Modèles statistiques pour l'image Patch-based Image Processing

Julie Digne

LIRIS - CNRS

17/09/2025

Outline

- Patch-based processing of images
- 2 Visual Summary
- 3 Efficient Similar Patch Search
- 4 Another application of statistics: Half-toning

Patch-based processing

• Consider patches instead of pixels

Similarity Analysis: Non Local Means [Buadès et al. 2005]

- Idea: denoise a point by comparing it to similar neighborhoods
- Compute local patch P(p) around each point p
- Similarity measure between two points: $w(p,q) = \exp{-\frac{dist(P(p),P(q))^2}{\sigma}}$
- Update of the image :

$$I_{new}(p) = \frac{\sum_{q \in I} w(p, q)I(q)}{\sum_{q \in I} w(p, q)}$$

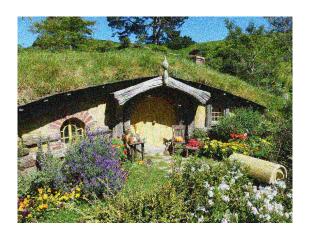
Example

Example

Example

Initial image

Noisy image



Gaussian filter result



Gaussian filter result

Gaussian filter result

Median result

Median result

NLmeans result

Comparison

Patch-based processing of images

Outline

Patch-based processing of images

Visual Summary

Efficient Similar Patch Search

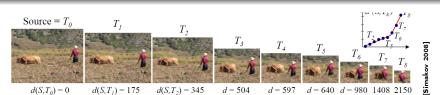
4 Another application of statistics: Half-toning

Visual Summary 15/65

Visual Summary

Goal

Produce a smaller image that summarizes the content of the larger image



Visual Summary 16/65

Bidirectional Distance (BDS) [Simakov 2008]

Source image S, target image T:

$$d_{BDS}(S,T) = \frac{1}{N_S} \sum_{s \subset S} \min_{t \subset T} D(s,t) + \frac{1}{N_T} \sum_{t \subset T} \min_{s \subset S} D(t,s)$$

where s and t are patches of fixed size of S and T. D is the sum of squared difference between patches.

Visual Summary 17/

Bidirectional Distance (BDS) [Simakov 2008]

Source image S, target image T:

$$d_{BDS}(S,T) = \frac{1}{N_S} \sum_{s \subset S} \min_{t \subset T} D(s,t) + \frac{1}{N_T} \sum_{t \subset T} \min_{s \subset S} D(t,s)$$

where s and t are patches of fixed size of S and T. D is the sum of squared difference between patches.

Completeness term

Visual Summary 17,

Bidirectional Distance (BDS) [Simakov 2008]

Source image S, target image T:

$$d_{BDS}(S,T) = \frac{1}{N_S} \sum_{s \subset S} \min_{t \subset T} D(s,t) + \frac{1}{N_T} \sum_{t \subset T} \min_{s \subset S} D(t,s)$$

where s and t are patches of fixed size of S and T. D is the sum of squared difference between patches.

- Completeness term
- Coherence term

Visual Summary 17/

Bidirectional Distance (BDS) [Simakov 2008]

Source image S, target image T:

$$d_{BDS}(S,T) = \frac{1}{N_S} \sum_{s \subset S} \min_{t \subset T} D(s,t) + \frac{1}{N_T} \sum_{t \subset T} \min_{s \subset S} D(t,s)$$

where s and t are patches of fixed size of S and T. D is the sum of squared difference between patches.

- Completeness term
- Coherence term

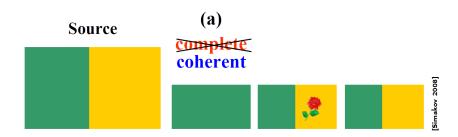
Reconstruction

Starting from an initial guess T_0 for T, build an image iteratively as the minimizer T of $d_{BDS}(S,T)$

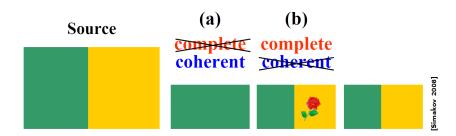
Visual Summary 17/65

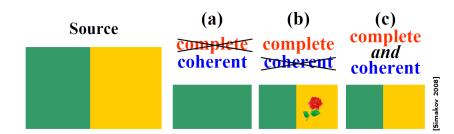
Source

Visual Summary 18/65



Visual Summary 19/65





i

Visual Summary

ullet For each patch of S find its closest patch on T

- ullet For each patch of S find its closest patch on T
- ullet For each patch of T find its closest patch on S

