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Outline

@ What is classification?
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Objects to sort out in categories

Faise Color Gomposite Segmentation Classification

@ pixels
@ superpixels - image patches

@ Entire images
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Classification Principle

o Describe the objects to classify
e Natural description for pixels: A triplet (R, G, B) € R3.

@ But one can be more specific!
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A color image in RGB
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A color image in RGB
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A color image in RGB
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From the image domain to R¢

Recall that each pixel is representated as a vector in RY

Data to classify J

Example: each pixel (i,/) of an image / can be encoded as:
e (i,j,r,g,b) in R® (color image)
o (Vxl(i,j),V,I(i,j)) in R? (grayscale image)

° (/(I* 1>j - 1)7 /(laJ - 1)3 I(’+ 1aj - 1)3 I(’ - 17.j)7 I("a.j)v I(i+ 1aj)’ I(’ -
Lj+1),1(i,j+1),1(i+1,j+1)) in R® (grayscale image)
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Descriptor example: local histograms
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Histogram of gradient orientation
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Descriptor example: response of the image to a set of filters

o Particularly well adapted for textures
@ Each point is the set of responses of to a set of filters.

@ Many filters have been proposed
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For textures: Gabors filters

Gabor Filter
Measures the response to an oriented and localized filter. The filter writes:
12 12 !/
X<+ X
Go,o\ = €Xp _—2y COS 2T A —
20 o

with x’ = xcosf + ysinf, y' = xsinf — y cosf
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For textures: Gabors filters

Gabor Filter
Measures the response to an oriented and localized filter. The filter writes:
12 12 !/
X<+ X
Go,o\ = €Xp _—2y COS 2T A —
20 o

with x’ = xcosf + ysinf, y' = xsinf — y cosf

@ 0 controls the filter orientation
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For textures: Gabors filters

Gabor Filter
Measures the response to an oriented and localized filter. The filter writes:
2 12 /
X<+ X
Go,o, ) = exp _—2y COS 2TA—
20 o

with x’ = xcosf + ysinf, y' = xsinf — y cosf

@ 0 controls the filter orientation

@ o controls the localization of the filter
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For textures: Gabors filters

Gabor Filter

Measures the response to an oriented and localized filter. The filter writes:

12 12 /

X<+ X

Go,o,\ = €Xp _—2y €os 2T\ —
20 o

with x’ = xcosf + ysinf, y' = xsinf — y cosf

@ 0 controls the filter orientation
@ o controls the localization of the filter

@ )\ controls the filter frequency

What is classification?
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Gabor filters
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Convolution by a Gabor filter
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Convolution by a Gabor filter
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Classical segmentation algorithm

@ Supervised classification / Unsupervised classification
e Data in R? but we'll visualize 2D examples only.

@ Classical examples we'll look at: K-means, mean-shift, Expectation
Maximization

Recent advances

Deep Learning methods learn object descriptions (feature vectors). ImageNet
Benchmark: AlexNet [Krizhevsky et al. 2012] ... [Chen et al. 2023]
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Classification in R? (for easier visualization)

What is classification? 14/75



Classification in R? (for easier visualization)
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Classification in R? (for easier visualization)
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Classification in R? (for easier visualization)
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Outline

© K-means
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K-Means

@ Goal: Extract classes (or clusters) from a set of points (Group the points into
clusters)

@ In this algorithm a class is represented by a special element called class
representative of cluster center.
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K-means

Principle

Let (x;)i=1...n € R9 a set of n points, K a given cluster number and (yi)k=1...x
the cluster centers, then the label kg of a point x; is:

ko = argminker...k||lyx — xi|?

@ Goal: Find the cluster centers y, AND the labels of points x;
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Algorithm

o If we know the cluster centers, can we compute the labels?
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Algorithm

o If we know the cluster centers, can we compute the labels?
o If we know the labels, can we compute the cluster centers?
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o b WO N =

Algorithm

Algorithm 1: Algorithme K-Means

Data: (x;);=1..., € RY, a number of classes K
Result: An assignment for (/;)i=1.., € {1--- K} and representatives
(Yk)i=1..-K
Start with random y;, drawn from x;;
do
Assign to each x; the label corresponding to its nearest yj;
For each k, update yj, as the barycenter of the x; with label k;
Until Convergence;

K-means

24/75



25

Iteration 1
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25

Iteration 2
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Iteration 3
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Iteration 4
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Iteration 5
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Iteration 6
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Iteration 7
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Iteration 8
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251

15+

K-means

Iteration 9
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@o.
Ya %Algorithm convergence?

Measure the time when the clusters (or the labels) do not change
@ Average motion of the cluster center is close to 0

@ Better: No labeling is changed (— the cluster center will not move at the
next iteration)
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@o.
Y %Algorithm initialization

@ A random choice in the set of x;

@ A random choice in the domain of the x;?

Random from the set Random in the domain
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Convergence... To a local minimum
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A small detour by Computational Geometry

@ The Voronoi Diagram of S is a partition of space into regions V(p) (p € S)
such that all points in V(p) are closer to p than any other point in S.

o For a vertex, we can draw an empty circle that just touches the three points
in S around the vertex.

