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Abstract

This paper develops a scale space strategy for orienting and meshing exactly and completely a raw
point set. The scale space is based on the intrinsic heat equation, also called mean curvature motion
(MCM). A simple iterative scheme implementing MCM directly on the raw point set is described, and a
mathematical proof of its consistency with MCM is given. Points evolved by this MCM implementation
can be trivially backtracked to their initial raw position. Therefore, both the orientation and mesh of
the data point set obtained at a smooth scale can be transported back on the original. The gain in visual
accuracy is demonstrated on archaeological objects by comparison with several state of the art meshing
methods.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computa-
tional Geometry and Object Modeling—Curve, surface, solid, and object representations

1. Introduction

A growing number of applications involve creating nu-
merical models for existing objects acquired by tri-
angulation laser scanner or other devices. Our study
deals with raw input data acquired by such scan-
ners, namely sets of unorganized and non-oriented
points given by their x, y, z coordinates. The proposed
method orients and meshes directly the complete raw
point set, thus allowing for the visualization of the
finest surface details and an accurate delineation of the
scanning holes. Contrarily to usual meshing methods,
the goal is to keep almost all raw data points as ver-
tices, thus putting in evidence all defects caused by
the scanning process. Doing so is important to keep
an optimal accuracy. Indeed, the processed point data
treated here have a typical acquisition error of 20µ, al-
lowing in principle to recover all textures and details.

The main tool introduced is a raw data set point
smoothing operator consistent with the intrinsic heat
equation. The intrinsic heat equation, or mean curva-
ture motion (MCM), is the simplest intrinsic method

to smooth out a surface. It writes

dP

dt
= H(P )~n(P ) (1)

where H(P ) is the mean curvature at P (whose sign
depends on the normal orientation), and ~n(P ) the nor-
mal. This motion will be given a robust implemen-
tation working directly on raw data, which can be
completely described in few words: it is the iterated
projection of each point on the regression plane of its
radial neighborhood. In contrast to [AMD02] which de-
fined a remeshing method based on a global planar
parametrization, here, the plane projection will be lo-
cal and iterated. Mathematical and experimental ar-
guments will show that this iterated planar regression
consistently implements the MCM and actually per-
mits to compute an accurate denoised curvature. In-
deed, Theorem 2 states that, by these iterations, each
raw data set point moves forward at the speed of the
surface mean curvature in the direction of the surface
normal.

By the iterated projection algorithm each initial raw
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data point can be tracked forward and backward in
the surface smoothing process. As a consequence, the
surface structure established at a smooth scale can
be transported back on the raw data set point. This
back transportation yields a topologically faithful ori-
entation at each raw point, and subsequently a mesh
whose vertices are almost all raw data points. It also
permits an accurate detection of holes in the raw data,
useful for further scanning attempts. Comparative ex-
periments will show that a direct meshing gives poor
results, while the back transported mesh allows for the
uttermost accurate rendering of the surface, the mesh
vertices being more than 99% of all initial raw points.
Obviously, such a complete mesh is not economical,
but it permits an accurate rendering of fine art or
archaeological pieces at 20µ precision in the current
technology and a detection by visual inspection of the
tiniest scanning defects.

The use of the mean curvature motion, forward and
backward, is a direct 3D extension of the scale space
paradigm in image processing introduced in the found-
ing Witkin paper [Wit83]. It consists of applying the
heat equation ∂u

∂t
= ∆u to the image leading to a rapid

image simplification. The main image features (for ex-
ample the edges) are detected at a coarse scale (large
t) and then tracked back to their fine scale position.
The next subsection reviews the methods computing
curvatures and normals on raw data.

1.1. Building a mesh

Given an initial oriented point cloud, most meshing
methods start by defining a signed distance field to
the inferred surface [HDD∗92], [KBH06]. The signed
distance function can be estimated at any point by
computing the distance between the point and the re-
gression plane of its k-nearest neighbors [HDD∗92].
Since the neighbors are assumed previously oriented,
the sign of this distance is straightforward. Other suc-
cessful methods approximate the distance function us-
ing its decomposition on a local radial basis functions
[KBH06]. Extracting the surface then corresponds to
extracting the zero level set of the distance function.
This can be done with the marching cubes algorithm
[LC87] or any other contouring algorithm.

These level set methods are robust and yield meshes
that approach well the shape, but the approximation
entails an implicit surface smoothing and the loss of
fine texture. Acquisition holes are also filled in by these
methods, the signed distance function giving a natu-
ral close up of the surface. Nonetheless, for scanning
applications, the acquisition holes should be detected
rather than filled in. The smoothing can be desirable
if there are noise and scanning artifacts. However, in
the cases we shall examine, texture actually dominates

noise. A guarantee that no detail is lost is granted only
when almost all raw data points are mesh vertices.

1.2. Raw data point set processing

Considering it impossible to mesh directly the raw
data point set, the literature has considered more and
more sophisticated smoothing and interpolation meth-
ods. Probably the most prominent and efficient one
is the “Moving Least Square Surface” (MLS) intro-
duced in [Lev03]. It is defined as the set of station-
ary points of an operator projecting each raw point
on a local quadratic regression of the surface. The or-
der n MLS algorithm estimates at each point a degree
n polynomial surface from a set of weighted neigh-
bors. The obtained surface can be used to project the
point on the MLS surface, or to sub-sample the sur-
face by removing step by step the points with least
influence [ABCO∗03]. Variations of the MLS algo-
rithm for denoising point sampled surfaces and pre-
serving edges were proposed in [FCOS05], [GTE∗06],
[OGG09], [LCOL07], [GG07]. Interpolating point set
surfaces can be achieved by using a singular weight-
ing function ([OGG09], [AA09], [SOS04]), but using
the marching cubes to extract the iso-surface looses
anyway the input point positions.

