalar field f is an implicit representation of the intermediate

shape St if for all t, f (x(t), t) = 0. Taking the time derivative of this
equality gives us the Level Set Equation:

d f (x(t), t)
dt

=
∂ f
∂t

(x(t), t)+ ⟨∇ f (x(t), t),
∂x
∂t

(t)⟩= 0

The quantity ∂x
∂t (t) can be viewed as a vector field V(x(t), t). Thus,

we aim at interpolating between S0 and S1 by determining a scalar
field f and a vector field V satisfying:


∂ f
∂t + ⟨∇ f ,V⟩ = 0 on Rd × [0,1]
f (x,0) = g0(x) ∀x ∈ Rd

f (x,1) = g1(x) ∀x ∈ Rd
(1)

In the above equation, and in the remainder of the paper, the
differential operators ∇, div and curl are defined with respect to
the spatial coordinates only, omitting the time.

Similarly to the NISE approach proposed by Novello et al.
[NDSS∗23], we propose to learn f as a neural network fθ with
parameters θ. In our case, we also penalize fθ(·, t) to approximate
the signed distance field to the shape at time t. Indeed, Signed dis-
tance functions are particularly useful for sphere tracing or other
geometric queries. Hence, f (·, t) should verify the Eikonal equa-
tion for each t, and not only at t = 0 and t = 1 as in NISE. We
recall the Eikonal equation :

|| ∇ f (x, ·) ||= 1,∀x ∈ Rd where the gradient is defined. (2)

Our approach differs from NISE in the design the velocity field
V. In NISE, V is handcrafted by an ad-hoc combination of fθ and
g1 ensuring that the function transitions between the two implicit
fields. V aligns with the iso-surface normal field ∇ fθ(x, t) as:

V(p, t) =−(g1(p)− fθ(p, t))
∇ fθ(t, p)

∥∇ fθ(t, p)∥ (3)

However, performing surface morphing using this vector field
is incompatible with an Eikonal constraint at any time. Further-
more it does not allow for volume and topology preservation con-
straints: experimental results show that the enclosed volume is not
entirely preserved during the transformation and can even disap-
pear in some places and reappear in others (Figure 2).

Instead of using the NISE handcrafted velocity field, we can
learn V and f jointly as neural networks fθ, Vθ with an Eikonal
constraint over time but without any volume or topology constraint.
As illustrated in Figure 2, for both this method and NISE, the sur-
face is not advected but partly destroyed and regrown at the loca-
tion of the target surface. This phenomenon is due to the existence
of uncontrolled sources and sinks in Vθ, which can collapse the
surface at the initial location and regrow it at the target location
without really displacing it.

The aim of our work is to add consistent constraints when
jointly estimating V and f , to provide constant-volume interme-
diate shapes and a reasonable approximation of the signed distance
to the shape.
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Figure 2: 2D translation of a disk. With NISE the shape disappears
and reappears during the morphing (top). This problem also occurs
when learning V and f jointly with an Eikonal constraint over time
but without additional constraint on volume and topology preser-
vation (middle). Our method (bottom) succeeds in preserving the
shape through the translation due to the volume preserving prop-
erty of our vector field. Top row: source (t = 0) and target (t = 1),
interpolation times: t = 0.14,0.28,0.42,0.57,0.71,0.85

4. Divergence free neural vector field

The divergence of a vector field measures the volume density of the
outward flux from an infinitesimal volume. It is defined for a vector
field V as:

div(V) = ∑
i

∂iVi

V is said to be divergence free (or equivalently to have zero di-
vergence) when divV = 0. Zero divergence implies volume and
topology preservation of any volume advected by V. Indeed a di-
vergence free velocity field cannot involve neither source nor sink.
Divergence-free vector field is important in many fields: incom-
pressible fluids dynamics, animation, virtual sculpture. In Com-
puter Graphics, volume preserving shape editing tools often rely
on divergence-free vector fields [ACWK06, vFTS06]. For exam-
ple, Von Funck et al. builds a deformation vector field as the cross-
product of two gradient fields. By construction this vector field is
divergence-free. Here we propose a different construction.