@ Each Voronoi vertex is in one-to-one correspondence with a Delaunay triangle
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Link between K-means and the Voronoi Diagram

In RY using the L? distance, the boundary of a cell is a hyperplane.

Voronoi Diagram J

K-means

@ The assignation step assigns each point to the center (seed) of their Voronoi
cell.

@ The positions of the seeds are then recomputed.
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Color image segmentation

Color clouds

Original
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Color image segmentation

Color clouds

2 classes

K-means 39/75



Color image segmentation

Color clouds

3 classes
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Color image segmentation

Color clouds

4 classes
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Color image segmentation

Color clouds

5 classes
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Color image segmentation

Color clouds

10 classes
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On textures

Color clouds
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On textures

Color clouds

2 classes
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On textures

Color clouds

3 classes
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On textures

Color clouds
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On textures
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On textures

With local histograms of gradient orientations (size 16x16)
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On textures

With local histograms of gradient orientations (size 32x32)




On textures

With Gabor filters
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On textures

With Gabor filters

20 40 G0 80 100 120 140 160 180 200 220
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Conclusion on K-means

@ It is necessary to know the number of classes K
@ Strong dependency on the initialization

@ Assumes that classes can be separated by an hyperplane.
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Dropping the hyperplane assumption

@ Embed the data in a space where the classes will be indeed separated by
hyperplanes (kernel trick)

@ Use the K-means algorithm in this space.
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Outline

© Mean-Shift
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Mean-shift

Estimated number of clusters: 3

-3}

-4 -3 -2 -1 0 1 2 3 4

Figure: Data Example
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Mean-shift

@ Idea: clusters correspond to high point densities areas
@ Points will evolve and be attracted towards high density areas

@ When the convergence is reached we'll deduce the classification

“Particle filter” J

Points are particles moving in R?
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Mean-shift

Definition
Let (x;); be a set of observations in R? Let K be a kernel, an estimator of the
local point density at x:

X — Xj
)

f(x):#;K( .
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A word on kernels

A kernel K is a function defined on RY with values in R iff there exists a function
k : Rt — R such that:

o K(x) = k(IxIP)

@ k is nonnegative

@ k is decreasing

@ k is piecewise continuous and [,, k(x)dx < oo
We will assume that [ o, k(x)dx =1, and:

K(x) = k(lIx]1?)
Kernel examples:
o Gaussian Kernel K(x) = m}g exp_(H;UH:)

o Flat Kernel: K(X) = ]lHXH2<r2(X)
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Computing the density extrema

@ Need to solve for Vf(x) = 0:
o Lletg=—K

Density gradient

00 = [ s
i=1

Dl =il oy, i g (L))
> s NS ()

@ The gradient expression can be understood easily

Mean-Shift
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Computing the density extrema

@ Need to solve for Vf(x) = 0:
o Let g=—K

Density gradient

n X — Xi|l \2 i=1 ((“X X”)z) '
f(x)=[cnhd+z§ (5 ”(Zz,-:lgg((”*h*”)Z) -

@ Module
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Computing the density extrema

@ Need to solve for Vf(x) = 0:
o Lletg=—K

Density gradient

2 u X — X \2 i1 w ?)xi

o Weighted average of the neighbors
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Computing the density extrema

@ Need to solve for Vf(x) = 0:
o Lletg=—K

Density gradient

Y a2
> g((gly2)

V() = [ Yos((P)

@ Vector from x to the weighted average of the neighbors
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Algorithm

Algorithm 2: Mean-Shift

Data: A set of points x;, kernel size h, threshold ¢
Result: A set of clusters ¢; and labels /;

forj=1---ndo

t=0;
while error > ¢ do
forj=1---ndo

t
llxf =

error = %ZJ [m(xf) — xflI;

i l:
| t=t+1;

Group x. by position;
Assign x; to the cluster of XI-T;

S ey
m(xf) = =EE
s ey

Mean-Shift
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Iteration 2
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Iteration 3
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Iteration 5
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Iteration 8
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Iteration 11
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Iteration 14
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Iteration 17
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Iteration 20
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Analysis

@ Pro: No need to choose the number of classes
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Analysis

@ Pro: No need to choose the number of classes

@ Pro: Guaranteed convergence to a density extrema
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Analysis

@ Pro: No need to choose the number of classes
@ Pro: Guaranteed convergence to a density extrema

@ Con: Needs post-filtering for small density extrema
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Meanshift - K-means
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Meanshift - K-means

Kmeans
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Meanshift - K-means

Meanshift
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Meanshift - K-means
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Meanshift - K-means

Kmeans
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Meanshift - K-means

Meanshift
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Outline

@ Support Vector Machine
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Support Vector Machine

Large margin binary classifier J

Find an hyperplane separating the two classes maximizing the margin

o/

Image By Larhmam - Own work, CC BY-SA 4.0, wikipedia
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Support Vector Machine

@ Works well when the classes are linearly separable. What if it's not the case?