- For each patch of S find its closest patch on T
- $oldsymbol{\circ}$ For each patch of T find its closest patch on S
- ullet Aggregate color of nearest patches and update colors of T

- For each patch of *S* find its closest patch on *T*
- ullet Aggregate color of nearest patches and update colors of T

Steps 1 - 2

The two first steps consist in applying nearest patch search. It needs to be done *efficiently*.

ullet Let q be a pixel of ${\mathcal T}$, q lies inside m neighboring patches ${\mathcal Q}_1,\,{\mathcal Q}_2,\cdots,\,{\mathcal Q}_m$

- ullet Let q be a pixel of ${\mathcal T},\ q$ lies inside m neighboring patches ${\mathcal Q}_1,\,{\mathcal Q}_2,\cdots,\,{\mathcal Q}_m$
- These patches are matched to P_1, P_2, \cdots, P_m

- Let q be a pixel of T, q lies inside m neighboring patches Q_1, Q_2, \cdots, Q_m
- These patches are matched to P_1, P_2, \dots, P_m
- The positions corresponding to q in P_1, P_2, \dots, P_m are p_1, \dots, p_m

- Let q be a pixel of T, q lies inside m neighboring patches Q_1, Q_2, \cdots, Q_m
- These patches are matched to P_1, P_2, \dots, P_m
- The positions corresponding to q in P_1, P_2, \dots, P_m are p_1, \dots, p_m

Contribution

$$\frac{1}{N_T} \sum_{i=1}^m \|S(p_i) - T(q)\|_2^2$$

Let q be a pixel of T,

Aggregation Step: contribution of a pixel to the completeness measure

- Let q be a pixel of T,
- q lies inside n neighboring patches $\hat{Q}_1, \hat{Q}_2, \cdots, \hat{Q}_n$ that are the nearest patch to some patches of S $\hat{P}_1, \hat{P}_2, \cdots \hat{P}_n$

Visual Summary 25/6

Aggregation Step: contribution of a pixel to the completeness measure

- Let q be a pixel of T.
- q lies inside n neighboring patches $\hat{Q}_1, \hat{Q}_2, \cdots, \hat{Q}_n$ that are the nearest patch to some patches of \hat{S} $\hat{P}_1, \hat{P}_2, \cdots \hat{P}_n$
- The positions corresponding to q in $\hat{P}_1, \hat{P}_2, \cdots, \hat{P}_m$ are $\hat{p}_1, \cdots, \hat{p}_m$

Visual Summary 25/6

Aggregation Step: contribution of a pixel to the completeness measure

- Let q be a pixel of T.
- q lies inside n neighboring patches $\hat{Q}_1, \hat{Q}_2, \cdots, \hat{Q}_n$ that are the nearest patch to some patches of \hat{S} $\hat{P}_1, \hat{P}_2, \cdots \hat{P}_n$
- The positions corresponding to q in $\hat{P}_1, \hat{P}_2, \dots, \hat{P}_m$ are $\hat{p}_1, \dots, \hat{p}_m$

Contribution

$$\frac{1}{N_S} \sum_{i=1}^n \|S(\hat{p}_i) - T(q)\|_2^2$$

Visual Summary 25/6

Color update

Color Update

The best T(q) should minimize:

$$\frac{1}{N_S} \sum_{i=1}^{n} \|S(\hat{p}_i) - T(q)\|_2^2 + \frac{1}{N_T} \sum_{i=1}^{m} \|S(p_i) - T(q)\|_2^2$$

Visual Summary 26/65

Color update

Color Update

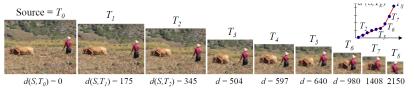
The best T(q) should minimize:

$$\frac{1}{N_{S}} \sum_{i=1}^{n} \|S(\hat{p}_{i}) - T(q)\|_{2}^{2} + \frac{1}{N_{T}} \sum_{i=1}^{m} \|S(p_{i}) - T(q)\|_{2}^{2}$$

Color Update

$$T(q) = \frac{\frac{1}{N_S} \sum_{i=1}^{n} S(\hat{p}_i) + \frac{1}{N_T} \sum_{i=1}^{m} S(p_i)}{\frac{m}{N_T} + \frac{n}{N_S}}$$

Visual Summary 26/65



Visual Summary 27/65

Gradual resizing

• When the target has a very different size from the source: what is a good initial guess?

