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Figure 1. A point cloud and its denoising with our method
(AIM@shape repository)

Abstract

Denoising surfaces is a a crucial step in the surface pro-
cessing pipeline. This is even more challenging when no
underlying structure of the surface is known, id est when
the surface is represented as a set of unorganized points. In
this paper, a denoising method based on local similarities
is introduced. The contributions are threefold: first, we do
not denoise directly the point positions but use a low/high
frequency decomposition and denoise only the high fre-
quency. Second, we introduce a local surface parameter-
ization which is proved stable. Finally, this method works
directly on point clouds, thus avoiding building a mesh of
a noisy surface which is a difficult problem. Our approach
is based on denoising a height vector field by comparing
the neighborhood of the point with neighborhoods of other
points on the surface. It falls into the non-local denoising
framework that has been extensively used in image process-
ing, but extends it to unorganized point clouds.

1. Introduction
When dealing with acquired data sampled on a real ob-

ject surface, denoising is a crucial step of the processing
pipeline. The idea behind denoising is to separate the in-
put signal between a real shape corresponding to meaning-
ful measures of the surface and a noisy component. This
component is almost always considered additive because
of the simplicity and relative good result this approxima-

tion provides. Yet a huge problem of the signal denoising
methods is to distinguish between the shape and the noise:
in many cases some signal features have very similar fre-
quential properties to the noise (e.g. sharp features). The
difficulty lies in robustly estimating the separation so as to
remove noise without removing shape characteristics such
as sharp features or geometric textures.

The remainder of this paper is divided as follows: sec-
tion 2 gives relevant references on shape denoising. Section
3 gives an overview of the method. Sections 4, 5, 6 explain
the three main steps of the algorithm. Section 7 explains im-
plementation choices. Finally Section 8 presents the results
on various point clouds.

2. Related work
Multiple isotropic filters have been proposed and stud-

ied. Those filters remove all details and sharp features since
they denoise undistinctively noise and features: clearing the
shape of all its high frequencies. To avoid that, different
strategies have been proposed. The bilateral filter, for exam-
ple, uses non isotropic neighborhoods to preserve features,
the neighborhood becomes adaptive: not taking into ac-
count only distance between the points but also shape prop-
erties of the neighborhoods of the points ([11], [5]). An-
other type of approach for this problem is to find an equation
of the locally underlying surface and project the point cloud
on it. This approach was developped extensively through
the MLS (Moving Least Squares) method ([18], [17]). This
type of method performs a local polynomial regression and
projects each point on it. A lot of variants were proposed
to better preserve edges and sharp features with very good
results ([12], [10], [23]). Our method can also be seen as
a projection of the point on an underlying surface which is
not explicitely modeled.

The denoising problem is common to many fields and in
particular image processing. For example the bilateral fil-
ter for gray-scale and color images was introduced in [27].
Observing staircasing effects of this denoising filter and all
types of neighborhood filters in [3], a non-local filter was
proposed in [4] denoising an image pixel not only with its
neighbors but with all the pixels in the image, each pixel be-
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Figure 2. Different types of neighborhood used for filtering point
clouds (from left to right: isotropic, bilateral, nonlocal). Red
points contribute a lot to the denoising of the central point (green
cross) while blue points barely contribute to the denoising.

ing weighted in the sum by a similarity factor: if the pixel
is very similar to the point being denoised it will influence
the denoising a lot, otherwise it will barely contribute to it.

The non-local filter can be seen as the limit of the neigh-
borhood filters (see Fig. 2) since the neighborhood used for
the denoising is no longer the euclidean local neighorhood
but a neighborhood in the space of patches. This idea was
used to make the computation faster ([1], [24]), by working
directly in the space of image patches.

When trying to use the non-local framework for surface
denoising, one of the difficulties lies in finding a good lo-
cal descriptor. Such a descriptor should be intrinsic so that
comparing descriptors is relevant. Building local descrip-
tors for shapes is also a widely studied problem, though in
a somewhat different context: local descriptors are usually
devised for shape matching or shape retrieval purposes (e.g.
[13],[20], [15] and [28]). In this paper we will also intro-
duce an intrinsic descriptor that aims at providing a good
local signature of the shape.