At first sight applying MCM to a data point set
requires the separate computations of the surface in-
trinsic Laplacian (mean curvature) and of the nor-
mal. For meshes, the standard discretization of the
Laplacian operator is done through the cotangent for-
mula [MDSB02]. For point clouds, [BSW09] proposed
the construction of a Laplacian operator for functions
defined on point clouds (yet no result on real noisy
shapes was presented). In [PKG06], the curvature is
either estimated by a polynomial regression or by pro-
jection on a fitted least square surface (in other terms,
by MLS). The reverse operator is built by storing the
displacements of each point at each step. A similar
scale space approach will be used here, but with quite
different scopes: in [PKG06], the proposed applica-
tions were shape morphing and shape editing.

In [UH08], another MCM discretization for point
sets was proposed. The surface Laplacian is computed
by building an operator Aθ at each point position and
for every direction θ in the tangent plane. Aθ moves
a point p proportionally to the curvature Hθ of the
section curve in direction θ. By integrating over θ, it
yields a mean curvature motion.

1.3. Computing curvatures

Computing the principal curvatures reliably on a given
surface is crucial for various applications, in partic-
ular the anisotropic filtering preserving sharp edges
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[HP04], [MDSB02], or the sampling methods adapt-
ing the density to the surface curvatures [PGK02]. On
meshes, the curvature estimation problem has already
been investigated in [MDSB02] where the cotangent
formula is proven and extended. [Tau95] derived an
analytic expression for estimating the directional cur-
vatures in the edge directions. In [Rus04], [TRZS04],
the tensor curvature was estimated on each face of
a mesh surface. Other mesh curvature computation
techniques include the use of the normal cycle the-
ory [CSM03]. For a summary and comparison of mesh
curvature estimation methods, see [MSR07]. It is also
possible to estimate curvatures by building curves con-
tained in the surface and passing through the consid-
ered point [Tan05].

To determine the curvature of a given point, direct
methods fit a surface (a polynomial or a quadric) lo-
cally to each neighborhood and then compute the fun-
damental forms in their explicit form. This permits to
compute the Weingarten map whose eigenvalues and
eigenvectors are the principal curvatures and princi-
pal directions ([LFM96] among others). In [BC94] the
principal curvatures are computed from an oriented
raw data set without surface fitting by expressing
the fundamental forms of a 3D surface as covariance
matrices. Indeed, the covariance matrix of the point
normals projected on the regression plane yields the
principal curvatures and their directions. Other ap-
proaches avoiding surface regression include the com-
putation of integral invariants [PWHY09], [PWY∗07].
They are based on the idea that differentiation is not
robust in a discrete and potentially noisy data set,
whereas integration is much more resistent to noise.
The proofs link the computation of the area of the
intersection of the surface with a ball to the prin-
cipal curvatures. Another possibility is to adapt the
curvature estimation of [Tau95] to the case of point
clouds, like in [LP05]. Instead of considering the edge
direction, since no edge information is given for the
point cloud, they consider all directions from the cen-
ter point to one of its neighbors. MLS surfaces were
also used to derive analytic expressions for the curva-
tures of point set surfaces [YQ07]. As far as meshes
are concerned, a comparison of various curvature esti-
mations can be found in [SMS∗03].

The paper is divided as follows: Section 2 gives
mathematical results proving the consistency of the
proposed scale space algorithm and Section 3 analyzes
the discretization problem. Sections 4, 5 describe the
two main applications of the scale space: a point cloud
orientation method and a faithful mesh construction
for the raw data set. Comparative experiments are pre-
sented in Section 6.

2. Continuous Theory

This section investigates a new way of implementing
the mean curvature motion by the iteration of a planar
surface regression. The surfaceM supporting the data
point set is assumed to be at least C2. The samples
on the surfaceM are denoted byMS .

Let P (xP , yP , zP ) be a point of the surface M. At
each non umbilical point P , consider the principal
curvatures k1 and k2 linked to the principal direc-
tions ~t1 and ~t2, with k1 > k2 where ~t1 and ~t2 are
orthogonal vectors. (At umbilical points, any orthog-
onal pair (~t1,~t2) can be taken.) Set ~n = ~t1 × ~t2 so
that (~t1,~t2, ~n) is an orthonormal basis. The quadru-
plet (P,~t1,~t2, ~n) is called the local intrinsic coordinate
system. In this system we can express the surface as
a C2 graph z = f(x, y). By Taylor expansion,

z = f(x, y) = −
1

2
(k1x

2 + k2y
2) + o(x2 + y2). (2)

Notice that the sign of z depends on the arbitrary
surface orientation.

2.1. Spherical neighborhoods vs cylindrical

neighborhoods

Consider two kinds of neighborhoods in M for
P defined in the local intrinsic coordinate system
(P,~t1,~t2, ~n):

• a neighborhood Br = Br(P ) ∩M is the set of all
points Q of M with coordinates (x, y, z) satisfying
(x− xP )

2 + (y − yP )
2 + (z − zP )

2 < r2

• a cylindrical neighborhood Cr = Cr(P ) ∩M is the
set of all points Q(x, y, z) on M such that (x −
xP )

2 + (y − yP )
2 < r2.

For the forthcoming proofs the cylindrical neighbor-
hood will prove much handier than the spherical one.
The next technical lemma justifies its use.