Visual Summary 28/65

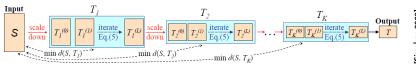
Gradual resizing

- When the target has a very different size from the source: what is a good initial guess?
- Iterative process: downsample the image and apply the reconstruction

Visual Summary 28/65

Gradual resizing

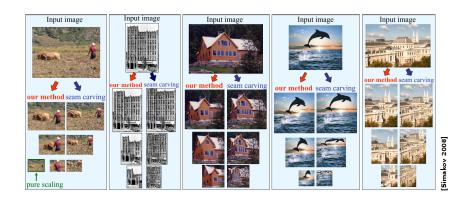
- When the target has a very different size from the source: what is a good initial guess?
- Iterative process: downsample the image and apply the reconstruction



video

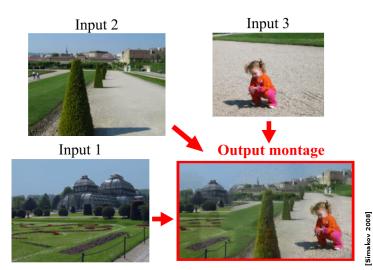
Visual Summary 28/65

Visual Summary



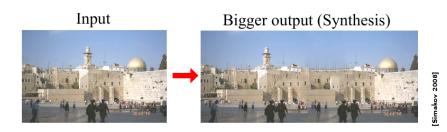
Visual Summary 29/65

Montage



Visual Summary 30/65

Synthesis



Visual Summary 31/65

Key ingredient for all these methods

Requirement

A fast method to find similar patches

• Naive way: traverse the whole image at each query

Visual Summary 32/65

Key ingredient for all these methods

Requirement

A fast method to find similar patches

- Naive way: traverse the whole image at each query
- Better: put all patches in a search structure

Visual Summary 32/69

Key ingredient for all these methods

Requirement

A fast method to find similar patches

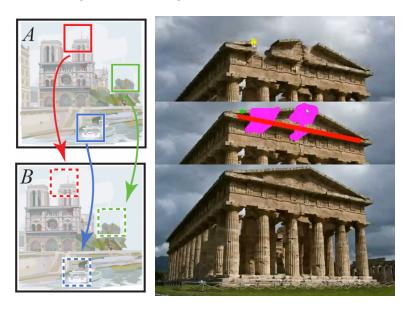
- Naive way: traverse the whole image at each query
- Better: put all patches in a search structure
- Even better: the patch match algorithm

Visual Summary 32/6

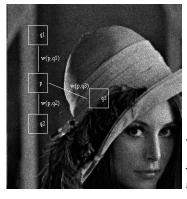
Outline

- Patch-based processing of images
- Visual Summary
- 3 Efficient Similar Patch Search
- 4 Another application of statistics: Half-toning

Patch Match [Barnes 2009]



Similar patches



[Buadès 2005]

Similarity distance

The similarity distance between two patches p_A , p_B of size $n \times n$ is computed as $\sum_{1 \le i,j \le n} \|p_A(i,j) - p_B(i,j)\|_2^2$.

Similarity

Two patches are considered as similar is their similarity distance is small.

Patch Match

Goal

Given an image A and an image B find *efficiently* for all patches of image A an approximate nearest patch of image B.

Patch Match

Goal

Given an image A and an image B find *efficiently* for all patches of image A an approximate nearest patch of image B.

Patch Match Principle

Assume we have found a patch p_B of B corresponding to a given patch p_A of A, assume we have a patch p_A' located close to p_A in image A, then its corresponding patch p_B' has a high probability to lie close to p_B

• Look for p'_B close to p_B .

• If we have an initial corresponding pairs (p_A, p_B) then the search is made easier

- If we have an initial corresponding pairs (p_A, p_B) then the search is made easier
- However: How can we find an initial pair?

- If we have an initial corresponding pairs (p_A, p_B) then the search is made easier
- However: How can we find an initial pair?
- However: Should we start with a single initial pair? Why not many?

- If we have an initial corresponding pairs (p_A, p_B) then the search is made easier
- However: How can we find an initial pair?
- However: Should we start with a single initial pair? Why not many?

