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Organisational notes

The course slides are available on my webpage on the day of the course:
http://liris.cnrs.fr/julie.digne/cours/cours_image_stats.html

Practical work (“TP”): in python with numpy and pillow.
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Course schedule

September 4th: Markovian model and texture synthesis.
September 9th: Classification Methods and dimensionality reduction. (+TP)
September 11th: Choosing a Model, Regression Problems, Considerations on
Norms.
September 16th: Image histograms and histogram specification, half-toning
(+TP)
September 18th: Patch-based image processing and editing (+TP)
Exam on November 6th (to be confirmed)
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Project and evaluation

The assignment is available on my webpage. Evaluation will be done through
one-to-one interviews.

September 9th - 1h30 session
September 16th - 1h30 session
September 18th - 2h session
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“The Eiffel tower” “A blue sky” ...
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Acquisition of digital images

Projection of a 3D scene on a 2D plane
Numerically: only a table of numbers
Black and white: I : Ω ⊂ R2 → R; I (x , y) = i

Color: I : Ω ⊂ R2 → R3; I (x , y) = (r , g , b)
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Acquisition of digital images

CCD Matrix (Charged Coupled Device): integrates the quantity of photons
arriving at each cell
Each pixel integrates a given color.

Bayer Pattern - demosaicking
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What we’ll see in this course

Model an image as a distribution of colors
Detect objects by model regression (least squares...)
Classify objects by their similarities
Compare textures, images
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Plan

1 Some generalities on digital images

2 Texture Synthesis

3 The Markovian Model

4 Texture synthesis as a MRF problem

5 Patch-based Texture Synthesis: Image quilting

6 Graph Cuts

7 Texture Synthesis using Graph Cuts
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Grayscale image

Each pixel encodes a light intensity.

For an 8-bits image, a pixel can take 256 integer values (0 ≤ I (p) ≤ et255).

0 encodes a black pixel, 128 encodes a gray pixel and 255 for a white pixel.
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Color Image
A table (matrix) in which all pixels are triplets (R,V ,B) corresponding to the
color decomposition on the three primary colors red, green and blue.
(0, 0, 255) blue, (0, 255, 0) green, (255, 0, 0) red.

A color image
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Color Image
A table (matrix) in which all pixels are triplets (R,V ,B) corresponding to the
color decomposition on the three primary colors red, green and blue.
(0, 0, 255) blue, (0, 255, 0) green, (255, 0, 0) red.

blue channel
The three channels are highly correlated..
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From color values to gray scale values

Compute the image luminance using the channel values:

L =
R + V + B

3
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Other (better?) color representations

HSV colorspace
H indicates the color hue (red, yellow, green)
Saturation S expresses the fact that the color is more or less pure
Lightness value V indicates the luminosity of a pixel
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Texture Synthesis
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Goal

Copyright http://www.castlebuilder3d.com/
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Textures are difficult

Copy-pasting an image patch would work for regular textures but not for
stochastic textures.
Drawing pixel values from a probability distribution would work for stochastic
textures but not for regular ones.
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To begin with: Markov Chains

An example
Predicting the weather as “sunny”, “cloudy” or “rainy” for each day. The simplest
approximation is to assume that the weather on day i only depends on the
weather on day i − 1.

Order
This is a first order Markov Chain

The Markovian Model 21/81



To begin with: Markov Chains

An example
Predicting the weather as “sunny”, “cloudy” or “rainy” for each day. The simplest
approximation is to assume that the weather on day i only depends on the
weather on day i − 1.

Order
This is a first order Markov Chain

The Markovian Model 21/81



Wheather Markov Chain
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Transition probabilities

Transition probabilities
The transition probability matrix between two states is

P(Xi = a|Xi−1 = b) = Mi (a, b)

The Markov Chain is said to be stationary if the transition probabilities are
independent of i , i.e.

