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Image versus geometry
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Geometric data
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No grid structure.
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Sampling issues

Irregular Sampling, occlusions when scanning
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Geometric Deep Learning

No image-like grid structure
What is a good representation for working on geometric data?
Various representations Meshes, Point sets...→ Networks adapted to this
kind of data
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3D CNN

3D ShapeNets
Represents a shape as a probability
distribution over a voxel grid.
Learns the model distribution over
voxels+classes.
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3D CNN
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3D CNN - Shape completion

[W
u

et
al

.
20

15
]

Issue: extremely low resolution: 24x24x24 (+padding)
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Multiview CNN [Su 2015]
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Benefit from 2D convolution in a 3D-consistent manner.
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Multiview CNN [Su 2015]

Render a mesh from several viewpoints
(up to 80)
Process each image separately through
a CNN
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Multiview aggregation
CNN features (or SIFT features) used as a vector description, min distance
between the view features
View-pooling: take the maximum feature values per pixel across all
views.
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Multiview CNN [Su 2015]
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Meshes
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When the data is represented as a mesh: there is some structure even if
irregular!
Mesh can be seen as a graph
Graph CNN

Meshes vs graphs
Meshes are very special types of graphs, they define a manifold surface.
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Graph Neural Networks [Gori et al. 2005, Scarselli et al.
2005]

Message passing between neighboring nodes
Each nodes aggregates the messages and updates them
Per node task: process the resulting per-node feature vectors
Per graph task: aggregates the per-node feature vectors
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Aggregation function

For per-node aggregation: should be independent on the order (permutation
invariance)
In per-node tasks: the resulting vector should be permutation equivariant

Permutation-invariant functions
average, max, min, sum

Many GNN variants
Features can also be on edges (dual graph), or on both edges and vertices. Graph
CNN: convolution by a kernel gθ = diag(θ), U matrix of eienvectors of the
normalized graph laplacian.

gθ ⋆ x = UgθU
T x
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Graph Neural Networks – new version

Graph transformers
Transformer on graphs, large receptive field.
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Used in many machine learning-based physics simulation.
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MeshCNN [Hanocka et al. 2019]

Defines convolution and pooling layers on mesh edges.
Meshes are assumed manifold, possibly with boundary vertices.
Pooling prioritized by smallest edge feature.

Input Edge features Convolution operation Pooling and unpooling
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MeshCNN - Convolution on edges

Convolution: e ∗ k0 +
∑4

i=1 kiei

Ambiguity: e ∗ k0 + a ∗ k1 + b ∗ k2 + c ∗ k3 + d ∗ k4 or
e ∗ k0 + c ∗ k1 + d ∗ k2 + a ∗ k3 + b ∗ k4

Solution: work with (|a− c |, a+ c , |d − b|, d + b)

Then usual 2d convolution on these “fake edge features”
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MeshCNN - Pooling on edges
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Not all edges can collapse: prevent
non-manifold faces creating edge collapses.
Control the target mesh resolution by
setting the targer number of edges.
Store the history of pooling → can
reinstore the original mesh topology.
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MeshCNN: application to mesh classification

Add a global pooling layer and linear layers, after several meshcnn layers.
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MeshCNN: application to mesh segmentation

Only meshcnn layers.
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Point sets

No structure anymore
Missing data
Various number of points, point ordering can
change.
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PointNet [Qi 2017]

Principle
Affine transform per point followed by permutation invariant pooling on channels
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PointNet - An approximation theorem

Proof derives directly from the universal approximation theorem.
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PointNet - Results
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PointNet - Results
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PointNet - Results

[Q
ie

t
al

.
20

17
]

Shape Analysis Architectures 29/64



PointNet - Results
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Issues
Looses locality. Improved in PointNet++ (also in 2017).
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Light Networks

Deep networks are expansive (large computation time and environmental
cost)
PointNet is rather light
Combine pointnet + light 2D network to get competitive results for RGBD
segmentation.
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Dynamic Graph CNN [Wang 2019]

Builds a k-nearest neighbors graph
Defines an edge convolution

Idea
Recompute the nearest neighbor graph in the feature space after each layer.
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DGCNN - Edge convolution
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Compute an edge feature using an MLP on the channels of the end vertices
Aggregate the edge features by permutation invariant pooling on each vertex
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DGCNN - Architecture
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DGCNN - feature distance
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DGCNN - Results
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DGCNN - Results
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Diffusion is all you Need [Sharp 2022]

Representation agnostic model, based on diffusion on the shape
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Diffusion is all you Need

u ∈ RV feature + obtained by pointwise MLP
∂x
∂t = ∆x(t)

Diffusion layer Ht(u0) = exp(t∆)u0, use the Laplacian eigenbasis to reduce
computation load
To get non radially symmetric filters: add local gradient operators.
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Diffusion is all you Need - Results
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Diffusion is all you Need - Results
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But: only for static geometry

How do we cope with generative tasks
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An example for generating shapes [GRASS, Li et al. 2017]
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Input data: set of shapes with a semantic segmentation into parts.
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Algorithm