Notation

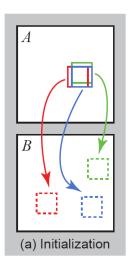
Let p_A be a patch centered at a in image A and p_B a patch centered at b in image B. We define an offset vector f(a) as f(a) = b - a. The set of all offset vectors is called the Nearest Neighbor Field (NNF).

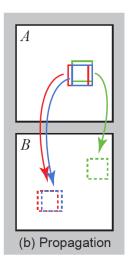
Efficient Similar Patch Search

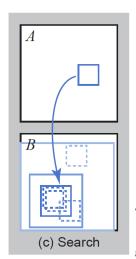
Algorithm

- Initialize the NNF with random vectors
- **2 Propagation:** for $i = 1 \cdots M$, for $j = 1 \cdots M$
 - Evaluate the offset f(i-1,j), f(i-1,j-1), f(i-1,j+1) and f(i,j-1)
 - **2** If one of them is better than f(i,j) replace f(i,j) with it.
- **3 Randomization:** For all (i,j), draw a random offset w, if w is better than f(i,j) set f(i,j) = w

Algorithm

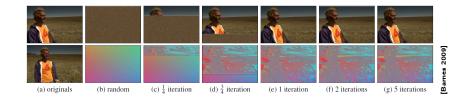






[Barnes 2009]

Algorithm



Efficient Similar Patch Search

40/65

Exercise

Assume we have two images of size M and assign randomly patches of image A to patches of image B (+ unicity of the correspondence)

Exercise

Assume we have two images of size M and assign randomly patches of image A to patches of image B (+ unicity of the correspondence)

• What is the probability that at least one patch is indeed paired to its corresponding patch?

Exercise

Assume we have two images of size M and assign randomly patches of image A to patches of image B (+ unicity of the correspondence)

• What is the probability that at least one patch is indeed paired to its corresponding patch?

Simplification

Assume that a pair is correct if a patch is assigned to a patch that is spatially close (in a neighborhood of size C) to its true correspondence

Exercise

Assume we have two images of size M and assign randomly patches of image A to patches of image B (+ unicity of the correspondence)

• What is the probability that at least one patch is indeed paired to its corresponding patch?

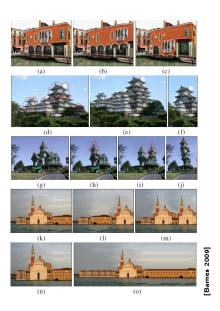
Simplification

Assume that a pair is correct if a patch is assigned to a patch that is spatially close (in a neighborhood of size C) to its true correspondence

What is the probability that at least one patch is paired to an approximate corresponding patch?

Efficient Similar Patch Search 41/65

Reshuffling Application



Deformation Application

(b) scaled up, preserving texture

(c) bush marked by user

(d) scaled up, preserving texture.

Sarries 2009

Outline

- Patch-based processing of images
- Visual Summary
- 3 Efficient Similar Patch Search
- 4 Another application of statistics: Half-toning

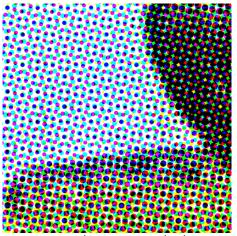
Half-toning problem

- Generating half-toning images: Dithering
- For example: using only black ink for printing a grayscale image
- Color case: 4 inks instead of 255³ possible values.

Half-toning problem

- Generating half-toning images: Dithering
- For example: using only black ink for printing a grayscale image
- Color case: 4 inks instead of 255³ possible values.
- We will study only grayscale images.

Color Example



TrameQuadri Zewan — Image Wikimedia

Half-toning in a nutshell

Half-toning

Create a binary approximation of a grayscale image which appears to be *continuous*.

Example

Original Image (Wikipedia, user:Gerbrant)

Example

Quantification: No continuity effect. (Image Wikipedia, user:Gerbrant)

Principle

Half-toning Principle

Print black dots to give the illusion of gray values.

Principle

Half-toning Principle

Print black dots to give the illusion of gray values.

• The human eye integrates the dots and perceives a flat colour.

Principle

Half-toning Principle

Print black dots to give the illusion of gray values.

• The human eye integrates the dots and perceives a flat colour.

