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1. Resulting fields

To better visualize the learned velocity field, we trained our model
on a 2D toy experiment morphing two parallel rectangles into a
hollowed disk (Figure 1). The velocity field appears smooth and
well aligned with the expected deformation.

Figure 1: Evolution of the velocity field (black arrows) during
shape interpolation. The value of fy is reflected by a color scale.
The source and target SDF are displayed in the first row.

Figure 2 shows the different components combined to create our
adaptive divergence vector field on a 2D experiment for easier vi-
sualization. H is the 2D equivalent of D, it is the scalar field from
which we derive the divergence free component of V. One can see
that, by construction, the level lines of H are tangent to W. The
second component div(B(f)Vu) is divergence free on the shape
boundary. Near the medial axis, div(B(f)Vu) is high and some
level sets are absorbed (change of volume in those areas).

2. Behavior with respect to rotation and trivial motions

As a sanity check, we interpolate between a torus and itself, for
which we expect the transform to be the identity. The results are
reported on Figure 3. As expected, our method is able to reproduce
this trivial motion. The second test is to interpolate between a torus
and its 90° rotated version, for which we expect to recover a rota-
tion. Figure 3 (bottom row) shows that the inferred deformation is
consistent with a rotation, but adds a small nonrigid deformation.

3. Robustness to noise

We consider morphing between source and target shapes with in-
creasing levels of noise. In practice, our method inherits the robust-
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Figure 2: Visualization of the components used for building our
adaptive divergence vector field in 2D. Top row: resulting SDF ap-
proximation, for reference; middle row: scalar potential H, with
black arrows highlighting the divergence free field constructed over
H; bottom row: adaptive divergence component div(B(f)Vu).
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Figure 3: Interpolations produced for an identity groundtruth
transform and a rotation groundtruth transform.

ness of the source and target SDF training method and produces a
consistent transition between very noisy shapes (Figure 4). Input
point clouds are degraded through a Gaussian Noise, normal direc-
tions are recomputed while keeping the overall orientation consis-
tent, the auxiliary source and target SDF are trained on these noisy
inputs, and our method is applied to these data. This also tends to
show that our method is relatively stable with respect to small per-
tubations of the input data.
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Figure 4: Results obtained for various noise levels (standard deviation G expressed as a percentage of the shape diagonal). Our method can
handle moderate amounts of noise, but fails for large noise (¢ = 10%diagonal).

4. Ablation study - Eikonal-LSE Balance

We study the balance between Eikonal and Level Set equation
losses by modifying the weights A; sz and Agronq- Figure 5 shows
the distribution of fy’s gradient norm depending on the weight of
the Eikonal term in the loss. Compared to NISE and INSD, we can
see that enforcing the Eikonal at any time yields a gradient distri-
bution which is much more centered around 1 (a signed distance
field gradient histogram should have a single peak at 1). Figure
6 shows the impact of the weight of the LSE loss on the volume
preservation. When Ay g increases, the volume is better preserved
throughout the deformation.
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Figure 5: fy’s gradient norm distribution for different Eikonal
weights in the loss for the cylinders to torus experiment, compared
to NISE and INSD.
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Figure 6: Volume variation for different LSE weights in the loss,
compared to NISE and INSD on the cylinders to torus experiment.

Figure 8 and 7 illustrate the distribution of the LSE error term
and the Eikonal error term at different time steps on a slice of the
cylinders-torus experiment.

All methods yield a vanishing gradient of fg on the medial axes
of the shapes, since the gradient is undefined on this part of the
space (Figure 7). NISE does not have any constraint on the gradi-
ent of the intermediate shapes, resulting in a poor distribution of the
gradient norm. Our method allows to easily tune the penalization
of gradient by adjusting Ag; to better preserve the gradient norm,
even for intermediate shapes. INSD uses a modified level set equa-
tion to preserve the gradient norm only along the shape contour for
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Figure 7: Distribution of |V f|| for different time steps on a slice of the cylinders-torus experiment.

any time ¢, but the authors did not provide any insight on how the
value of the hyper parameter of the right hand side of their modi-
fied LSE could impact the distribution of the gradient. We chose to
use Agjx = 1 in our experiments, which gave good results. The high
computation time of our implementation of INSD did not allow to
do a full grid search on the hyper parameters.

On Figure 8, we can see that the compliance with the LSE in-
creases with Azgg. Interestingly, the highest errors occur at topo-
logical changes where and when surface shape parts merge (see
Arse = le4 ). Without topological changes, the LSE error is low
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everywhere. For low A;gg we can see that the LSE error distribu-
tion is spread over spacetime. (A sz = 1 for example), compared
to NISE. This can be explained by the fact that NISE explicitely
uses the scalar potential in the handcrafted V, while it appears only
through its space and time derivatives in our case. Since it is impor-
tant for volume preservation that the LSE equation is fulfilled on
surfaces, we chose Ay sg = led (Figure 6). We recommend that the
weight of the LSE loss is at least equivalent to the weight Ap;ichier
of the Dirichlet loss. In the case of INSD the approach does not
intend to satisfy the original expression of the LSE away from the
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Figure 8: Distribution of the LSE loss value for different time steps on a slice of the cylinders-torus experiment.
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surface. Hence the error is higher avay from the surface. However
the modified LSE they introduce prevents the error to explode.

Changing the LSE loss weight has an impact on the detail preser-
vation as well: lowering it allow the method to focus more on the
source and target details at the cost of a blobby morphing, while
increasing it yields less detailed shapes, but a morphing with less
spurious blobby artifacts. Figure 9 shows the different results ob-
tained by changing the LSE weight.
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Figure 9: Impact on the detail preservation and morphing quality
of the LSE loss weight change.