When jointly learning a neural vector field Vθ and neural scalar
field fθ so that they satisfy the level set equation 1, control over the
divergence of Vθ can be obtained by adding various terms to the
loss, such as a penalisation of the divergence as in INSD [SCC∗25]:

∫
Rd×(a,b)

| div(V) | dpdt (4)

Doing so only favors a low divergence but does not guarantee it
to be zero. Instead, we propose to learn a neural vector field with a
strongly imposed divergence free condition.

In our neural implicit setting, rather than directly learning a vol-
ume preserving velocity field V in R3, we propose to learn an aux-
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Figure 3: An example of constant volume morphing which cannot
satisfy the divergence-free condition for V in the level set frame-
work. This condition applies for all level sets and collides with the
Eikonal condition (t = 0,0.25,0.75,1).
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Figure 4: Enforcing zero-divergence on V yields very low detail
surfaces, a consequence of the volume preservation of every level
set. Using adaptative divergence, the surfaces details are better re-
covered (t = 0, t = 0.5, t = 1).

iliary vector field D whose curl is the divergence-free field that will
guide the morphing: V = curl(D). The curl operator can be com-
puted automatically through auto-differentiation of the neural net-
work Dθ producing the auxiliary vector field D. Note that it is also
possible to build a divergence-free vector field in R2 by using a
scalar potential H and a skew-symmetric matrix Asks: the vector
field given by Asks∇H is divergence-free (See appendix A). We
call NullDiv the network architecture (in 2D or 3D) producing such
guaranteed divergence-free vector field. By the Helmotz theorem,
any divergence free vector field of R3 can be obtained as the curl of
another vector field. Hence, this architecture is a universal approxi-
mator of divergence free vector fields as long as the network learn-
ing D is a universal approximator. A similar approach for constrain-
ing a neural network to produce divergence-free vector fields in any
dimension has been proposed by Richter-Powell et al. [RPLC22],
in the context of continuity equations.

Unfortunately, none of the fields
produced by NullDiv networks are sat-
isfactory for solving the level set equa-
tion (1) under the Eikonal constraint
enforced over time (equation 2). In-
deed Vθ being divergence-free, it pre-
serves the volume of every level set of
the potential fθ which is incompatible
with the Eikonal constraint. To illus-
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trate this, let us consider a 1× 1 square morphing into a 0.3× 1
0.3

rectangle. For their signed distance fields, both 0-level sets (red
stripes in the inset figure) have area 1. Yet their 1-level sets (orange
stripes in the inset figure) have different areas (5+π ≈ 8.14 for the
square, 1+2(0.3+ 1

0.3 )+π ≈ 11.41 for the rectangle) To make the
areas of their 1-level sets equal, the distance between the 0-level
set and the 1-level set should either grow for the square or diminish
for the rectangle, breaking therefore the Eikonal constraint. Figure
3 shows the numerical result of this 2D example morphing, yield-
ing defect-laden level sets throughout the deformation. Figure 4
shows that with more detailed shapes, the network degrades the ini-
tial shape when trying to satisfy both LSE and Eikonal constraint,
and even so it cannot satisfy them.

Therefore, to satisfy the Eikonal equation everywhere (where the
gradient is defined), an LSE-based method should preserve the vol-
ume of the 0-level set only.

Our approach is thus different from INSD [SCC∗25] which pe-
nalizes a nonzero divergence everywhere but relaxes the Eikonal
property away from the surface. This approach works better with
the introduction of a dense set of correspondences between the two
surfaces.

5. Adaptive Divergence

5.1. Definition and Properties

Let us consider a divergence-free velocity field defined in the am-
bient space, which morphs S0 into S1. We propose to preserve this
vector field only on the surface of the evolving shape, and to mod-
ify it elsewhere to better comply with the Eikonal equation, while
keeping a zero divergence on the surface. Therefore, we augment
the divergence-free component by an additional scalar potential u
which is added through its gradient modulated by a function of f :

V = curl(D)+β( f )∇u (5)

with β a continuous non negative scalar function such that
β(0) = 0 and β

′(0) = 0. In our implementation, we used β(s) =
1− exp(−αs2), with α = 0.1, which we found to be experimen-
tally efficient.