Mi (a, b) = Mi−1(a, b) = M(a, b)

One can devise Markov chains with higher orders (dependencies on i − 1,
i − 2...): In that case, the value of Xi depends on a limited number of
previous states Xi−1, · · · ,Xi−n.
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Markov chains as graphs

The chain can be represented as a graph:
▶ Each node corresponds to one Xi

▶ An edge exists between Xi and Xi−1 to model P(Xi |Xi−1).
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A graph corresponding to a markov chain of order 1
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Markov Random Fields

Definition
A Markov Random Field (MRF) is defined as a probabilistic model over an
undirected graph (V, E)

P(xi |(xj)i ̸=j) = P(xi |{xj |(i , j) ∈ E})

Consequence: P((xi )i ) =
∏

(i,j)∈E Fi,j(xi , xj)
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Modeling an image as a graph

Graph of an image
A graph can model the relationship between each pixel (or super-pixel) and its
neighbors.

Markov Random Fields on graphs: Local Markov Property
The random variable at a node depends solely of the random variables in its
neighborhood (Markov blanket).

From now on we will assume that the distribution is positive (in that case
local Markov property ⇔ global Markov property)
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Energy

Energy
Since P is a positive distribution, we can rather rely on an energy E (x) such that
P(x) =

∏
c∈C ϕ(x) = exp(−E (x)) and E (x) =

∑
c∈C Φc(xc).
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Ising Model
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Ising Model

Ising Model
Each variable Xi takes values in {0, 1}. The cliques have size 2 (two neighboring
pixels).

ϕij = γ|xi − xj |

where γ is a parameter of our method. The total energy is

E (x) =
∑

(i,j)∈E

γ|xi − xj |

What does this γ model ? When two neighboring variables have
different values the energy increases of amount γ
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Gibbs Sampling

Sampling from a MRF
At each visit to a site i , xi is sampled from the local conditional distribution
P(xi |xj , (i , j) ∈ E , j ̸= i). Start with random values for the pixels and traverse all
sites in random order until convergence.

local conditional distribution:

p =
P(Xi = 1)
P(Xi = 0)

=
exp−γE (x0, · · · ,Xi = 1, · · · , xn)
exp−γE (x0, · · · ,Xi = 0, · · · , xn)

= exp−γ∆E

with ∆E the difference of energy between the two states.
The process converges
... But can be extremely slow.
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Texture synthesis as a MRF Problem

A texture is modeled by a Markov Random Field
Each pixel value depends on the pixel values of its neighbors
The size of the neighborhood encodes how stochastic the texture is.

[Efros Leung 1999], [Wei Levoy 2001]
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Synthesizing one pixel [Efros Leung 1999]

Synthesis
Let Ismp be the texture sample image, Ireal be the infinite texture Ismp ⊂ Ireal and I
the image being synthesized. Assume all pixels are known except p. Let w(p) be
its neighborhood, then:

P(I (p) = a|I ) = P(I (p) = a|w(p))

Let d(w1,w2) be a distance between two patches (usually SSD of SSD ∗ G )
Ω(p) = {w ∈ Ireal |d(w ,w(p)) = 0}
Ireal is unavailable
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Synthesizing one pixel

Heuristic
Replace Ω(p) by Ω′(p) containing patches that are close to w(p). Let
wbest = argminw∈Ismpd(w ,w(p)) then:

Ω′(p) = {w ∈ Ismp|d(w ,w(p)) ≤ (1 + ε)d(wbest ,w(p))}

Finally
p is taken to be the average of the values of all center pixels in Ω′(p) (variation:
the value of one uniformly drawn patch in Ω′(p).
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Texture Synthesis Algorithm

Assuming Markov property, compute P(p|N(p))
▶ Search the input image for all similar neighborhoods Ω′(p)
▶ Pick one match at random
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Texture synthesis Algorithm

1 Start from a ℓ× ℓ seed from the input
2 The new pixel p to fill is randomly picked among the ones that have the

larger number of filled neighbors in their neighborhood.

