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@ Introduction
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Image versus geometry

1ickr.com/photos/obeck/144795625/
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https://www.flickr.com/photos/obeck/144795625/

Geometric data
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No grid structure.
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Sampling issues

Irregular Sampling, occlusions when scanning
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Geometric Deep Learning

@ No image-like grid structure

@ What is a good representation for working on geometric data?

@ Various representations Meshes, Point sets...— Networks adapted to this
kind of data
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© Shape Analysis Architectures
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3D CNN

sofa?
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(back of a sofa) Represemution
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@ Represents a shape as a probability
distribution over a voxel grid. Ya,
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@ Learns the model distribution over

Q.
dresser? =»
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bathtub?

[Wa et al. 2015]

Shape Completion Next-Best-View Recognition
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3D CNN
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(b) Data-driven visualization: For each neuron, we average the top 100 training examples with 3

object label 10

512 filters of
stride 1

160 filters of
stride 2

48 filters of
stride 2

et al. 2015]

3D voxel input
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3D CNN - Shape completion

[Wu et al

=~

(+padding)

resolution: 24x24x2

Issue: extremely low
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Multiview CNN [Su 2015]
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rendered with 2D rendered our multi-view CNN architecture output class %
different virtual cameras images predictions :

Benefit from 2D convolution in a 3D-consistent manner.
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Multiview CNN [Su 2015]

query top 10 retrieved 3D shapes
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[Su et al. 2015]

Multiview aggregation

@ CNN features (or SIFT features) used as a vector description, min distance
between the view features

o View-pooling: take the maximum feature values per pixel across all
views.
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Multiview CNN [Su 2015]

Training Config. Test Config. Classification Retrieval

Method A AP

Pre-train Fine-tune #Views #Views (Accuracy) (mAP)

(1) SPH [16] B B B B 68.2% 33.3%
(2) LED [5] - - - - 75.5% 40.9%
(3) 3D ShapeNets [37] ModelNet40 ModelNet40 - - 77.3% 49.2%
(4) FV - ModelNet40 12 1 78.8% 37.5%
(5)FV, 12x - ModelNet40 12 12 84.8% 43.9%
(6) CNN ImageNet1K - - 1 83.0% 44.1%
(7) CNN, f.t. ImageNetl1K ModelNet40 12 1 85.1% 61.7%
(8) CNN, 12x ImageNet1K - - 12 87.5% 49.6%
(9) CNN, f.t.,12x ImageNet1K ModelNet40 12 12 88.6% 62.8%
(10) MVCNN, 12x ImageNet1K - - 12 88.1% 49.4%
(11) MVCNN, f.t., 12x ImageNet]K ModelNet40 12 12 89.9% 70.1%
(12) MVCNN, f.t.+metric, 12x ImageNetl1K ModelNet40 12 12 89.5% 80.2%
(13) MVCNN, 80x ImageNet1K - 80 80 84.3% 36.8%
(14) MVCNN, f.t., 80x ImageNetl1K ModelNet40 80 80 90.1% 70.4%
(15) MVCNN, f.t.+metric, 80x ImageNetlK ModelNet40 80 80 90.1% 79.5%

* f.t.=fine-tuning, metric=low-rank Mahalanobis metric learning

Shape Analysis Architectures

[Su et al. 2015]
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Meshes

ser:Chrschn

wikipedia, us:

@ When the data is represented as a mesh: there is some structure even if
irregular!

@ Mesh can be seen as a graph
@ Graph CNN

Meshes vs graphs J

Meshes are very special types of graphs, they define a manifold surface.
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Graph Neural Networks [Gori et al. 2005, Scarselli et al.
2005]

Message passing between neighboring nodes

°
@ Each nodes aggregates the messages and updates them

@ Per node task: process the resulting per-node feature vectors
°

Per graph task: aggregates the per-node feature vectors

o
TARGET NODE .A" —

ec (Stanford)

Image by Jure Leskov

INPUT GRAPH
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Aggregation function

@ For per-node aggregation: should be independent on the order (permutation
invariance)

@ In per-node tasks: the resulting vector should be permutation equivariant
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Aggregation function

@ For per-node aggregation: should be independent on the order (permutation
invariance)

@ In per-node tasks: the resulting vector should be permutation equivariant

Permutation-invariant functions
average, max, min, sum J
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Aggregation function

@ For per-node aggregation: should be independent on the order (permutation
invariance)

@ In per-node tasks: the resulting vector should be permutation equivariant

Permutation-invariant functions

average, max, min, sum

Many GNN variants

Features can also be on edges (dual graph), or on both edges and vertices. Graph
CNN: convolution by a kernel gy = diag(6), U matrix of eienvectors of the
normalized graph laplacian.

go*x = UggU"x
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Graph Neural Networks — new version

Graph transformers

Transformer on graphs, large receptive field.

o Cio
Multi-Head Attention

[Janny, Nadri, Digne, Thome, Wolf 2023]

@ Used in many machine learning-based physics simulation.