By construction, V is the sum of a divergence-free vector field
and a gradient vector field which is modulated to be 0 and have 0
divergence on the surface. We call AdaDiv our estimation of such a
vector field. One can notice that it is similar in spirit to the Helmotz-
Hodge decomposition with a geometric modulation. Note however
that after modulation by β( f ), the gradient of u may lose its irrota-
tionality, depending on the angle between ∇ f and ∇u. Indeed, we
have:

divV = β( f )∆u+β
′( f )∇ f ·∇u (6)

We show that this constructive way of relaxing the divergence of
a velocity field preserves the shape volume advected by V. More
precisely, for any divergence-free vector field W, if we add a vec-
tor field F whose value and divergence are both vanishing on the
surface, the induced morphing is volume-preserving.

Before defining formally the notion of adaptive divergence, we
first recall the definition of a flow φV associated with a vector field
V(x, t). The advection y(t) of a point y0 through V writes as an
Ordinary Differential Equation (ODE):

{
∂y
∂t = V(y(t), t)
y(0) = y0

(7)

If V satisfies the Cauchy-Lipschitz conditions, this ODE has a
unique solution y(t). Then the flow φV, defined as:

∀y0, t, φV(y0, t) = y(t)

By definition, φV is a diffeomorphism, with φV
−1 the inverse flow:

for all (x, t) ∈ Rd × [0,1], φV
−1(φV(x, t), t) = x.

Definition 1 (Adaptive divergence) We say that a time varying
vector field V ∈ Rd has adaptive divergence with respect to an ini-
tial shape S if there exists a divergence-free vector field W with
associated flow φW and a vector field F such that:

∀x ∈ Rd , t ∈ [0,1],V(x, t) = W(x, t)+F(x, t)
∀x ∈ ∂S, t ∈ [0,1],F(φW(x, t), t) = 0

∀x ∈ ∂S, t ∈ [0,1],div(F)(φW(x, t), t) = 0 so div(V)(φW(x, t), t) = 0

where ∂S is the boundary surface of S. Importantly enough, for
given S and W there exist multiple adaptive divergence fields, and
W is one of them (with F = 0).

Let us consider g0 an implicit representation of an input shape
S0, and W a time varying divergence-free vector field. If we fur-
ther assume that W satisfies the Cauchy-Lipschitz conditions (we
will show later that this is the case in our construction), then the
flow φW is a diffeomorphism with inverse φ

−1
W . f (x, t) the implicit

representation of the evolving surface under this flow is such that
f (x, t) = g0(φW

−1(x, t)). Let us show that modifying W by adding
a time varying vector field U modulated by β( f ) (as in Equation 5)
builds an adaptive divergence vector field V with respect to S.

For any smooth time-varying vector field U, let us define for
all (x, t) ∈ Rd × [0,1], F(x, t) = β( f (x, t))U(x, t), and V(x, t) =
W(x, t)+F(x, t).

Then for any x ∈ ∂S = {x|g0(x) = 0}:

F(φW(x, t), t) = β( f (φW(x, t), t))U(φW(x, t), t)

= β(g0(φW
−1(φW(x, t), t)))U(φW(x, t), t)

= β(0)U(φW(x, t), t) = 0,

(8)

div(F) = div(β( f )U)

= β( f )div(U)+ ⟨∇β( f ),U⟩

= β( f )div(U)+ ⟨β′( f )∇ f ,U⟩.
(9)

Hence for any x ∈ ∂S = {x|g0(x) = 0}, div(F)(φW(x, t), t) is zero.

By taking U = ∇u (with u a smooth function), we see that a
velocity field V defined as in Equation 5 has adaptive divergence

© 2025 The Author(s).
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with respect to S. An advantage of taking the gradient form ∇u is
that, far away from the surface, β( f (x, t))≈ 1 so that V≈ curl(D)+
∇u where the second term is irrotational, hence corresponding to a
Helmotz-Hodge decomposition.

Theorem 1 (Volume Preservation) Let V be an adaptive diver-
gence vector field with respect to S and φV the associated flow.
Then, the advection of S by V preserves its volume :

dtVol(φV(S, t)) = 0

The proof relies on the fact that the adaptive divergence field V
is constructed over a divergence-free field W deforming S0 into S1
and the fact that the flows φV and φW coincide on ∂S. In addition,
the points initially away from the surface cannot cross it, since the
trajectories under an Ordinary Differential Equation cannot cross.
The full proof is given in appendix B.