Problem

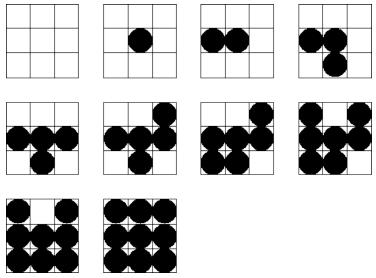
Choose a layout of points that minimize visual artefacts.

Dithering patterns

- The printed image is paved by dithering patterns
- Each dithering pattern contains a distribution of black and white dots.
- Each pattern gives a gray level corresponding to the ratio of black/white pixels.

Pattern example

Pattern example



3x3 Patterns

First method

- Each pixel corresponds to a square pattern
- The pixel value is encoded by the corresponding pattern

Remark

Printing

- On a professionnal printing device 1200 dpi,4*4 binary dots per pixel.
- On a 300dpi printer, only 1 binary dot pixel.

Choosing the layout of the dots

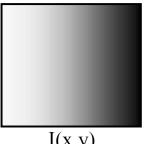
Goals

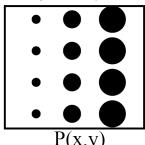
Layout algorithms aim at obtaining good gray values while minimizing the artefacts

• Several algorithms exist (regular layout, irregular layout, dots centered or not centered in the patterns...).

Classical Halftoning

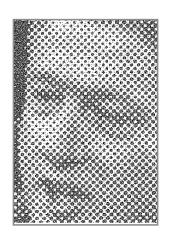
Dot areas are proportional to the image intensity.





Example

Newspaper Image



From New York Times, 9/21/99

Image T.A. Funkhouser

Dithering

- Random dithering
- Ordered dithering
- Error-diffusion dithering

Random Dithering

• Instead of using a fixed threshold, use a random one

Random Dithering

• Instead of using a fixed threshold, use a random one per pixel

Random Dithering

• Instead of using a fixed threshold, use a random one

• The random thresholds are replaced by local schemes stored in matrices

For dithering patterns of size
$$2 \times 2$$
:

$$D_2 = \begin{pmatrix} 3 & 1 \\ 0 & 2 \end{pmatrix}$$

Algorithm 1: Ordered Dithering Input: Grayscale image I, matrix D_n ($\mathbb{R}^{n \times n}$) Output: A binary image J1 for all pixels x, y do 2 | i = x modulo n; 3 | j = y modulo n; 4 | if I(x, y) > D(i, j) then 5 | J(x, y) = 1;

 $\int J(x,y)=0;$

else

Bayer matrices for dithering

$$D_{n} = \begin{bmatrix} 4D_{n/} + D_{2}(1,1)U_{n/2} & 4D_{n/} + D_{2}(1,2)U_{n/2} \\ 4D_{n/2} + D_{2}(2,1)U_{n/2} & 4D_{n/} + D_{2}(2,2)U_{n/2} \end{bmatrix}$$

$$D_2 = \begin{bmatrix} 3 & 1 \\ 0 & 2 \end{bmatrix} \qquad D_4 = \begin{bmatrix} 15 & 7 & 13 & 5 \\ 3 & 11 & 1 & 9 \\ 12 & 4 & 14 & 6 \\ 0 & 8 & 2 & 10 \end{bmatrix}$$

Often used for journal printing.

Principle

Distribute the error on neighboring pixels.

Principle

Distribute the error on neighboring pixels.

• Threshold intensity value of threshold(I(x, y))

Principle

Distribute the error on neighboring pixels.

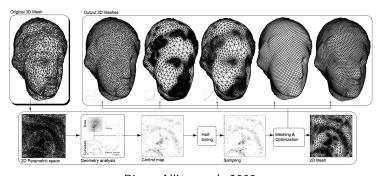
- Threshold intensity value of threshold(I(x, y))
- Error: e = I(x, y) threshold(I(x, y)).

Principle

Distribute the error on neighboring pixels.

- Threshold intensity value of threshold (I(x, y))
- Error: e = I(x, y) threshold(I(x, y)).
- Error distribution:
 - $I(x, y + 1) = I(x, y + 1) + \alpha e$
 - $I(x+1, y-1) = I(x+1, y-1) + \beta e$
 - $I(x+1,y) = I(x+1,y) + \gamma e$
 - $I(x+1,y+1) = I(x+1,y+1) + \delta e$
 - with $\alpha + \beta + \gamma + \delta = 1$

Remeshing via halftoning



Pierre Alliez et al. 2003.

 Some methods use optimal transportation to generate density samplings [DeGoes et al. 2012]