Partial distance
Let w(p) ∈ I and w ′(p′) ∈ Ismp be two neighborhoods partially filled. Ñ is the set
of all v such that I (p + v) and Ismp(p

′ + v) are defined. The distance between w
and w ′ is

d(w ,w ′) =

∑
v∈Ñ ∥I (p + v)− Ismp(p

′ + v)∥2
2Gσ(∥v∥)∑

v∈Ñ Gσ(∥v∥)

with Gσ a centered Gaussian with standard deviation σ.
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Full Algorithm [Efros Leung 1999]

Input: image Ismp, output size, neighborhood size,
1 Initialize with ℓ× ℓ random seed of Ismp

2 While output I not filled
1 Pick a pixel p not yet filled with a maximal number of filled neighbors
2 Compute the distance of w(p) to all patches of input Ismp

3 Build Ω′(p)
4 Pick randomly one of the similar neighborhood w(p′) in Ω′(p)
5 Set I (p) = Ismp(p

′) (= Fill p with central value)
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Results
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Results
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Varying neighborhood size

Patch sizes: 5, 11, 15, 23
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Varying epsilon ε

ε = 0.05, 0.1, 0.2, 0.5
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Failure Cases

Growing garbages (ε too large)
Verbatim Copy (ε too small)
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Image Quilting [Efros Freeman 2001]

Focuses on boundary optimization between neighboring patches
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Patch placement
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Paste patches from the sample texture randomly (left)
Better: Paste patches from the sample texture randomly among those that fit
approximation with their neighbors (middle)
Optimize the boundary so that the patches blend seamlessly (right)
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Overlapping criterion

When a set of patches are placed, the next one should fit the set of already
pasted patches
The measure is similar to the partial distance as before.

Overlap error
Let B1 and B2 be two overlapping blocks, with overlaps Bov

1 and Bov
2 . The error

image is then e = ∥Bov
1 − Bov

2 ∥2
2 (e has the size of the overlap).
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Boundary Optimization
Before adding the patch: look for the optimal boundary cut.
A boundary cut is defined as a path of adjacent pixels that separate the two
patches
Dynamic Programming is used to look for a path optimally separating the
patches

Vertical Boundary Path
For each pixel (i , j) ∈ e store:

Ei,j = ei,j +min(Ei−1,j−1,Ei−1,j ,Ei−1,j+1)

When we reach the bottom we can take the minimum and roll back to get the
path of pixels.
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Graph Cuts

Minimize energies by casting the problem as a min-cut problem
Applications to segmentation, stereo, denoising energies

Problem Statement [Boykov Jolly 2001]
Given an image I , we look for a label Ap for each pixel p of an image. Ap can take
values 0 or 1. There are two special sets of pixels O and B containing pixels that
we know belong to class O or class B
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Segmentation Energy

Segmentation Energy

E = λ
∑
p

Rp(Ap) +
∑

p,q neighbors

Bp,qδp,q

Where
Rp(Ap) encodes the probability for a pixel p to have label Ap

δ(p, q) = 0 if Ap = Aq and 1 otherwise.
B(p, q) is the energy that two pixels have different classes given their color
values.

Rp(bkg), Rp(obj) class models
B(p, q) likelihood for a boundary to cross edge p, q
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Graph Construction

Graph Topology
The graph G = (V ,E ) corresponding to the image is built as follows:

All pixels are vertices of the graph, two special nodes S and T are also added
to V

Edges are added between nodes corresponding to neighboring pixels in the
image
Edges are also added between all pixels and S and all pixels and T

A neighborhood should be defined
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Graph Construction

Graph Edge Weights
Edge between pixels p, q: weight B(p, q)
Edge between pixel p and node S : weight λRp(bkg)

Edge between pixel p and node T : weight λRp(obj)

K = 1 +maxp
∑

q∈N (p) B(p, q)

If p ∈ O: edge p,S has weight K , edge p,T has weight 0
If p ∈ B: edge p,S has weight 0, edge p,T has weight K
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Equivalence to a min cut problem