To predict a vector field V with adaptive divergence, we use a
single neural network which produces Dθ, uθ for computing both
the divergence free component and u. The outputs are then com-
bined with β( f ) modulation. This AdaDiv network takes as in-
put the spatial coordinates of a point x and a time t. Since we
use an infinitely smooth architecture with sinusoidal activations,
curl(Dθ) and β( f )∇u are Lipschitz vector fields (of unknown con-
stant) thus the Cauchy-Lipschitz conditions hold and so does our
volume preservation theorem.

5.2. Neural morphing using adaptive divergence

Given a source and a target shape of identical volumes, even with
the improvements introduced earlier there is no guarantee that there
exists a velocity vector field V with adaptive divergence and a po-
tential field f satisfying both Equation 1 (LSE) and the Eikonal
constraint for f (Equation 2). However, in our setting, we learn the
velocity field V and scalar field f through two different neural net-
works with the link between the estimations fθ and Vθ enforced
weakly through a loss. Therefore, such fields will always be pro-
duced, sometimes at the cost of a higher LSE and Eikonal errors.
In practice, our definition offers enough degrees of freedom for the
fields produced by our neural networks to be well behaved, i.e. the
local error with respect to the LSE and the Eikonal equation re-
mains small everywhere and it is concentrated on the medial axis of
the shape where the gradient of the distance function is not defined
(See supplementary material). Of course, different adaptive diver-
gence velocity fields may be designed for morphing the source to
the target in the LSE framework. We observe in practice that our
neural approximation tends to favor the generation of a direct mor-
phing between parts that are close in the source and target. More
precisely, the resulting fields tend to deform the input shape by
favoring tangential sliding over tearing, thus avoiding the tearing
effects generally observed with Optimal Transport.

5.3. Topological changes

The advection of a shape by a divergence-free field is fold-over
free, i.e. it does not allow topological genus changes. By construc-
tion, this property remains valid for the advection of a shape by a

field with adaptive divergence. However, since our networks yield
a field with adaptive divergence and an implicit representation of
the evolving shape that are weakly coupled, it may happen that
the implicit representation undergoes topological changes. In this
case, the local LSE and Eikonal errors will be high at the place and
time of the topological changes. This is shown experimentally in
the supplementary. Even in cases where the morphing operates be-
tween constant genus shapes, it may happen that topological noise
appear as a result of a local minimum with higher LSE loss value.

6. Network architecture and training

Network Architecture and Optimization. Our method relies on
two networks to produce the velocity field Vθ (through a combi-
nation of Dθ and uθ) and the scalar potential fθ jointly. For their
training, two auxiliary networks are necessary to provide the SDF
of the source and target shapes respectively. All our networks are
fully connected networks with 6 hidden layers, 128 neurons per
layer, and Sine activations. The two auxiliary networks are ini-
tialized as prescribed in the SIREN paper [SMB∗20] and the ve-
locity and time-varying SDF networks use the same initialization
as NISE. We use ADAM as an optimizer with a learning rate of
5 ·10−5.

Losses The auxiliary models are trained offline to produce the
SDFs g0 and g1 of the source and target shapes respectively, with
losses reflecting Dirichlet and Neumann boundary conditions and
satisfaction of the Eikonal equation [GYH∗20, SMB∗20]. In addi-
tion to g0 and g1 we also take as input point sampled on the surfaces
∂S0 and ∂S1

The main networks Vθ and fθ are independent, but they are
linked through the LSE which measures the compliance with the
LSE equation for all t. It is the only loss part that involves the pa-
rameters of Vθ:

The LSE loss is similar as in NISE

lLSE =
∫
Rd×[0,1]

| ∂ fθ
∂t

−⟨∇ fθ,Vθ⟩ | dpdt (10)

The minimization of the error w.r.t. the Eikonal equation drives
fθ to be as close as possible to a signed distance. While in NISE,
this loss is only enforced for times 0 and 1, we extend it to any
t ∈ [0,1] through a time-integral:

lEik =
∫
Rd×[0,1]

| 1− | ∇ fθ(p, t) || dpdt (11)

Finally, the target and source surfaces attachment terms strive
to make f mimic g0 and g1 at times 0 and 1 and match the input
points of the shapes (Dirichlet loss), and align its spatial gradient
with the source and target normals (Neumann loss). In our method,
we have two terms for the Dirichlet loss: one that favors the points
in ambient space at times 0 and 1 to have the correct SDF value,
and one that focuses on the surface by sampling points on S0 and
S1 and checking that their SDF is indeed 0. This adds more weight
to the surface (similar to [NDSS∗23]).