A non-local denoising for meshes has been proposed in
[29] using as descriptor a local regression of the geometry
by radial basis functions. But no precise way of param-
eterizing the local frames is given. As we will see local
parameterization is crucial: if two similar patches are not
parameterized in the same way then their comparison dis-
tance might be big: this actually restricts the set of similar
points and makes the comparison less relevant. We address
this problem in this paper. In [22], a variational framework
is introduced for denoising meshes: it is based on denoising
the mean curvature field and then solving for a minimiza-
tion of a two-term functional: a data-closeness term and a
term aiming at getting a curvature field close to the denoised
curvature field. In a way, this method is not far from ours
since we will also denoise a vector field.

For point clouds it is even more difficult since we lack
any structuring information. Yet, in [6], such a denoising
is proposed. It is based on considering the local covariance
matrix of the points (as done in [25]) and parameterizing the
local neighborhood with the two eigenvectors correspond-
ing to the two largest eigenvalues. A MLS (Moving Least
Squares) regression is performed and the vector of the co-
efficients is used as descriptor. Once again the dependency
on the local frame parameterization is not analyzed. We will
show that this parametrization choice is not stable enough.

This framework has been also used in recent works for

surface analysis. In [30], a point cloud large scale redun-
dancy is used to enhance details using local self-similarity.
It is indeed a patch-based approach to the processing of sur-
faces but in a way that requires much larger patches (to be
able to capture details more precisely) than in our method.
Next section gives an overview of the method.

3. Overview
The input data of the algorithm is an unorganized point

cloud. In comparison with most denoising algorithms we
will not require any mesh or connectivity information. The
point cloud will rather be processed by local neighborhoods
analysis. The method introduced in this paper relies heav-
ily on the definition of comparable local descriptors. The
overall idea is the following:

1. Decompose the input surface into a smooth base and a
height vector field ~V (Section 4)

2. For each point p compute a local descriptor P(p) en-
coding the variation of the height vector field around
the point (Section 5)

3. Compute the denoised height vector for each point
based on the similarity between the descriptors (Sec-
tion 6)

4. Update all point positions by adding the denoised
height field to the smooth surface.

The idea behind step 1, is that if the surface is decom-
posed into a smooth part and a vector field containing the
sharp features, the details, but also the noise, then one needs
only to denoise the vector field and not the smooth part.
This decomposition can be achieved by a smoothing method
filtering indiscriminately sharp edges and noise. This way,
the vector field will contain all high frequencies. The most
common isotropic filter, namely the mean curvature motion
is used here, with the implementation described in [9] for
point clouds. The next step (step 2) builds a local descrip-
tor of the height field around each point p. The idea is to
capture the variation of the height field. We encode these
variations by sampling the height field on a 2D grid cen-
tered at point p. This 2d grid is aligned with stable vectors
parameterizing the tangent space of the surface at p. Step 3
uses the local descriptors to denoise the height field: each
point height vector is denoised as a weighted sum of the
height vectors of other points of the shape. The weight of
each point q in the sum for denoising point p is similarity-
based: it depends on the distance between the descriptors of
p and q. If the descriptors are very similar then the weight
is high otherwise it is low. The idea behind this denois-
ing is that points in areas similar to the neighborhood of
p will contribute more to its denoising than points in areas
very different from the neighborhood of p. Finally step 4
yields the denoised surface by combining the smooth sur-
face found in step 1 with the denoised height field of step
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Figure 3. Example of a decomposition of an input surface (in blue)
into a smooth surface (red) and a height vector field (black arrows)

3. The next sections will describe more precisely each of
those steps.

4. Considering the image as a smooth surface
+ height

When dealing with a complex surface it is useful to con-
sider it as a smooth surface and a high frequency term con-
taining all details, features but also noise. This approach
developped in [9] will be used here: we decompose the sur-
face S = Ssmooth + ~V , where ~V is the high frequency
vector field (alternatively one could also rely on [26]).

To achieve decomposition of the surface into a smooth
basis and a high frequency vector field (Figure 3), the mean
curvature motion filter is iterated over the shape S until
all noise is removed, yielding a smoothed shape Ssmooth.
At this point all sharp features are also removed, but those
sharp features will be recovered when denoising the high
frequency. This way, the high frequency is the residual of
the smoothing: ~V = S − Ssmooth. Since there is a one to
one correspondence between the points of the initial surface
S and the points of the smoothed surface Ssmooth, one can
compute for each point p of S the high frequency ~V (p). In-
deed, p = pS + ~V (p), where p ∈ S, pS ∈ Ssmooth and,
finally ~V (p) = p− pS .

In this paper, shape denoising will be achieved by de-
noising ~V (p). To denoise this high frequency vector we will
use a non-local strategy: filtering high frequencies by simi-
larity with other points regardless (or almost regardless) or
where these points are.