Lemma 1 Integrating onM any function f(x, y) such
that f(x, y) = O(rn) on a cylindrical neighborhood
Cr(P ) instead of a spherical neighborhood Br(P ) in-
troduces an o(rn+4) error. More precisely:
∫

Br

f(x, y)dM =

∫

x2+y2<r2
f(x, y)dxdy +O(r4+n). (3)

Proof The surface area element of a point
M(x, y, z(x, y)) on the surface M, expressed as
a function of x, y, dx and dy is dM(x, y) =
√

1 + z2x + z2ydxdy. One has zx = −k1x + O(r2) and
zy = −k2y +O(r2). Thus

dM(x, y) =
√

(1 + k2
1x

2 + k2
2y

2 +O(r3))dxdy
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which yields

dM(x, y) = (1 +O(r2))dxdy. (4)

Using (4), the integrals we are interested in become
∫

Br

f(x, y)dM = (1 +O(r2))

∫

Br

f(x, y)dxdy; (5)

∫

Cr

f(x, y)dM = (1 +O(r2))

∫

Cr

f(x, y)dxdy (6)

= (1 +O(r2))

∫

x2+y2<r2
f(x, y)dxdy.

Consider polar coordinates (ρ, θ) such that x = ρ cos θ
and y = ρ sin θ with 0ρ ≤ r and 0 ≤ θ ≤ 2π.
For M(x, y, z) belonging to the surface M, we have
z = − 1

2
ρ2(k1 cos

2 θ+ k2 sin
2 θ) +O(r3) = − 1

2
ρ2k(θ) +

O(r3), where k(θ) = k1 cos
2 θ + k2 sin

2 θ. The condi-
tion that (x, y, z) belongs to the neighborhood Br(P )
can therefore be rewritten as ρ2+z2 < r2, which yields

ρ2 +
1

4
k(θ)2ρ4 < r2 +O(r5)

For each θ the extremal value ρ(θ) of this neighbor-
hood satisfies ρ(θ)2 + 1

4
k(θ)2ρ(θ)4 − r2 + O(r5) = 0.

Thus

ρ(θ)2 =
−1 +

√

1 + k(θ)2(r2 +O(r5))
1
2
k(θ)2

.

This yields ρ(θ) = r− 1
8
k(θ)2r3 +O(r3). We shall use

this estimate for the error term E appearing in
∫

Br

f(x, y)dxdy =

∫

[0,2π]

∫

[0,ρ(θ)]

f(x, y)ρdρdθ

=

∫

[0,2π]

∫

[0,r]

f(x, y)ρdρdθ − E =

∫

Cr∩M

f(x, y)dxdy − E,

with E =:
∫

[0,2π]

∫

[ρ(θ),r]
f(x, y)ρdρdθ. Thus

|E| ≤
π

4
sup

x2+y2≤r2
|f(x, y)|k(θ)2r4,

which yields |E| ≤ π|k1|
2

4
supx2+y2≤r2 |f(x, y)|r

4. In

particular if f(x, y) = O(rn), then |E| ≤ O(r4+n).
Finally,
∫

Br

f(x, y)dxdy =

∫

Cr∩M

f(x, y)dxdy+O(r4+n), (7)

and combining (5), (6) and (7) yields (3).

2.2. Curvature Estimation

By Theorem 1 projecting a point onto the neighbor-
hood barycenter approximates the mean curvature
motion. We discuss later on why this result cannot
be used for implementing the mean curvature motion.

Theorem 1 In the local intrinsic coordinate system,
the barycenter of a neighborhood Br(P ) where P is
the origin of the neighborhood has coordinates xO =

o(r2), yO = o(r2) and zO = −Hr2

4
+ o(r2), where

H = k1+k2
2

is the mean curvature at P .

Proof By Lemma 1 applied to the numerator and de-
nominator of the following fraction, we have

zO =

∫

Br

zdM
∫

Br

dM
=

∫

x2+y2<r2
z(x, y)dxdy +O(r5)

∫

x2+y2<r2
dxdy +O(r3)

=

∫

x2+y2<r2

[

− 1
2
(k1x

2+k2y
2)+o(x2+y2)

]

dxdy
∫

x2+y2<r2
dxdy

+O(r3)

=−
1

2πr2

∫ r

ρ=0

∫ 2π

θ=0

ρ2(k1 cos
2 θ + k2 sin

2 θ)ρdρdθ + o(r2)

=−
r2

8π
(k1π + k2π) + o(r2) = −

Hr2

4
+ o(r2).

A similar but simpler computation yields the esti-
mates of xO and yO.

2.3. Surface motion induced by projections on

the regression plane

The main tool of the proposed scale space will be a
simple projection of each surface sample P on the sur-
face local regression plane. This PCA regression plane
is defined as the plane orthogonal to the least eigenvec-
tor of the centered local covariance matrix, and pass-
ing through the centroid of the neighborhood. The
projection of P on this plane will be called P ′. The
next lemma compares the normal to the PCA regres-
sion plane with the normal to the surface, ~n(P ).

Lemma 2 The normal ~v to the PCA regression plane
at P ∈ M is equal to the surface normal at point P ,
up to a negligible factor: ~v = ~n(P ) +O(r).

Proof The local PCA regression plane of point P
is characterized as the plane passing through the
barycenter of the neighborhood Br(P ) and with nor-
mal ~v minimizing:

I(~v) =

∫

Br(P )

|〈~v, PP ′〉|2dP ′ s.t. ‖v‖ = 1

Denoting by (vx, vy, vz) the coordinates of ~v,

I(~v) =

∫

Br

(vxx+vyy−vz
1

2
(k1x

2+k2y
2)+o(r2))2dxdy.