© 2025 The Author(s).
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lDirichlet = ∑
i=0,1

∫
Rd

| gi − fθ(., i) | dp+ ∑
i=0,1

∫
x∈∂Si

| fθ(x, i)|dx

(12)

lNeumann = ∑
i=0,1

∫
Si

| 1−⟨∇ fθ(., i), N⃗Si⟩ | dp (13)

All the losses integrals are computed using Monte-Carlo approx-
imation by, at each gradient step, sampling points, either on the
source and target surfaces (lDirichlet , lNeumann) or uniformly in the
ambient space (lLSE , lEik). Then theses losses are combined as:

L= λLSE lLSE +λEiklEik +λDirichlet lDirichlet +λNeumannlNeumann
(14)

In our experiments we always use the following weights: λLSE =
10e4, λDirichlet = 10e4, λNeumann = 10e2, λEik = 10e1. See the sup-
plementary material for an ablation study on these terms. Both net-
works weights are updated simultaneously at each gradient step.

7. Results

Our method is implemented in pytorch and the code is available at
https://github.com/camillebnm/neural_shape
_morphing. We use shapes from the NISE github repository, the
Stanford repository and Thingi10K [ZJ16]. Shapes are supplied as
a set of points sampled on a surface with their normals, on which
the auxiliary networks are trained offline. For vizualisation pur-
poses, meshes are reconstructed using Marching Cubes with a 2563

grid (0.6s per reconstruction), and rendered using blender. Addi-
tional details, results, comparisons and analyses are provided in the
supplementary and the accompanying video.

Our method starts by normalizing the shapes so that they have
the same volume. Volumes are estimated using a fixed grid of size
256 by counting the inside/outside voxels given by the SDF, and
used to compute a scaling factor. The normalized shape SDF is
then obtained by dividing the first layer weight matrix of the first
SDF auxiliary network by this scaling factor and multiplying the
last layer weight matrix by the same scaling factor .

Our method infers smooth transitions between shapes in pre-
aligned poses (Figs 5, 1) or in arbitrary poses (Fig. 6). Even if our
velocity field tends to preserve the topology of the shape, we some-
times observe small blobs detaching from the main shape and reat-
taching later in the interpolation (Feline-Horse in Fig. 6). This is
due to a local minimum of the total loss corresponding to a nonzero
LSE error.

7.1. Comparisons

We compare our method with other recent interpolation methods
that do not require given correspondences between the two shapes:
NISE [NDSS∗23] and Lipschitz MLP [LWJ∗22]. We also compare
our approach with an OT method, called GeomLoss [FRTG19],
since OT computes a transformation without needing any land-
marks between two shapes with equal volume. Let us stress out

that this approach was not designed to produce morphings, but to
establish correspondences between two shapes. We also compare
with the INSD approach, although we do not have dense corre-
spondences between the shapes. For this reason, we introduce a
landmark-free adaptation of INSD [SCC∗25] that we denote as LF-
INSD (see the supplementary, for a comparison with INSD in a
case where a dense set of landmark correspondences is provided
as input). Other results were obtained using the authors provided
implementations with the parameters provided in their code (NISE,
LipMLP, GeomLoss). For the OT result, GeomLoss working be-
tween discrete distributions, we sample points in the source and
target volumes and use GeomLoss between these two distributions.
Interpolated volumes are then recovered through kernel density es-
timation and density thresholding. For INSD, the authors provided
code did not provide satisfactory results when removing the land-
mark constraint, therefore we used our re-implementation.

Figures 7 and 8 compare the various methods on the Kitten
to Fandisk and Spot to Bob experiments, showing that OT still
produces tearings, LipMLP and LF-INSD produce oversmoothed
shapes, while NISE produces blobby intermediate shapes. See also
the supplementary file and video for additional comparisons.

7.2. Quantitative evaluation

We assess our method in terms of volume preservation and compare
it numerically to other methods. Figure 10 and Tab. 9 shows the
mass variation across time for various experiments.