5. Comparison to baselines methods

We compare our method to simple neural baselines in Figure 10.
The first method (w/out LSE) consists in learning directly f(x,7)
from the source and target shapes only with an Eikonal constraint.
The second baseline is to compute an explicit flow of the form x +
1 (x,1) to get an exact solution of the LSE with go(x+1¢(x,7)). Our
experiments show that both baselines do not capture meaningful
interpolations, and are obviously not volume preserving.

6. Incorporating landmark correspondences

Although our method targets morphing between shapes without
semantic correspondences, landmarks can be incorporated in our
method. To do so, we use the method proposed in [SCC*25]. Let
(y?7 )’il )i be a pair of correspondences on shape Sy and Sy, each pair
must verify:

1 0 ! !
Yi =i +/0 V(yit) )
This induces an additional loss term:
||
lCorr:ZHyi _yiH @
i

Where 3/ is obtained via the forward Euler scheme using our
learned vector field Vg : )7;"*' ="+ AtVe(3",ta), )79 = y?. Addi-
tionally, every point remains on the surface through the integration,
their implicit value must be 0, which is mirrored in another loss:

ltimefDirichlet = ZZ er ()7?171‘")" 3)
i n

Figure 11 shows the results of using landmarks for our method
and INSD. Although, the twist motion is captured by both methods,
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clearly, INSD yields much better intermediate steps, we hypothe-
size that this is due to an additional Laplacian regularization on the
vector field in the INSD method, a constraint which we did not use
in our method.

7. Comparison to an explicit morphing method

We compare our method to [ELC18] (DFSCD), an explicit method
that iteratively computes keypoints on the shapes, matches them
and computes a divergence free vector field, before updating the
correspondences. We use a pair of shapes with the same genus. The
result shows that the method fails to match the keypoints meaning-
fully, which can be due to the fact that they are repeated. [ELC18] is
much more meaningful to compute matches between semantically
close shapes, such as human bodies for example. Figure 12 shows
a morphing example.

8. Stability wrt network initialization

We analyze the impact of the random seed. Changing the random
initialization of the network weights, leads to a convergence to a
different local minimum and consequently different intermediate
shapes (Figure 13). This is an expected result since the problem
is under-constrained and an infinite number of solutions exist. But
we can observe that the solutions are always comparable and the
difference are limited.

9. Computation time analysis

Our method is computation-intensive, we show on Figure 14 that,
with a lower number of epochs, the obtained morphing is still rea-
sonable but the intermediate steps are less relevant. A strategy to
mitigate the computation time would be to use our strategy for mor-
phing coarse shapes in a meaningful way and then transfer the de-
tails along, a promising future research direction. We also compare
our method with NISE and LF-INSD with a fixed training time of
one hour. This time corresponds to the convergence time of NISE.
Figure 15 shows that our result is already meaningful even if details
are smooth (see the teaser). This shows that our method is a good
starting point for morphing coarse shapes before applying detail
transfer for sharper details.

10. Additional comparisons and results

We show additional comparisons in Figure 17, 18, 19 and corre-
sponding volume variations on Figure 16.

When interpolating between a feline and a rotated horse, one can
see that the motion obtained by most methods is irrelevant. Without
landmarks, our method still manages to use the wings for the front
legs and regrow the back legs. Other methods either tear the sur-
face (OT) or produce less significant blobby intermediate steps. To
get a better deformation, we can estimate a rigid transform align-
ment through PCA and compute the nonrigid deformation in these
aligned poses (Figure 18). This alignment allows our method to
better leverage shape parts with similar geometry, such as the legs
for example. Finally Figure 20 shows some additional morphing re-
sults. It should be noted that the quality of the interpolation depends
also on the quality of the source and target SDF. For example, the
falcon to witch morphing used a low-detail representation.
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Figure 10: Comparison of the square to rectangle morphing using various baselines methods (without LSE, with explicit flows, ours). Note
that the baseline without LSE still efficiently learns the boundary shapes, but fails to produce smooth and meaningful intermediary shapes.
For the explicit flow baseline, the first shape is exact (in terms of implicit representation), but the baseline fails to learn both the final shape
and smooth intermediated shapes.
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Figure 11: Comparison of the effect of sparse and dense landmark
correspondences on our method and INSD [SCC*25].
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Figure 13: Different seeds for the network weights random initial-
ization yield different intermediate shapes. Contours are drawn in
different colors for each seed (square to rectangle experiment, Fig-
ure 10).

s s s v ’ Figure 15: Comparisons of the results obtained after one hour for
various methods.

Figure 14: Comparisons of different morphing obtained for vari-
ous numbers of epochs.
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Figure 16: Volume evolution when morphing cylinders to a torus
(left) and feline to horse in aligned poses (right) using our method
compared to INSD, NISE, LipMLP and OT. See Figures 19 and 18
for the corresponding interpolations.
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Figure 17: Comparison on Max-Bust. On this simple shape all methods produce a reasonable morphing. With NISE, intermediate steps are
a little more blobby.
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Figure 18: Comparison on Feline-Horse in aligned and arbitrary poses.
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Figure 19: Comparison on the 2 cylinders to torus experiment in aligned or abitrary poses using our method, NISE or INSD.
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Figure 20: Additional morphing results .

Cube to Cross

Submarine to Owl Cube to Sphere

Falcon to Witch
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