Considering the particular value ~v = (0, 0, 1) shows
that the minimal value Imin of I(~v) satisfies Imin ≤
O(r6). In consequence the minimum (vx, vy, vz) satis-
fies vx ≤ O(r) and vy ≤ O(r). Thus vz ≥ 1−O(r) and
therefore ~v = ~n(P ) +O(r).

By Lemma 2, projecting P onto the regression plane
induces a motion which is asymptotically in the nor-
mal direction: P ′P is almost parallel to ~n(P ). The

submitted to COMPUTER GRAPHICS Forum (1/2011).



J. Digne & JM Morel & C. Mehdi-Souzani & C. Lartigue / Scale Space Meshing of Raw Data Point Sets 5

simple projection of each surface point P onto its local
regression plane approximates a 3D scale space (mean
curvature motion) as shown in the next theorem.

Theorem 2 Let Tr be the operator defined on the
surfaceM transforming each point P into its projec-
tion P ′ = Tr(P ) on the local regression plane. Then

Tr(P )− P = −
Hr2

4
~n(P ) + o(r2). (8)

Proof By Theorem 1 the barycenter O of Br has lo-

cal coordinates
−−→
PO = (o(r2), o(r2),−Hr2

4
+ o(r2)).

On the other hand
−−→
PP ′ is proportional to the nor-

mal to the regression plane, ~v. Thus by Lemma 2
−−→
PP ′ = λ(O(r), O(r), 1−O(r)). To compute λ, we use
the fact that P ′ is the projection on the regression
plane of P , and that O belongs to this plane by defi-

nition. This implies that
−−→
PP ′ ⊥

−−→
OP ′ and therefore

λ2O(r2)+λ(1−O(r))(H
r2

4
+o(r2)+λ(1−O(r))) = 0,

thus λ = −Hr2

4
+o(r2) and

−−→
PP ′=(O(r3),O(r3),−Hr2

4
+

o(r2)). Finally
−−→
PP ′=−Hr2

4
~n(P ) + o(r2).

3. The discrete algorithm

The previous theorems assume that the surface is
a uniform Lebesgue measure. A constant sampling
density is therefore necessary. This constant density
will be approximated on discrete data by weight-
ing each point by a weight inversely proportional to
its initial density. More precisely, let p be a point
and Nr(p) = Ms ∩ Br(p). Each point q should
ideally have a weight 0 ≤ w(q) ≤ 1 such that
∑

q∈Nr(p)
w(q) = 1. This amounts to solve a huge

linear system. For this reason, we shall be contented
with ensuring

∑

q∈Nr(p)
w(q) ≃ 1 by taking w(p) =

1
♯(Bp(r))

, as proposed in [UH08]. Let O be the weighted

barycenter of this neighborhood. In R
3, the coordi-

nates are written with superscripts, e.g. the coordi-
nates of a point u are (u1, u2, u3). Thus, for i = 1, 2, 3,
Oi = 1∑

q∈Nr(p) w(q)

∑

q∈Nr(p)
w(q)qi. The centered co-

variance matrix Σ = (mij)i,j=1,··· ,3 is defined asmij =
∑

q∈Nr(p)
w(q)(qi−Oi) · (qj−Oj) for i, j = 1, 2, 3. Let

λ0 ≤ λ1 ≤ λ2 be the eigenvalues of Σ with correspond-
ing eigenvectors v0, v1, v2. For k = 0, 1, 2,

λk =
∑

q∈Nr(p)

w(q)〈(q −O), vk〉
2. (9)

Each eigenvalue gives the variance of the point set in
the direction of the corresponding eigenvector. Since
v1 and v2 are the vectors that capture most vari-
ations, they define the PCA regression plane. The
normal ~v to this plane is the direction ~v minimizing
∑

q∈Nr(p)
w(q)〈(pi −O), ~v〉2.

Effectiveness of Theorems 1 and 2. Both Theo-
rems permit a priori to implement the mean curvature
motion on the raw data point set without any previ-
ous orientation. Nevertheless, the numerical applica-
tion of these theorems depends on the assumption that
a uniform Lebesgue measure on the surface is well rep-
resented by a uniform sample density. This is not true
for the barycenter method of Theorem 1. Iterating the
barycenter method with a small neighborhood and a
slightly varying sample density leads to a local clus-
tering of the samples. Indeed, the barycenter method
provokes a normal motion, but also a non negligible
tangential motion to the surface. This motion is pre-
cisely the one used in the Mean Shift method [Che95]
for data clustering. This undesirable clustering effect
is illustrated in fig. 1. Even though the point distribu-
tion on the sphere is probabilistically uniform, local
clustering occurs by taking local barycenters. In con-
trast, for the projection filter there is no observable
tangential shift on the right image of fig. 1. Theorem
2 is in that case consistent with its numerical imple-
mentation. This follows from the obvious fact that any
(non aligned) irregular sampling of a plane permits to
exactly recover the plane by linear regression.

(a) Original sam-
ples

(b) 4 barycenter
iterations

(c) 4 projection
filter iterations

Figure 1: Comparison of the iterated barycenter and of
the iterated projection filter on a randomly sampled sphere.
Both motions are consistent with the mean curvature mo-
tion, but the iterated barycenter provokes clustering.