As pointed out by our experiments, our method is more efficient
to preserve the volume compared to the other methods. The metrics
used are the variance of the volume over time (first row) and the
maximal volume variation (second row).

Since we perform an arbitrary thresholding to reconstruct the
surface for the OT method, the volume of the reconstructed sur-
face is biased by this threshold. Our kernel estimation and den-
sity thresholding used for volume computation, combined with the
tendency of OT to tear the shape and thus increase the surface
area, yields an increase in measured volume. It is also important
to note that marginal probability density preservation of a sum of
Dirac masses is not equivalent to volume preservation (as computed
by kernel density estimation) throughout the deformation. For the
methods with no divergence constraint, NISE and LipMLP, Fig. 10
and Tab. 9 show that the volume exhibits huge variations. This often
translates visually into the disappearance of key parts of the inter-
mediate shapes, such as the legs of an animal for example (feline-
horse on Fig. 5). In some cases, the whole shape disappears in the
middle of the interpolation (See the cylinders to torus experiment
in the supplementary). Our method and LF-INSD perform better
(Figure 10-left) than NISE or LipMLP. But INSD volume preser-
vation constraint is not as strong as ours, and often fails to pre-
serve the volume in more complex cases (Figure 10-right, Tab. 9).
Our method on the other hand exhibits consistently almost constant
volumes throughout the shape interpolation (Figure 9). In the sup-
plementary, we further analyze the different loss terms and their
impact in terms of gradient norm and LSE error.

Figure 11 shows the LSE and Eikonal errors at the time and
place where a change of topology is occuring (two cylinders are

© 2025 The Author(s).
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Figure 5: Deformation results for some standard shapes.
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Figure 6: Importance of the source and target relative poses. Mor-
phings obtained from aligned poses or arbitrary poses for the cylin-
ders to torus and feline to horse experiments.
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Figure 7: Comparison of the Kitten to Fandisk morphing us-
ing various methods (Ours, INSD, NISE, LipMLP and OT). LF-
INSD and LipMLP produce oversmoothed shapes, NISE produces
blobby intermediate shapes, and OT tears some parts of the
shape, something which is typical for this family of methods. t =
0.2,0.4,0.5,0.6,0.8. See Fig. 10 for the volume evolution for all
these methods.

O
ur

s
IN

SD
N

IS
E

L
ip

M
L

P
O

T

Figure 8: Comparison on Spot-Bob. The tearings produced by OT
are clearly visible. AdaDiv, LF-INSD, NISE and LipMLP all pro-
duce smooth and natural transitions. However the volume is not
preserved similarly by all these methods (see Figure 10).

AdaDiv NISE LF-INSD LipMLP OT

V
ar

ia
nc

e
x5

00

feline-horse 0.016 0.080 0.063 0.040 0.038
kitten-fandisk 0.0041 0.076 0.014 0.060 0.14
spot-bob 0.029 0.11 0.034 0.48 0.093
cylinders-tore 0.0026 0.098 0.040 0.073 0.042

M
ax

im
um feline-horse 0.018 0.60 0.36 0.28 0.093

kitten-fandisk 0.0014 0.45 0.013 0.24 1.1
spot-bob 0.051 0.55 0.034 14 0.77
cylinders-tore 0.00026 0.68 0.096 0.54 0.098

Figure 9: Volume preservation in terms of variance and maximum
volume variation over time (lowest value in bold).

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.3

0.4

0.5

0.6

0.7

0.8

adadiv
nise
insd
lip
OT

0.0 0.2 0.4 0.6 0.8 1.0

0.65

0.70

0.75

0.80

0.85 adadiv
nise
insd
lip
OT

0.0 0.2 0.4 0.6 0.8 1.0

0.14

0.16

0.18

0.20

0.22

0.24

0.26

adadiv
nise
insd
lip
OT

Figure 10: Evolution of the volume of the surface w.r.t. time for
spot to bob (left) and the kitten to fandisk (middle) and feline to
horse (right) experiments.
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merging into one torus, see top row of Figure 6), to illustrate how
local non-compliance with the LSE and non-compliance with the
Eikonal equation enable this topological change, even though the
velocity field has adaptive divergence w.r.t. the initial shape.