5. Building local descriptors
When building a local descriptor, one needs either to

make the descriptor parameterization-free or find a robust
enough local parameterization of the surface. Most descrip-
tors rely on the definition of at least a normal direction for
all surface points, but try to avoid parameterization in the lo-
cal tangent plane (which would involve computing principal
directions for example, order 2 derivatives of the surface).
For example, spin images introduced in [13] used a kind of
occupancy 2d grid parameterized by the height 〈q−p, ~n(p)〉
and the radial distance (‖q−p‖2−〈q−p, ~n(p)〉2)1/2. Other
approaches have been proposed to make the descriptor in-
variant to rotations ([14]).

To get a parameterization of the tangent plane, a solution

(a) Ours (b) Deschaud et al.

Figure 4. Local frames in the neighborhood of a cube edge, this
parameterization (4(a)) is far more stable than the one chosen by
Deschaud et al. [6] (4(b))

would be to compute a MLS surface and derive the principal
directions from the analytical formulas. Here we will rather
rely on recent results developped in [8].

5.1. Choice of a local coordinate system

In [8], it was proven that robust and stable equivalents
of the principal directions on a surface could be found by
simple covariance analysis. If an oriented normal is known
at each point in the neighborhood of a point, then one can
compute the centered covariance of these normals yielding
a 3× 3 matrix. Let (pi, ~ni) be a set of N points with known
normal direction, then, on can compute the mean ~nm and
centered covariance matrix C of the normals.

~nm =
1

N

N∑
i=1

~ni and C =
1

N

N∑
i=1

(~ni − ~nm)T · (~ni − ~nm).

The eigenvectors and eigenvalues of C are proven ([8])
to be respectively tangent to the principal directions and
proportional to the squared principal curvatures of the
smooth underlying surface. This formulation is practical
because it only uses covariance analysis. Figure 4 shows
such local coordinate frames around the edge of a noisy
cube (the same cube as shown in Fig. 7(a)).

Notice that these directions due to numerical uncertain-
ties might not be really orthogonal to the normal direction.
We improve this by computing a stabler normal direction
(by Principal Component Analysis of smooth surface, see
[21] and [2]), and projecting the axes found by covariance
analysis on this plane. At this point, we have three or-
thogonal axes for each point of the point cloud. One still
needs to turn them into a stable orthonormal coordinate sys-
tem: either (~t1,~t2, ~n) or (−~t2,−~t1, ~n). This last ambiguity
will be removed after the descriptor is built, and the de-
scriptor will then be adapted to fit the right frame denoted
(ux(p), uy(p), uz(p)) hereafter.

5.2. Describing the local neighborhood

The descriptor used in this work is very similar to the
snapshots descriptors described in [20] and related to Spin



Figure 5. The 4 × 4 patch of a point located near an edge , color
valued (left) and 3-dimensional (right). One sees distinctively the
edge orthogonal to the first principal direction.

Figure 6. Similarity of all points of the shape to a point on an edge
of the shape (red if the point is very similar to the edge point and
blue otherwise).

Images described in [13]. Around each point, we build a
small image describing the neighborhood, a local height im-
age (the regular sampling on a grid of the local graph). By
expressing the coordinates of each neighbor q in the local
coordinate frame, we have a set of height values for irregu-
larly sampled points on a plane. From this set of irregularly
sampled heights, we interpolate for missing data on the grid
using radial basis functions. The radius of the neighborhood
and the size of the grid are very small so that the descrip-
tors are very local. Figure 5 shows an example of a patch
near an edge of a diamond shape (same shape as used in
figures 6 and 9). The ambiguity mentioned in section 5.1
is finally removed by orientating the two tangent plane axes
such that the standard deviation in the first quadrant of the
tangent plane relatively to the two axes orientation choice
is the highest, and the descriptor is adapted to this potential
axes change.

5.3. Comparing local descriptors

Once the descriptor is built, one has to compare them in
order to quantify their similarity. Since the descriptor we
used is a pose-independent grid values, we will compare
two descriptors by computing their L2 distance. Comput-
ing distribution distances would probably yield better re-
sults but at the cost of additional computation. An exam-
ple of the distance of all shape descriptors to a single point
descriptor is shown on fig 6. This figure shows that, as ex-
pected, with the similarity measure introduced above points
on edges are very self-similar, whereas a point on a more
planar part is less similar to an edge point (and will there-
fore not contribute to the denoising of an edge point).