Shape Analysis Architectures
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MeshCNN [Hanocka et al. 2019]

@ Defines convolution and pooling layers on mesh edges.
@ Meshes are assumed manifold, possibly with boundary vertices.
@ Pooling prioritized by smallest edge feature.

p = avg(a.b.e)

a
pool unpool

[Hanoka et al ]

q=avgle.d.e)

Input Edge features  Convolution operation Pooling and unpooling
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MeshCNN - Convolution on edges

@ Convolution: e * kg + Z?:l kie;
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MeshCNN - Convolution on edges

@ Convolution: e * kg + Z?:l kie;

o Ambiguity: ex kg + a*x ky + bx ko + c *x ks + d * kq or
exko+cxki+dxky+axks+ bxky
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MeshCNN - Convolution on edges

@ Convolution: e * kg + Z?:l kie;

o Ambiguity: ex kg + a*x ky + bx ko + c *x ks + d * kq or
exko+cxki+dxky+axks+ bxky

@ Solution: work with (|a—c|,a+c,|d — b|,d + b)
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MeshCNN - Convolution on edges

@ Convolution: e * kg + Z?:l kie;

o Ambiguity: ex kg + a*x ky + bx ko + c *x ks + d * kq or
exko+cxki+dxky+axks+ bxky

@ Solution: work with (|a—c|,a+c,|d — b|,d + b)
@ Then usual 2d convolution on these “fake edge features”
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MeshCNN - Pooling on edges

p= avg(a b.e)
pool unpool
q= avg c,d,e)

input 600 450 300 150

I. 2019]

Shape Analysis Architectures

@ Not all edges can collapse: prevent

non-manifold faces creating edge collapses.

o Control the target mesh resolution by
setting the targer number of edges.

@ Store the history of pooling — can
reinstore the original mesh topology.
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MeshCNN: application to mesh classification

@ Add a global pooling layer and linear layers, after several meshcnn layers.

Cube Engraving Classification
H method input res test acc ||

2

= [|_MeshCNN 750  92.16% ||

[Hanocka et al. 2019]

o [[PointNetr+ 409  64.26% ||
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MeshCNN: application to mesh segmentation

@ Only meshcnn layers.

88 5{ iy
7y

[Hanocka et al. 2019]
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Point sets

@ No structure anymore

@ Missing data

@ Various number of points, point ordering can
change.
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PointNet [Qi 2017]

Principle

Affine transform per point followed by permutation invariant pooling on channels

Classification Network

input mlp (64.64) " feature mip (64,128,1024) max mlp
% transform transform pool 1474 (512,256 k)
2 'g . '?é shared nx1024 I
= global feature k
] 1 =

output scores

P Y
i
H
® g |3
nix 1088 shared ol shared E o5 =
| & 5
| § b4
mlp (512,256,128) mlp (128,m) "
Segmentation Network 5
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PointNet - An approximation theorem

@ Proof derives directly from the universal approximation theorem.

Shape Analysis Architectures

Theorem 1. Suppose f : X — R is a continuous
set function w.rt Hausdorff distance dg(-,-). Ve >
0, 3 a continuous function h and a symmetric function
g(@1,...,z,) =70 MAX, such that forany S € X,

'f(S) - (g{ég{h(.%)‘ <e

where xy, ..., x, is the full list of elements in S ordered
arbitrarily, v is a continuous function, and MAX is a vector
max operator that takes n vectors as input and returns a
new vector of the element-wise maximum.
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PointNet - Results

Classification Network

E input mlp (64,64) e  mp (64,128,1024) max o mlp
eE transform E: transform E: pool 174 (512,256,k)
= I 3 <
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PointNet - Results

2
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PointNet - Results

Ly
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Input
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[Qi et al. 2017]
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PointNet - Results

! — /

’ j mug?

s 4 #params | FLOPs/sample
MR able? e PointNet (vanilla) | 0.8M 148M
4 e . PointNet 3.5M 440M 5
car? H 2 Subvolume [ 18] 16.6M 3633M 3
Classification Part S ion i i MVCNN [23] 60.0M 62057M g
Issues
Looses locality. Improved in PointNet++ (also in 2017). J
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Light Networks

@ Deep networks are expansive (large computation time and environmental
cost)

@ PointNet is rather light

@ Combine pointnet + light 2D network to get competitive results for RGBD
segmentation.