Step 1: Learn a code representing an arrangement of boxes.
Step 2: Train a GAN for generating a new structure
Step 3: Use voxelization in each box to synthesize the local geometry.
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Application: shape query
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MeshGPT [Siddiqi et al. 2023]
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Following text generation idea: generate a mesh as a sequence of triangles
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MeshGPT - Principle
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Learns a vocabulary of latent representations
of faces
Uses these latent representations as tokens
GPT-like transformer: predicts next token
from previous tokens auto-regressively.
1D Resnet decodes the latent representation
sequences into triangles
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MeshGPT - Architecture details
Graph CNN encoder on the graph of faces (each face = a node) learns a
latent per face representation, input features: vertex coordinates
(9-dimensional).
SAGE convolution layer: samples neighborhood and aggregates features from
it. For a mesh of N faces:

Z = (z1, · · · , zN)

Residual Vector Quantization: quantization on a primary codebook, residuals
quantized on a secondary codebook... Yields a codebook and D codes per
face (with additional tricks)

T = (t1, · · · , tN); ti = t ji index of an embedding in the codebook.

Decoder (1d resnet ) G decodes the token into 9 coordinates.
Codebook and graph encoder given to the transformer using T as a sequence.

Result
Resuls is a triangle soup: needs post-processing to turn it into a watertight mesh
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MeshGPT - Results
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MeshGPT - Results
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Machine learning based surface reconstruction

Needs a differentiable pipeline
Challenge: intrinsically a combinatorial problem...
Not necessarily example-based: surface reconstruction can be done per shape.

Machine Learning and Surface Reconstruction 53/64



AtlasNet [Groueix 2019]
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Some definitions:
▶ A manifold surface S in R3 is topological set such that each point has a

neighborhood which is homeomorphic to an open disk of mathbbR2.
▶ Local map (or chart):s a homeomorphism φ from an open subset U of S to an

open subset of R2.
▶ Atlas:a indexed family of local charts (Ui , ϕi ) from Ui to open subsets of R2;

such that the Ui s cover S.

Parameterization
This is the base for surface parameterization problems in geometry processing: Try
to unwrap a surface onto a planar patch (usually a square).

Machine Learning and Surface Reconstruction 54/64



AtlasNet [Groueix 2019]

Model the local maps as affine maps, they can be inverted if they are full
rank.
A ReLU-based MLP computes a piecewise affine map (full rank). This is due
to ReLU activation.
Start with N patches and compute their deformation onto the surface (Papier
mâché). Deformed patches may overlap.
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AtlasNet for surface reconstruction

Start with a latent representation x of a shape
For a set of points A of points sampled in [0, 1]2, we optimize the weights θi
of N functions (MLP) fθi
Sample a set Sd of M points on the surface S
Chamfer Loss

∑
p∈A

N∑
i=1

min
q∈SD

∥fθi (p, x)− q∥2
2 +

∑
q∈Sd

min
i=1···N

min
p∈A

∥fθi (p, x)− q∥2
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Result
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Results: reconstruction from single view
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Differentiable Surface Reconstruction [Rakotosaona 2021]
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A set of points vj ∈ Rd with weights wj

Weighted Delaunay Triangulation: projected lower envelop of points
(vj , ∥vj∥2 − wj) ∈ Rd+1

Any 2D (d = 2) triangulation can be obtained as a perturbation of a 2d
Weighted Delaunay Triangulation.
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Differentiable weighted Delaunay triangulation in 2D

All possible triangles with vertices in V are given an inclusion score ei .
defs: ci circumcenter of triangle i = {j , k , l}, ai|j reduced Voronoi cell of
vertex j onto triangle i . Then

ei =

{
1 if ci ∈ ax|i ∀x ∈ {j , k , l}
0 otherwise

Continuous inclusion score

si|j = σ(αd(ci , aj|i )) (σ sigmoid)

si =
1
3
(si|j + si|k + si|l)
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Differentiable weighted Delaunay triangulation in 2D

Weighted Voronoi cell aw

Intersection of half planes Hj≤k = {x ∈ R2|∥x − vj∥2 − wj ≤ ∥x − vk∥2 − wk}

redefine: ci weighted circumcenter of triangle i = {j , k , l}, ai|j reduced
weighted Voronoi cell of vertex j onto triangle i .
Same expression for the continuous inclusion score

si|j = σ(αd(ci , a
w
j|i )) (σ sigmoid)

si =
1
3
(si|j + si|k + si|l)
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Turning 3D triangulation problems into 2d triangulation
problems

Segment 3D shapes into developable sets by Least Squares Conformal Maps
[Lévy 2008].
Differentiable 2D meshing on each of the sets with boundary constraints.
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Losses
Area prescribing loss (A: function on the surface):

Larea =
1∑
i,j si|j

∑
i,j

(
1
2
∥(vj − vk)× (vl − vk)∥ − A(vj))

Boundary preservation loss:

Lb(V ,P) =
1
|V |

∑
j

exp(ε−min(ε, (vj − bj) · nbj ))

Other possible losses: angle loss, curvature alignment loss.
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Conclusion

Very small overview of geometric deep learning
In particular, it’s missing the nice definitions of equivariant convolutions or
methods based on the bundle Laplacian.
Missing also implicit surfaces: next time
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