6. Denoising algorithm
The last part of the algorithm is to compute the denoised

height field and use it to get the final denoised surface.
Let p be a point in S, pS its corresponding point on the

smooth surface Ssmooth and ~V (p) = p − pS . We denote
by P(p) the local descriptor of p expressed in the local in-
trinsic coordinate system ux(p), uy(p), uz(p). The update
equations for point p then writes:

p′ = pS + δp with: δpx =

∑
q∈S wpq〈~V (q), ux(q)〉∑

q∈S wpq

where wpq is the similarity of points p and q.

wpq = exp−dist(P(p),P(q))
2

σ2
.

We have, similarly, δpy =
∑

q∈S wpq〈~V (q),uy(q)〉∑
q∈S wpq

and

δpz =
∑

q∈S wpq〈~V (q),uz(q)〉∑
q∈S wpq

. Notice that the obtained up-

date δp = (δpx, δpy, δpz) is expressed in the local coordi-
nate system (ux(p), uy(p), uz(p)).

7. Implementation and parameters
7.1. Implementation choices

An octree is used to access quickly points and ball neigh-
borhood of points. This choice might not be the best one for
memory usage but it divides the space in subspaces which
will be useful for parallelization: indeed one can process
some of the octree cells at the same time without risking
memory conflicts. Using the parallelization, on a 8-core
processor, the denoising of a 5 million points suface, with
an octree of depth 7 yields a computation time of 2 min-
utes, which is enough since we are not aiming at real-time
applications. This could be made much faster using simi-
lar accelerations as in [1]. For computation time reason we
do not compare a point to all points in the surface, but only
to a certain subset of points: this subset is taken to be all
points included in octree cells adjacent to the cell where the
point is located at maximum depth (the maximum depth is
set in accordance with the processing radius chosen), thus
avoiding a quadratic complexity.

7.2. Tuning the parameters

The parameters of this method is the following: pro-
cessing radius, number of iterations for determining the
high frequency term, grid size and weight of the similar-
ity weighting gaussians. The processing radius is set so that
a ball centered on each point contains 30 points (average).
The size of the local descriptor should remain small, the
typical value used is 4 × 4 or 3 × 3. The real parameter



(a) Original (b) 0.01 (c) 0.1 (d) 1 (e) Error

Figure 7. Evolution of the denoising with the parameter σ, when σ
is huge the denoising is brutal, whereas a small σ will have almost
no effect on the shape. Fig 7(e) show the evolution of the measured
error with the σ parameter

one should play with is the standard deviation of the gaus-
sian for the similarity weight. If the value is big then, the
similarity weight will be less discriminant so that the filter
will behave more like an isotropic filter. On the contrary
if the value of the deviation is small then the point cloud
will barely be denoised. Figure 7 shows the results of the
denoising of a cube with 3 different values of the standard
variation σ, the rest of the parameters remaining unchanged.
On the same shape, Figure 7(e) shows the measured error of
the point cloud with respect to an increasing σ parameter:
at first the error only decreases but when the modification
due to the denoising (edge smoothing for higher values of
σ) are greater than the benefits (noise reduction) the error
increases again.

8. Results
Throughout this paper we are dealing with point clouds,

but in order to better visualize the results we will gener-
ate meshes from the points using a non-smoothing, non-
undersampling meshing method which allows for the ex-
act visualization of the data ([9]) and render this mesh by
ray tracing. We compare results given by our algorithm
with other methods namely the bilateral filter described in
[11], algebraic point set surface projector [12] (as a repre-
sentative of the point set surfaces denoising method) and
Deschaud et al. non-local means for point clouds ([6]).
Though, originally, the bilateral filter of [11] was designed
for meshes, it is straightforward to extend it to point clouds
using ball neighborhoods instead of 1-ring neighborhood.
This method updates a point by comparing it to its neigh-
bors. Instead of considering a usual isotropic neighborhood,
it uses an adapted neighbohood ensuring that points are de-
noised only with neighbors lying on the same side of a sharp
crease. Such a simple extension is not possible for the non
local methods for meshes described in [29] or [22], making
the comparison impossible.