Methods | TnputType | GT | NbParam | 2D backbone mloU
CMX* [29] RGB + Depth (HHA) 2D 66M | SegFormer-B2 | 513§
RFBNet [36] RGB + Depth (HHA) 2D Noinfo | ResNet-50 626 2
Ours (LPointNet + U-Net34) RGB + Point cloud from Depth | 2D 26M | ResNet-34 632 2
SSMA [37) RGB + Depth (HHA) 2D 56M | AdaptNet++ 63
ShapeConv [28] RGB + Depth (HHA) 2D 58M | Deeplabv3+ 66 5
3D-to-2D distil [30] RGB + Point cloud 2D 66M | ResNet-50 582 2
Ours (KPConv + U-Net34) RGB + Point cloud 2D 49M | ResNet-34 638 g
BPNet* [2] RGB + Point cloud 2DAD | 96M | ResNet-34 644 3
Ours (LPointNet + U-Net34) RGB + Point cloud 2D 26M | ResNet-34 66.1 O
VirtualMVFusion [23] (single view) | RGB + Normals + Coordinates | 3D Noinfo | xcpetion65 670 =
Ours (LPointNet + SegFormer-B2) RGB + Point cloud 2D 30M | SegFormer-B2 | 690§
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Dynamic Graph CNN [Wang 2019]

@ Builds a k-nearest neighbors graph

@ Defines an edge convolution

Idea
Recompute the nearest neighbor graph in the feature space after each layer. J
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DGCNN - Edge convolution

© 000000

he0) @ . . .‘ " sagecom x,,e\/
x //\.

X. X

i

[Wang et al. 2019]

o Compute an edge feature using an MLP on the channels of the end vertices

o Aggregate the edge features by permutation invariant pooling on each vertex
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DGCNN - Architecture
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[Wang et al. 2019]
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DGCNN - feature distance

TRX

[Wang et al. 2019]

Shape Analysis Architectures 35/64



DGCNN - Results

PointNet

Qurs Ground truth

[Wang et al. 2019]

Real color

Shape Analysis Architectures
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DGCNN - Results
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PointNet Ours Ground truth
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Diffusion is all you Need [Sharp 2022]

@ Representation agnostic model, based on diffusion on the shape

184,042
verts

[Sharp 2022]
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Diffusion is all you Need

u € RY feature 4 obtained by pointwise MLP

° % = Ax(t)

Diffusion layer H¢(ug) = exp(tA)ug, use the Laplacian eigenbasis to reduce
computation load

To get non radially symmetric filters: add local gradient operators.
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Diffusion is all you Need - Results

DiffusionNet

~/ o
iy

recent
methods

I Hx

after remeshing

DiffusionNet
on point cloud

[Sharp 2022]

v W

original mesh
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Diffusion is all you Need - Results

[Sharp 2022]

ground truth mesh prediction point cloud prediction

41/64
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Outline

© Generative Models for Shape Synthesis
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But: only for static geometry

How do we cope with generative tasks
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An example for generating shapes [GRASS, Li et al. 2017]

I i

@b H
= kg

s

[Li et al. 2017]

@ Input data: set of shapes with a semantic segmentation into parts.
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Algorithm

@ Step 1: Learn a code representing an arrangement of boxes.
@ Step 2: Train a GAN for generating a new structure

@ Step 3: Use voxelization in each box to synthesize the local geometry.

]

suuctures ot sy Treining Testing .
nD D =
root code random noise , | ]
fel o} o o)
‘ 0520 0 %ol e Q50 1 jaeneratea
°o%0 0% ° BRNE 0 T VO alel L ..
| oS Ro° ‘H[ o5 "ﬁl:a o
s training
RVNN encoder ~ RVNN decoder Generator “™““"** Discriminator parts
part code part code

(a) RYNN auto-encoder pre-training (b) RYNN-GAN training (c) Volumetric part geometry synthesis

[Li et al. 2017

Generative Models for Shape Synthesis
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Application: shape query

Generative Models for Shape Synthesis




MeshGPT [Siddiqi et al. 2023]

L~ ARy Ng

MeshGPT: Autoregressive Mesh Generation

- s)
. .
Vobularyl’.eamin | ‘ j l h N -

@ Following text generation idea: generate a mesh as a sequence of triangles

Embedding
Codebook

GPT-Style Transformer

[Siddiqi et al. 2023]
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MeshGPT - Principle

o Learns a vocabulary of latent representations
of faces

— TTTT I @ Uses these latent representations as tokens
\\w—@. | presen’s
: e @ GPT-like transformer: predicts next token

from previous tokens auto-regressively.
Residual Face Quantization Module

@ 1D Resnet decodes the latent representation
sequences into triangles

[Siddidi et al. 2023]

Generative Models for Shape Synt}
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MeshGPT - Architecture details

o Graph CNN encoder on the graph of faces (each face = a node) learns a
latent per face representation, input features: vertex coordinates
(9-dimensional).