Back propagation A normal motion by mean cur-
vature can be defined for every point P0 on the initial
surface as a solution of (1) ( dP

dt
= H(P )~n(P )) consid-

ered as an ordinary differential equation with initial
point P0. Thus, the backward scale space is trivial,
provided the forward MCM implementation actually
implements the evolution of each raw data set point
P0. Let us consider a point Pt and its evolution Pt+1

at steps t and t + 1. Now, we can build the sequence
dP (t) = Pt+1 − Pt and the reverse scale space oper-
ator P−1

t (Pt+1) = Pt+1 − dP (t), this operator allows
to go backward in the scale space evolution from step
t+1 to 0. This is exactly the construction proposed in
[PKG06]. If we only need to go from step t to the initial
data 0, without any intermediate step, the operator is
even simpler to build, since we only need to store for
each point Pt its initial position P−1

t (Pt) = P0. This
reverse scale space operator will be called back propa-
gation, or back transportation.
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3.1. Higher order regression surfaces

The authors of [CP03] proved that a degree n poly-
nomial fitting estimates all kthorder differential quan-
tities to accuracy O(hn−k+1). In [PKG06] an order 2
Moving Least Squares (MLS2) method projecting the
point onto the locally fitted least squares surface was
actually proposed as a scale space operator. Yet these
iterated projections cannot be consistent with MCM,
because by definition they leave invariant all degree
two surfaces.

Can iterated MLS2 give a better estimate of the cur-
vature than the projection filter? Comparative exper-
iments were performed on a randomly and uniformly
sampled sphere with added Gaussian noise. The point
samples were filtered four times by Tr. By Theorem
2, each filtering step gives an estimate of the mean
curvature. The same sampled sphere was filtered by
MLS2, the surface mean curvature being computed as
the mean curvature of the approximating surface at
each point. This estimate is very exact, since the dif-
ference on a C4 surface between a point and its MLS2
estimate can be proved to be O(r4). Both mean curva-
ture estimates are compared by their mean and stan-
dard variations in the table of fig. 2. The result shows
that when the noise level increases the planar projec-
tion yields a much more stable computation (see the
fast decay of the standard variation for the curvature
estimate). This experiment is also coherent with the
MCM consistency theorem. Indeed, the planar projec-
tion yields a point set with (slowly) increasing curva-
tures (once the noise is removed, i.e., once the stan-
dard variation is stable). This explains why Tr at iter-
ation 10 gives a curvature 1.05 and not 1. This result
is accurate, having standard variation 0.01.

Fig. 3 is another illustration in 1D of the same phe-
nomena: a circle with radius 1 and added Gaussian
noise with variance 0.05 is denoised by iterated Tr

and by an iterated MLS2 projection using the same
neighborhood radius. In 1D, Tr becomes a simple line
regression and the MLS2 surface a degree 2 polynomial
curve. The simplest MLS2 method is used: it merely
performs a weighted least squares polynomial regres-
sion on the local neighborhood. The neighbors weights
are equal to G(d) where G is a Gaussian and d is the
distance between the neighbor and the center point.
The standard variation of G is equal to the neighbor-
hood radius.

4. First application: scale space raw data

point orientation

Given an initial non oriented raw point cloud the sur-
face orientation is a much needed information before
meshing. The eigenvector of the least eigenvalue of the

Noise 0.01 0.05 0.1

Tr 1 1.00/1.95 1.15/5.57 1.27/4.76

Tr 2 0.99/0.07 1.02/2.16 1.17/4.89

Tr 3 1.00/0.02 1.01/0.16 1.05/2.10

Tr 4 1.01/0.01 1.01/0.05 1.02/0.27

Tr 10 1.04/0.01 1.05/0.01 1.09/0.04

MLS2 1 0.94/0.22 0.11/2.58 −0.42/2.99
MLS2 2 1.01/0.13 1.02/0.49 0.62/1.36

MLS2 3 1.01/0.10 1.02/0.36 1.06/0.68

MLS2 4 1.00/0.08 1.02/0.30 1.05/2.19

MLS2 10 1.00/0.04 1.01/0.14 1.02/0.74

Figure 2: Comparison of mean curvature estimates on

a noisy sphere with radius 1 (mean/standard variations)
given by iterated planar projection (Tr) and iterated MLS2
regression (iterations 1, 2, 3, 4, 10). The curvature is eval-
uated at all points as the displacement along the normal in-
duced by the planar projection (as stated in Thm 2) for the
planar case, and by the explicit computation of the MLS2
surface mean curvature in the MLS2 case. The same ra-
dius is used for both iterations and both regressions.

Figure 3: Denoising a noisy circle with (from left to
right) 1, 100 iterations of Tr and 1, 100 iterations of MLS2.
Even after 100 iterations the oscillations removed by Tr

persist with MLS2. The sphere radius decreases with Tr,
which is consistent with MCM.

local covariance matrix is a classic approximation of
the normal. We must then pick one of two possible ori-
entations, and this choice must be globally coherent.
The idea is to start by picking a random orientation
for one point and to propagate it to the neighboring
points. Now, sharp edges or a messy surface could fool
such a propagation. If, however, the surface is smooth
enough, the propagation of the normal is safe. Thus
the overall technique to orient the raw data set will be
to smooth it by the scale space, to orient the smoothed
surface, and to transport back this coherent orienta-
tion to the initial data points.

The first tool to realize this program is a simple
propagation method for a point p whose neighborhood
Nr(p) contains some previously oriented points. The
orientation is transmitted from one point to the next
if their normal directions are similar (algorithm 1).