We can observe that the norm of the gradient of fθ vanishes on
the medial axis, this is due to our smooth approximation of the
signed distance field and the change of gradient orientation when
crossing the medial axis. The gradient also vanishes at the location
of the topological change. This is consistent with the fact that the
surface normal (and therefore the gradient of fθ) locally switches
from one direction to another where and when two parts of the
shape are merging. We also observe that the isocontours of fθ are
tighter in this area, in contrast to the good properties imposed by
the Eikonal equation away from the skeleton in other experiments
without topology change.

In the spatial distribution of the LSE error, we can observe that
the LSE equation is also not fulfilled at the location of the topo-
logical change, as expected. On the other hand, we can see that
the error on the LSE is very small on the medial axis, which can
be explained by the fact that the gradient of fθ degenerates in this
area.

Figure 11: Eikonal and LSE losses during a change of topological
genus with our method (2D slice of a 3D morphing) with the con-
tour of the shape superimposed in black.

7.3. Computation time

Table 12 reports our computation times compared to other stan-
dard methods on a NVIDIA RTX 4070. The time scales with the
size of the input point set as highlighted in Table 12 for the kitten-
fandisk experiment (4M input points) compared to the cylinders-
torus (73K input points). Our unoptimized implementation is more
demanding than NISE for example but less than our implementa-
tion of LF-INSD. For the OT method, the size of the input point
set has no effect since a fixed number of points (2M) is sampled
inside the shape, leading to roughly the same computational time
for all experiments. Note that the version of OT we used (Geom-
Loss) is extremely fast. However, we only count the matching time
and not the implicit surface reconstruction time, which makes it
less comparable to other methods. The computation time of LF-
INSD is obtained using our own implementation, which produced
much better results for the landmark-free morphing. Note that it is
much higher than the computation time reported in the [SCC∗25]
paper (JAX implementation) for the landmark-based morphing. In

AdaDiv NISE LF-INSD LipMLP OT
cylinders-torus 12min26s 7min29s 2h46min 4min12s 44.33s
kitten-fandisk 11h47min 7h10min 6d15h55min 4h17min 45.36s
kitten-fandisk(lr) 2h35min 43min19s 19h6min 24min4s 44.12s
spot-bob 4h52min 48min32s 1d6h30min 45min66s 42.78s
max-bust 2h35min 32min20s 22h47min 23min83s 46.51s

Figure 12: Computation times for 2000 epochs on a NVIDIA RTX
4070. lr means low resolution: 200k points instead of 2M points for
the full resolution.

the supplementary, we show that when stopping after 1h (the con-
vergence time for nise) we already get a correct morphing, even if
details are smoothed out.

7.4. Adaptive divergence with volume change

While our adaptive divergence is natural when morphing between
shapes with the exact same volume, we show in this section that it
can also be useful in the non constant volume setting, by choosing
a smooth parameterization of the volume change through time.

We start by normalizing the shapes by computing their volumes
V0 and V1 based on their SDF representations. For simplicity as-
sume that S0 is much smaller than S1. This yields a scaling factor
α for S1 and the normalized SDF writes:

g̃1(x) = αg1(
1
α

x) ∀x ∈ Rd (15)

Then, both shapes having equal volume, we can apply our adap-
tive divergence method. The last step combines the resulting con-
stant volume morphing with a volume change parameterized over
time. Let us consider a volume change α(t) such that for i ∈
{0,1},Vol(α(i) f ( x

α(i) , i)) = Vi, then the combined morphing can
be written as:

f̃ (x, t) = α(t) f (
x

α(t)
, t) (16)

Figure 13 shows an example of such a volume change and com-
pares it with NISE and an ablated version of our method removing
any constraint on V.

8. Limitations

Our method has some limitations. First, while the shape structures
are well deformed and represented, the details tend to be smoothed
out. This is due to the many constraints on the implicit representa-
tion, which tend to prevail over the Dirichlet and Neumann attach-
ment terms to the source and target surfaces. A workaround would
be to combine it with implicit displacement fields [YRSh22], a mul-
tiresolution approach encoding the detail field explicitly. But, this
detail layer would need to be deformed which is a nontrivial adap-
tation. Another limitation is the computation time (see the supple-
mentary) of our unoptimized research code, which is due to the
necessary first order differentiation of Vθ at inference and the 2nd
order differentiation when backpropagating.