Energy minimization
The minimium of the segmentation energy is obtained by finding the minimum
cost cut on graph G separating S from T
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Toy example
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Some hard constraints are created using seeds p ∈ O or p ∈ B
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Proof

Lemma
The minimum cut Ĉ on graph G is feasible ie

Ĉ severs exactly one t-link for each p (either p − S or p − T )
if (p, q) ∈ Ĉ , then one of them is linked to S and the other is linked to T
after the cut
if p ∈ O, then (p,T ) ∈ Ĉ

if p ∈ B, then (p,S) ∈ Ĉ

Proof: Bear in mind that Ĉ is minimal.

Graph Cuts 58/81



Link with the segmentation

Correspondence
Any feasible cut C corresponds to a segmentation A(C ) such that:

Ap(C ) =

{
obj if (p,T ) ∈ C

bkg if (p,S) ∈ C
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Optimal segmentation

Theorem
Among all segmentation A satisfying Ap = obj if p ∈ O and Ap = bkg if p ∈ B,
the one defined by the minimal cut Ĉ minimizes the segmentation energy.

Proof: link the energy with the cost of the cut.
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What are Rp(Ap) and B(p, q)?

Regional term
The regional term is a log-likelihood term

Rp(Ap) =

{
− logP(Ip|O) if Ap = obj

− logP(Ip|B) if Ap = bkg

Boundary penalty

B(p, q) =
1

dist(p, q)
exp−∥Ip − Iq∥2

2

2σ2
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How do we compute the log-likelihoods?

MRF formulation
The sets O and B give histograms of pixel values for the object and background
yielding in turn P(Ip|O) and P(Ip|B)
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Result
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Texture Synthesis using Graph Cuts

Kwatra et al. 2004
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Principle

Idea
Copy irregularly shaped patches on the image and arrange the boundaries between
the copied patches
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Candidate patch selection

A candidate rectangular patch (or patch offset) is selected by performing a
comparison between the candidate patch and the pixels already in the output
image.
An optimal (irregularly shaped) portion of this rectangle is computed and only
these pixels are copied to the output image. This is where we use graphcuts
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Matching quality
s and t two adjacent pixel positions in two copied patches overlap region. A(s)
and B(s) pixel colors at s in the two patches. Matching quality cost M between s
and t:

M(s, t,A,B) = ∥A(s)− B(s)∥+ ∥A(t)− B(t)∥
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Graph Cut between two patches
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Goal Find a minimal path separating A from B

Connect neighboring pixels by an edge with weight M(s, t,A,B)

Add two terminal nodes corresponding to A and B

min-cut algorithm yields the best boundary
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Between more than 2 patches
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Assume we have already copy-pasted several patches yielding existing pixel
values
Copying a new patch B

Graph cuts used to find the new seam

Multiple Seams
Each pixel s keeps track of the patch As it originated from, then the weights on
graph edges between two neighboring pixels s and p originating from patches As ,
Ap is simply: M(s, p,As ,Ap)
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Surrounded regions
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Algorithm
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Patch placement

Three strategies are possible:
Random patch placement
Entire patch matching
Subpatch matching
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Random patch placement

The new patch (entire sample texture) is translated to a random offset
location. The graph cut algorithm selects a piece of this patch to lay down
into the out- put image and the process is repeated

Pros & Cons
Fastest synthesis method, good result for random textures.
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Entire patch matching

Search for translations of the input image that match well with the currently
synthesized output.

Pros & Cons
Best results for structured and semi-structured textures.
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Sub-patch matching

First pick a small sub-patch in the output texture.
Look for a sub-patch in the input texture that matches this output-sub-patch
well.

Pros & Cons
most general method.
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Results
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Conclusion

Other methods for Texture Synthesis: Gabor Noise, variational methods ... A
vast literature on the subject exists
Now: Machine learning methods (Gatys et al. 2015 and so on) beyond the
scope of this course.
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