The input parameters for the scale space orientation
(algorithm 2) are the radius r and a threshold 0 ≤t≤ 1.
Steps from 8 to the end are necessary because adding
neighbors of points to the stack might not be enough
to cover the entire cloud due to sampling irregulari-
ties. Once this procedure is over, there might remain
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Algorithm 1: OrientateFromNeighbors(p,r,t)

Data: p an unoriented point, a threshold
0 < t < 1, a radius r, the set Nr(p) of p’s
neighbors within radius r

Result: true if the point was oriented, false
otherwise

1 Compute the normal direction n of p by local
PCA;

2 n̄← unit mean of neighboring oriented normals;
3 if (n̄ · n)2 > t then
4 if n̄ · n > 0 then

5 n(p) = n;
6 else

7 n(p) = −n;

8 Return true;

9 else

10 Return false;

non oriented points. These points are usually isolated
points, and the simplest choice is to ignore them. In
all our experiments the number of remaining non ori-
ented points was below 0.1%. At step 10 the radius
is multiplied by an α > 1 factor. Thus, all normals
are not computed with the same radius. This is why
we must reverse the scale space to come back to the
original point cloud. At scale 0, the normal direction is
recomputed by local PCA for all points and the chosen
orientation is the one which has positive scalar prod-
uct with the previous normals. This is an application
of the scale space paradigm, where the information is
computed at a coarse scale and propagated back to
the finest scale.

5. Second application: scale space meshing

We now discuss how to build a mesh on the raw point
cloud. Direct meshing is not possible because of the
surface oscillation due to fine texture and noise. The
idea is again to perform meshing on the smoothed sur-
face and to transport this mesh back on the original
point cloud. An efficient triangulation technique, the
ball pivoting method [BMR∗99] is used in all exper-
iments for the coarse scale triangulation. The crucial
faithfulness requirement is that the final vertices of the
mesh must be an overwhelming majority of the raw
data set points. This conservative requirement, incom-
patible with level set methods ([KBH06], [HDD∗92],
[LC87]) is described in Algorithm 3.

Parameters of scale space meshing The radius
can be set automatically while computing the octree
to sort the points. Indeed the root of the octree is the
bounding box of all points. Let us call Lmax the length

Algorithm 2: Scale space Orientation

Data: A point cloud P, a radius r, an update
parameter α > 1

1 Iterate the projection filter Tr and keep track of
each raw data point sample (mean curvature
motion);

2 Find a point p0 in a flat area, pick its orientation
and mark it as oriented. Add its neighbors to the
stack S;

3 while S is not empty or S does not become
constant do

4 Take p the first point in S;
5 if orientateFromNeighbors(p,r,t) then

6 Mark the point as oriented and remove p
from S;

7 Add the neighbors of p to S;

8 Add all remaining unoriented points to S;
9 while S is not empty and ♯S does not become

constant do

10 r = αr;
11 for p in S do

12 Perform orientateFromNeighbors(p,r,t);

Figure 4: A raw point set (left) and its orientation
(right). Points in the right figure are given a gray value

equal to the scalar product of their normal and the lighting
orientation.

of its largest side. Then, each cell represents a 3D cube
with size Lmax/2

d where d is the depth of the cell.
Counting the number of points in that cell gives an
approximation of the number of neighbors of a point
contained in this cell for a spherical neighborhood of
radius rd = Lmax/2

d+1. Performing this approxima-
tion in all non empty cells at the same depth gives an
approximation of the number of neighbors for spheri-
cal neighborhoods with radius rd. The projection filter
requires at least three neighbors per point to estimate
a regression plane, but a robust estimate is experi-
mentally attained with 30 neighbors. Of course, since
the same radius is used for all points, it may occur
that there are not enough neighbors to perform the
plane regression. Those points must be eliminated, but
in all the experiments less than 0.1% of points were
removed this way. These points are mostly outliers,
or isolated points in folds of the acquired object. Al-
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though their relative number is low, nonetheless this
represents some thousands points that are eliminated.

Algorithm 3: Scale space meshing

Data: A point set with computed normals
Result: A mesh of the original 3D data point set

1 Iterate (four times) the projection filter Tr and
keep track of each raw data point sample: this is
the forward mean curvature motion;

2 Mesh the smoothed samples;
3 Transport the mesh back to the original points

(thus reverting the mean curvature motion).

Once the minimal number of neighborhood points
has been fixed (and it has been fixed once and for all
on all experiments to 30), the radius is also fixed and
the meshing scale space only depends on the number
of scale space iterations. When setting the radius au-
tomatically as described above, it was found that four
iterations were always enough to smooth the point
cloud and build the mesh. Thus, the scale space is
conceived as a very local motion securing a reliable
tangent space. In all experiments the points barely
moved (less than 40µ for the Tanagra point set). The
scale space and the ball pivoting reconstruction use
the same ball radius. The parameter of the Poisson
reconstruction (namely the octree depth) was set to
be the largest allowed by our computing equipment
(namely a 8 3Ghz processors computer with 48 Go
RAM).

Transporting back the connectivity information
(step 3) can in theory lead to a self intersecting mesh.
Indeed, if two points lie too close to each other they
may “switch position” in the scale space iterations,
leading to a complicated surface topology. This prob-
lem can be solved by detecting all pairs of intersecting
triangles. Then any remeshing algorithm can solve the
problem by switching edges in quadrilaterals. How-
ever, this additional step was not implemented for two
good reasons. First, the existence of a few intersect-
ing triangles would be no serious visual inconvenience.
Second, no such crossing was found in many experi-
ments on about twenty very large data point sets.

6. Comparative experiments on high

resolution data

The algorithms were devised for highly accurate point
clouds acquired by a laser scanner. A typical example
of the scanned objects is a mould of a fourth century
B.C. Tanagra figurine acquired at the Museum of Cy-
cladic Arts, Athens (Fig. 6(a)). It is 22cm high and
the point cloud contains 6 · 106 points.