© 2025 The Author(s).
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Figure 13: Morphing between two shapes of different volumes. The
bottom row shows an ablated version where V is not constrained.

9. Conclusion

We introduced a new method for morphing shapes without any
landmark correspondence, favoring volume and topology preser-
vation. This is due to our new type of velocity field with interesting
theoretical properties including the volume preservation property
for a specific set, without requiring the velocity field to be diver-
gence free everywhere. We showed on several examples that it pro-
duces smooth natural interpolations between unrelated shapes. One
of the most promising future research direction is to study how the
offset surfaces are preserved by our adaptive velocity field, an inter-
esting property for advecting information around the surface, which
could lead to detail transportation.
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Appendix A: Proof of the divergence free construction in
dimension 2d

Let Asks ∈ R2d×2d be a constant skew symmetric matrix and H a
smooth scalar potential H : R2d −→ R. To prove that Asks∇H is
divergence free, we have to show that Tr(JAsks∇H) = 0, (with J
the Jacobian operator). We will use the following properties:

1. J∇H the Hessian of H is a symmetric matrix if H is smooth:
J∇H = J T

∇H
2. Tr(AT ) = Tr(A), Tr(AB) = Tr(BA), Tr(−A) =−Tr(A)

Using properties (1) and (2) we can write:

Tr(JAsks∇H) = Tr(AsksJ∇H)

= Tr((J T
∇HAT

sks)
T )

=
using (1)

Tr(−(J∇HAsks)
T )

=
using (2)

−Tr(AsksJ∇H)

=−Tr(JAsks∇H) = 0

(17)

which proves that Asks∇H is divergence free.

Appendix B: Proof of Theorem 1 - Volume Preservation

For this proof we need the following lemma:

Lemma 1 Let V be a vector field with adaptive divergence with
respect to a set S, and φV its associated flow. Let W be the corre-
sponding divergence free vector field as in the adaptive divergence
definition, and φW its associated flow. Then φV coincides with φW
on ∂S. Moreover, V coincides with W on the trajectories of ∂S by
φW (or equivalently φV)

Proof By definition of a flow, for y0 ∈ Rd , φW(y0, t) is a solution
of the system: {

∂y
∂t = W(y, t)
y(0) = y0

(18)

and φV(y0, t) is a solution of the system:

{
∂y
∂t = V(y, t)
y(0) = y0

(19)

By definition of the adaptive divergence, there exists a function
F(x, t) such that V(x, t) = W(x, t) +F(x, t); and if y0 ∈ ∂S, then
F(φW(y0, t), t) = 0. Thus,

∂tφW(y0, t) = W(φW(y0, t), t) = W(φW(y0, t), t)+F(φW(y0, t), t)
(20)

Thus, if y0 ∈ ∂S, φW(y0, t) is also a solution of Equation 19.
By unicity of the solution, the Cauchy-Lipschitz theorem en-
sures that φW(y0, t) = φV(y0, t) ∀y0 ∈ ∂S. It follows directly that
W(φW(y0, t), t) = V(φW(y0, t), t)∀y0 ∈ ∂S.

We now turn to the full proof of theorem 1.

Proof
Recalling that dt det(JφW) = det(JφW)div(W), we can obtain the
well known result linking the volume variation of φW(S, t) and the
divergence of W:

dtVol(φW(S, t)) =
∫

φW(S,t)
div(W(x, t))dx (21)

Moreover, since W is divergence-free, φW is volume preserving:

0 = dtVol(φW(S, t)) =
∫

φW(S,t)
div(W(x, t))dx (22)

We then use the divergence theorem on φW(S, t) and the fact that
V coincides with W on φW(S, t):

∫
φW(S)

div(W)(x, t)dx =
∫

φW(∂S,t)
W(x, t) ·−→n ∂S =

∫
φW(∂S,t)

V(x, t) ·−→n ∂S

=
∫

φW(S)
div(V)(x, t)dx

=
∫

φV(S)
div(V)(x, t)dx = dtVol(φV(S, t))

(23)

By combining 21 and 23, we get dtVol(φV(S, t)) = 0, which proves
that the volume of S is preserved through φV.
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