Quantatively on artificial shapes such as a cube one can
estimate the RMSE (Root Mean Square Error) of the de-
noising methods compared. To have a meaningful compar-
ison, the filters must be calibrated: first the same neighbor-
hood size is used for all filters. All filters have a param-
eter (a gaussian standard deviation) which indicates either

Shape Bilateral Deschaud et al. Ours
Noisy cube 0.0047 0.0048 0.0031

Noisy cylinder 0.002 0.0018 0.0017

Figure 8. Comparison of minimum RMSE found for three filters
using the same neighborhood radius. When denoising a smooth
shape all three methods perform equally well but for sharp edges,
the similarity based method (ours) get a better denoising quantita-
tive result.

how similarity tolerant the filter (for Deschaud et al. and
our method) or how tolerant to tangent plane deviation the
bilateral filter is. This parameter is the key to the filter suc-
cess. The RMSE curves exhibit all the same shape as in
figure 7(e), we therefore get experimentally for all filters
the RMSE minimum. The results are shown on figure 8.

Figure 9 shows a real shape with natural acquisition
noise and sharp creases. On such simple geometric shape,
the bilateral filter and our similarity based filter tend to work
equally well. By construction of the bilateral filter this
good behavior is not surprising: it is especially designed
to preserve points around an edge. Mean curvature mo-
tion removes all sharp features and other methods fail to
preserve sharp features as well as remove the noise. Next
experiments use point sets from the stanford FUR database
([16]), the Farman Institute high precision dataset [7] and
the AIM@SHAPE repository acquired using triangulation
or range laser scanner. Fig 10 shows the performance of
the filter in the case of a rather smooth surface with only
some engravings. It shows clearly that the details are pre-
served by the filter while the rest of the shape is denoised.
We also refer the reader to figure 1 and 11 for the denoising
of a point cloud acquired with a range laser scanner show-
ing how the denoising allows for detail preservation even
for noisy shapes with boundaries, noise and highly variable
sampling. On figure 12, we show the denoising of a raw
scan and compare our filter with the bilateral filter. To make
a meaningful comparison, we chose a parameter for the bi-
lateral filter to have a visually similar result in the smooth
areas, and compare the effect on the details and sharp ar-
eas. This experiment shows that the proposed non-local
filter preserves much better the thin structures of the point
cloud, while removing noise in the smoother areas. Finally,
figure 13 shows the denoising of a point cloud with added
gaussian noise using the non-local filter and the bilateral fil-
ter: while the bilateral filter allows for the recovery of the
pyramid edges, the similarity filter does a far better job for
recovering the engravings of the shape.

Limitations Our algorithm is expected to behave well
when dealing with reasonable point densities. In case of low
densities, the descriptors may fail to capture a local property
of the shape. The algorithm can also generate artefacts near
open surface boundaries. Another limitation for this algo-



(a) Initial shape (b) Mean Curvature (c) Algebraic PSS (d) Deschaud et al. (e) Bilateral Filter (f) Ours

Figure 9. From left to right: a shape with natural acquisition noise, its denoising via Mean Curvature Motion, projection on the algebraic
point set surface [12], Deschaud et al. point cloud non local means ([6]), bilateral filter and similarity based denoising (our method) . In
the case of a geometric shape, both bilateral and non-local perform well, though the non-local filter tends to preserve better the creases.
The algebraic point set surface projection tends to create structures due to the irregular sampling. The method from Deschaud et al. ([6])
fails to remove the noise and still removes the sharp corners.

Figure 11. Denoising of a data set acquired with a range laser scanner (left: original, middle: our denoising, right: bilateral filter).

Figure 10. Denoising of a pointset with boundaries, details and
holes (shape courtesy of Laurent Saboret, INRIA (AIM@shape
repository), the pointset used in this experiment is the set of ver-
tices of the raw mesh. Top: intial scan, bottom: our denoising.

rithm lies in the case of a very structured noise: in that case,
the algorithm can not distinguish between texture and noise
and will likely enhance the noise pattern.

9. Conclusion

The algorithm introduced proposes a similarity-based
approach to the analysis of surfaces. Thanks to a reliable

Figure 12. Denoising a raw scan of fragment 31u of the forma
urbis romae project : initial fragment; denoising with our method;
bilateral denoising

intrinsic descriptor we are able to overcome the usual limi-
tations of non-local filtering methods for surfaces. In addi-
tion, a key feature of our method is that it is independent of
a surface mesh: it can work directly on point clouds, which
is useful, since building a mesh of a noisy point cloud is
never easy, whereas building a mesh of a properly denoised



Figure 13. Denoising a pyramid (with added noise) from the far-
man institute 3D point sets : gaussian pyramid with added gaus-
sian noise; denoising with our method; bilateral denoising

shape is well understood. A possible extension for this work
would be to use the filter as a projector onto the surface, in
a spirit similar to [19] for example.
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