Thanks to a very accurate calibration of the laser

scanner device, the output is a well registered non ori-
ented point cloud containing a negligible warp. Tests
were also made on objects of the Stanford Fragment
Urbis Romae database. In that case a registration of
the raw sweeps is needed to have a point cloud repre-
senting the whole object. Preferring not to address the
sweep registration problem in this paper, we will use
single sweeps for our meshing experiments and show
that considerable texture information can be recov-
ered from each sweep. Figs. 6 and 6(f) show the appli-
cation of scale space meshing with a mesh rendering
at fine and coarse scale. We can see on Figs. 6 and 6(f)
that the surface texture is lost at a coarse scale, but
completely and accurately recovered by scale space
meshing. Comparing the back projected mesh to the
result of a direct meshing of the initial samples (Fig. 7)
shows that the scale space triangulation is much more
precise. In fact, a direct meshing is not applicable. It
creates, among other artifacts, many spurious trian-
gles. Tr has been proposed as the simplest smooth-
ing operation implementing the mean curvature mo-
tion. It may be objected that the surface could also
be directly approximated by the classic order 2 mov-
ing least square method (MLS2). The most objective
way to compare Tr and MLS2 was to implement them
with exactly the same neighborhood radius. Fig. 7(f)
shows the comparative result on one of the finest de-
tails of the Tanagra data set. The results are similar
in terms of detail quality, yet the computation time
was doubled, and we have seen (Fig. 2) that MLS2
does not deliver a scale space and keeps the smoothed
out noise. Fig. 12 shows a comparison between the
reconstruction obtained by the VRIP reconstruction
method (see [CL96]) and scale space meshing. The
scale space method produces a significantly more pre-
cise mesh, as can be seen on the close up of Fig 9. Fig.
8 shows the scale space reconstruction of one scan of
a fine scale object (i.e. the mesh back-projected at
all scales). Fig 10 compares the mesh reconstruction
by several meshing algorithm with scale space mesh-
ing. The experiment clearly rules out both Ball Pivot-
ing algorithm and Poisson Reconstruction. Two MLS
methods were also tested. APSS ([GG07]) and RIMLS
([OGG09]). APSS builds an implicit function by eval-
uating the distance between each evaluation point and
an algebraic spherical fit of the surface. Although this
last method is not explicitly devised for meshing, the
iso-surface can be extracted using the marching cubes.
RIMLS is another modification of the standard MLS
procedure. It is based on minimizing an objective func-
tion that gives less weight to spatial and normal out-
liers (i.e., sparse points and features). Here, the march-
ing cubes are explicitly mentioned for extracting the
surface. For both methods, the resolution depends on
the marching cubes grid resolution: it was set so that
increasing it would not change much the visual aspect.
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(a) Original samples (b) Projection motion (c) Resulting samples (d) Coarse scale mesh (e) Scale space mesh

Figure 5: 2D example of the steps performed by the scale space meshing algorithm.

Figure 8: Back-projecting the mesh of a single scan of

a fine-scale object (engravings are around 0.1mm deep).
From left to right: mesh built after 4 scale space iterations;
back-projection to levels 3, 2, 1 and 0 (final mesh).

(a) RIMLS (b) APSS (c) Scale space

Figure 11: Detail of the mesh built using (from left to

right) RIMLS, APSS and scale space meshing. Notice the
horizontal artifacts caused by the isosurface extraction for
both APSS and RIMLS methods. The tiny vertical ridges
restituted by the scale space meshing are present in the raw
set: they reveal the scanning direction.

Although the results by both methods are visually
close to scale space meshing, the proposed scale space
meshing is much simpler. Processing directly the raw
points, it skips the iso-surface extraction. It is also the
only method which preserves input samples and does
not add additional vertices (both APSS and RIMLS
actually introduce more than twice the number of in-
put samples). Another problem is that the iso-surface
extraction by marching cubes introduces aliasing-like
artifacts which are avoided by scale space meshing (see
Fig. 11). The tiny vertical ridges restituted by the scale
space meshing are present in the raw set: they reveal
the scanning direction. It is precisely one of the scopes
of the method to be able to visually check the tiniest
problems in the scanning process.

Fig. 6 displays the many acquisition holes at the
bottom of the Tanagra figurine, in the folds of the tu-
nic or near the right foot. By the scale space meshing
these holes are not filled in and can be detected. Since
the ball pivoting algorithm is used for triangulation,
no triangle larger than a given threshold has been cre-
ated. Indeed, to form a triangle, three points must lie
on a sphere of given radius r. Thus, low density areas
are considered as holes.

Method Wave 1 Wave 2 sphere sharp

Scale space 0.19 0.28 0.04 0.04

BPA 0.18 0.24 0.04 1.2

Poisson 1.5 43 0.24 4

Figure 13: Quantitative comparison of scale space mesh-

ing, ball pivoting, and Poisson reconstruction: RMSE of
the distance from the triangle barycenters to the real sur-
face. All results are multiplied by 103 for readability

Fig. 7 illustrates the loss of detail with level sets
methods. Level set methods extract the zero level set
of the signed distance to the surface. Thus, they do
not contain the input points and loose track of them.