From David Filliat (ENSTA)

Input space Feature space
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Support Vector Machine
@ Works well when the classes are linearly separable. What if it's not the case?

Find a function ® such that the two classes of (¢(x;), /;); are linearly separable.

Kernel trick J

Input space Feature space

From David Filliat (ENSTA)
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Support Vector Machine
@ Works well when the classes are linearly separable. What if it's not the case?

Find a function ® such that the two classes of (¢(x;), /;); are linearly separable.

Kernel trick J

Input space Feature space

From David Filliat (ENSTA)

@ Problem: how do we design ®7 Manually
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Support Vector Machine

@ Works well when the classes are linearly separable. What if it's not the case?

Kernel trick J

Find a function ® such that the two classes of (¢(x;), /;); are linearly separable.

From David Filliat (ENSTA)

Input space Feature space

@ Problem: how do we design 7 Manually or that's where Deep Learning
methods come in handy.

Support Vector Machine 68/75



Optimization

e Equation of the separating hyperplane: w'x + b =10
o lfwix;+b>0then /=1, and if w/x; + b < 0 then | = —1,

o Decision function: f(x) = sign(w”x + b).

Maximal margin

Maximize the distance between hyperplanes w’x + b = £1. Decision function:
=1ifw'x+b>1l=-1ifwx+b<1

ﬁ] What is the size of the margin between the two hyperplanes?
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Optimization (continued)

Optimization problem
1
Minimizew,bi ww

subject to Vi, i(w'x; + b) > 1
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Optimization (continued)

Optimization problem
1
Minimizew,bi ww

subject to Vi, i(w'x; + b) > 1

Allow for some training errors: samples that violates the margin condition
Reformulation
1 N
Minimize, b7 wiw+C> &

i=1
subject to Vi, i(w'x; + b) > 1 — & and Vi, & >0
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Optimization (continued)

o Notice that constraints are equivalent to setting & = max(0,1— /;(w’x; + b))
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Optimization (continued)

o Notice that constraints are equivalent to setting & = max(0,1— /;(w’x; + b))
@ set x; = [x;; 1] and w = [w; b] to simplify.
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Optimization (continued)

o Notice that constraints are equivalent to setting & = max(0,1— /;(w’x; + b))
@ set x; = [x;; 1] and w = [w; b] to simplify.

Reformulation

N
Minimize,, J(w) = %WTW + CZ max(0,1 — ;(w'x;))
i=1
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Optimization (continued)

o Notice that constraints are equivalent to setting & = max(0,1— /;(w’x; + b))
@ set x; = [x;; 1] and w = [w; b] to simplify.

Reformulation

N
Minimize,, J(w) = %WTW + CZ max(0,1 — ;(w'x;))
i=1

@ Unconstrained optimization
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Optimization (continued)

o Notice that constraints are equivalent to setting & = max(0,1— /;(w’x; + b))
@ set x; = [x;; 1] and w = [w; b] to simplify.

Reformulation
1 N
Minimize,, J(w) = EWTW + CZ max(0,1 — ;(w'x;))
i=1

@ Unconstrained optimization

o Gradient descent wy 1 = wy — 1,V J(wy)
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Optimization (continued)

Stochastic gradient descent

Gradient computed per sample:

J(w, x;, ;) = %WTW + Cmax(0,1 — f(w"x))

@ initialization wy = 0

@ While not converged
> For each training sample (x;, /;)
» Compute V., J(wt, xi, ;)
> Wepr = we — eV d(we, Xi, 1)

@ Return w
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Optimization (continued)

Problem
J is not differentiable!
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Optimization (continued)

Problem
J is not differentiable! Strategy:
o VJ(w,x;, ;) =wif max(0,1 — wTx;)) =0

o VJ(w,x;, ;) = w — Clix; otherwise
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Optimization (continued)

Problem

J is not differentiable! Strategy:
o VJ(w,x;, ;) =wif max(0,1 — wTx;)) =0
o VJ(w,x;, ;) = w — Clix; otherwise

Initialization: wp =0

While not converged
» For each training sample (x;, /;)
> If hw! xi <1, weyr = (1 — ve)we + v Clix;
» Otherwise w1 = (1 — ve)we

Return w
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Optimization (continued)

Problem
J is not differentiable! Strategy:
o VJ(w,x;, ;) =wif max(0,1 — wTx;)) =0

o VJ(w,x;, ;) = w — Clix; otherwise

Initialization: wp =0

While not converged
» For each training sample (x;, /;)
> If hw! xi <1, weyr = (1 — ve)we + v Clix;
» Otherwise w1 = (1 — ve)we

@ Return w

Stochastic Gradient Descent
Shuffle the training set before picking an example J

@ What's wrong in the above derivation?
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Pedestrian detection (Dalal & Triggs 2005)

HE

@ Descriptor of each image: Histogram of oriented gradients
o Classified using a linear svm (soft: allows for some margin violation during
training).
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Conclusion

@ A way to classify information encoded in various ways

@ The choice of the encoding is crucial (color? color and localization? Filter
Bank Response?)
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