The quantitative performance of each algorithm can
be evaluated by meshing simple shapes. Test point sets
were built by sampling perfect geometric shapes (for
example a sinusoidal surface). The root mean square
distance of the triangle barycenters of the mesh to the
real surface were compared for each meshing method.
This distance is computed by the Newton-Raphson
method. The first surface ”Wave 1” has equation z =
0.2 cos(5x), ”Wave 1” has equation z = 0.2 cos(5x) ∗
cos(5y), the third surface is a regularly sampled sphere
and the last one is a sum of two close and narrow Gaus-
sians z = − exp− (x−0.1)2

0.01
−exp− (x+0.1)2

0.01
. The RMSE

results are shown in the table of fig. 13. It is obvious
from these results that the Poisson reconstruction or
any level set method cannot be applied to recover a
surface with very thin details. On shapes containing
no sharp edges, direct BPA and scale space meshing
perform comparably. On the thin structure created by
adding two very close Gaussians, the loss of precision
of BPA is clear. This phenomenon is similar to the one
observable in Fig. 7(c) where BPA looses thin details.

Limitations The method introduced in this paper
builds an exact mesh for any raw input point cloud.
Therefore, all imperfections of the input data are vis-
ible. Meshes produced by this meshing method are
not smoothed at all, and are by no means economi-
cal in terms of vertex number. If the goal is to build
an economical mesh of a closed surface, with no spe-
cial intention for detail preservation, then it is not the
adequate method. Yet, to fix the scanning imperfec-
tions, the raw data has to be visualized. In particu-
lar the light offsets caused by misalignment errors be-
tween two partial scans become terribly conspicuous.
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(a) Initial object (b) Coarse scale (c) Fine scale (d) Picture (e) Selection (f) Details

Figure 6: Multi-resolution mesh reconstruction of the Tanagra point set (22 cm high) illustrating the recovery of fine
texture. All back propagated textures are present on the original object.

(a) Picture (b) Scale space mesh (c) Direct mesh (d) Poisson Mesh (e) MLS2 + BPA (f) MLS2 scale space

Figure 7: Comparison between several meshing methods on a 1cm high logo. The direct mesh (7(c)) creates many spurious
triangles. The Poisson reconstruction [KBH06] clearly smoothes out all details (7(d)). Filtering the logo by order two MLS

and meshing the points by the ball pivoting algorithm (7(e)) also creates a smooth mesh. Fig 7(f) shows the result of
applying the same scale space strategy with the projection on the order 2 MLS surface instead of the regression plane. The
result is similar to 7(b) in detail quality but the computation time is double.

In this case, the scale space meshing method, since
it preserves all points, does not fix the misalignment
problem, as would Poisson for example. Fixing this
problem is handled in [DMAL10], which uses a devel-
opment of the scale space meshing. The scale space
meshing method must therefore be considered as a
preliminary visualization method in a scanning loop,
permitting to visualize the raw data point set, and
to uncover all imperfections at an early acquisition
stage. While outliers are automatically eliminated by
the rule asking for a dense enough neighborhood, it is
clear that, in contrast to level sets methods, holes in
the shape are not filled in.

7. Complexity analysis and computation time

measures

One scale-space projection requires the following oper-
ations: look for neighbors within radius r, build their
covariance matrix and their centroid, perform PCA
of this 3 × 3 covariance matrix. Therefore, once the
neighbors are found, they are sequentially scanned in
order to build the covariance matrix and the centroid.
This yields 6 multiplications and additions per point
for the covariance matrix update and 3 additions per

point for the centroid update. The PCA complexity
does not depend on the number of neighbors: it re-
quires 9 operations. Knowing the least eigenvector, the
projection is only 12 operations. There is one list scan
(9 operations per processed point) and 21 operations
once the covariance and centroid are built. Assuming
we have 30 neighbors, this yields a total of 200 oper-
ations per point. Finally finding the neighbors in the
octree is O(logN) (average) and one scale space itera-
tion therefore is O(N(logN + 200)) operations, where
N is the total number of points in the point cloud.

The computation time needed for meshing the
Tanagra point set with six millions points was as fol-
lows: Sorting the points in the octree takes 1.2s. The
scale space iterations require 3 min, leading to a to-
tal computation time of 19min for orientation and of
27min for the whole meshing on an 8 3Ghz processors
computer with 48 Go RAM. The maximum memory
usage was less than 2Go. These figures should be com-
pared with the time required for directly meshing the
oriented point set by the ball pivoting method without
any scale space iterations, which took 25min. There-
fore, only a two additional minutes were used to get a
much more faithful mesh.
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(a) Original Fragment (b) Scale space mesh (c) Level Set mesh

Figure 9: Closeup of a piece of the (FUR) database reconstructed by Scale Space Meshing and Poisson Reconstruction.

Figure 10: Comparison of the Rosette reconstruction (Picture (a)) using Ball Pivoting Algorithm (b), Poisson Recon-
struction (c), RIMLS (d), APSS (e), and scale space meshing (f). APSS and RIMLS yield results that are really close to
ours, yet both methods need an isosurface extraction done with the marching cubes, which creates strong artefacts (see a

closeup Fig 11). Besides, RIMLS and APSS meshes contain around 268500 vertices whereas the scale space mesh contains
132203 vertices. Notice also that APSS and RIMLS introduce some denoising (visible especially in the nearly flat parts).
Scale space meshing is the only method that preserves exactly the input data.

8. Conclusion

The increasing accuracy of 3D triangulation scanners
requires an effort to reconsider the whole rendering
chain, and to obtain high quality visualization. The
present paper has proposed a strategy to mesh the
raw original surface, therefore ensuring a faithful ren-
dering of textures, detail, and the detection of scan-
ning artifacts and holes. Future work will test a closed
scanning loop with our experimental scanner to direct
the scanner toward the detected holes.
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