@ SAGE convolution layer: samples neighborhood and aggregates features from
it. For a mesh of N faces:

Z=(z1,-- ,2n)

@ Residual Vector Quantization: quantization on a primary codebook, residuals
quantized on a secondary codebook... Yields a codebook and D codes per
face (with additional tricks)

T=(t, - ,tn); t; = t,] index of an embedding in the codebook.

@ Decoder (1d resnet ) G decodes the token into 9 coordinates.
o Codebook and graph encoder given to the transformer using T as a sequence.

Result

Resuls is a triangle soup: needs post-processing to turn it into a watertight mesh
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MeshGPT - Results

A B g

AtlasNet BSPNet GET3D GET3D-QEM

[Siddigi et al. 2023]
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MeshGPT - Results
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Outline

@ Machine Learning and Surface Reconstruction
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Machine learning based surface reconstruction

@ Needs a differentiable pipeline
@ Challenge: intrinsically a combinatorial problem...

@ Not necessarily example-based: surface reconstruction can be done per shape.
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AtlasNet [Groueix 2019]

Generated
Latent shape 3D point

representation
— mep | —— &8 \
sopomt L *_/
2D point

@ Some definitions:

[Groueix 2019]

» A manifold surface S in R3 is topological set such that each point has a
neighborhood which is homeomorphic to an open disk of mathbbR?.

> Local map (or chart):s a homeomorphism ¢ from an open subset U of S to an
open subset of R?.

» Atlas:a indexed family of local charts (U;, ¢;) from U; to open subsets of R?;
such that the U;s cover S.

Parameterization

This is the base for surface parameterization problems in geometry processing: Try
to unwrap a surface onto a planar patch (usually a square).
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AtlasNet [Groueix 2019]

@ Model the local maps as affine maps, they can be inverted if they are full
rank.

@ A RelU-based MLP computes a piecewise affine map (full rank). This is due
to ReLU activation.

@ Start with N patches and compute their deformation onto the surface (Papier
méaché). Deformed patches may overlap.
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AtlasNet for surface reconstruction

@ Start with a latent representation x of a shape

@ For a set of points A of points sampled in [0, 1]?, we optimize the weights 6;
of N functions (MLP) fy,

@ Sample a set Sy of M points on the surface S
@ Chamfer Loss

N
> min [f,(px) = ql3+ Y min min [fy (p,x) - qll®
peAi=1 1P gesy NP
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Result

A

2D Image ) _"
Aonze

|
R ll"

3D P‘o\'ntcﬁd \\/ d--

(a) Possible Inputs  (b) Output Mesh from the 2D Image (c) Output Atlas (optimized) (d) Textured Output

$r

ia) |
() 3D Printed Output

[Groueix et al. 2019]
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Results: reconstruction from single view

.

-

!
w
N
¢
=

V4
=
¥

[

(a) input (b) 3D-R2N2 (©) PSG

Machine Learning and Surface Reconstruction

(d) Ours

[Groueix et al. 2019]
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Differentiable Surface Reconstruction [Rakotosaona 2021]

[Shewchuck 2003]

o A set of points v; € R with weights w;

o Weighted Delaunay Triangulation: projected lower envelop of points
(v, 117 = wj) € RI*H

@ Any 2D (d = 2) triangulation can be obtained as a perturbation of a 2d
Weighted Delaunay Triangulation.
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Differentiable weighted Delaunay triangulation in 2D

@ All possible triangles with vertices in V' are given an inclusion score e;.

o defs: ¢; circumcenter of triangle i = {j, k, I}, aj); reduced Voronoi cell of
vertex j onto triangle i. Then

o 1 ifgeayg Vxe{j,kl}
"7 1 0 otherwise

o Continuous inclusion score

sijj = o(ad(c;, aj);)) (o sigmoid)

1
si = g(si\j + Sijk + i)

Machine Learning and Surface Reconstruction
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Differentiable weighted Delaunay triangulation in 2D

Intersection of half planes Hj<x = {x € R?|||x — v;||? — w; < ||x — w]|® — wi}

Weighted Voronoi cell a* J

o redefine: ¢; weighted circumcenter of triangle i = {j, k, I}, aj}; reduced
weighted Voronoi cell of vertex j onto triangle i.

@ Same expression for the continuous inclusion score
_ Cw . .
sijj = o(ad(ci, aj};)) (o sigmoid)

1
Si = g(si\j + Sijk =+ sij1)
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Turning 3D triangulation problems into 2d triangulation
problems

@ Segment 3D shapes into developable sets by Least Squares Conformal Maps
[Levy 2008].

o Differentiable 2D meshing on each of the sets with boundary constraints.

optimize for given triangle sizes

" Y INYY 1Y,

from [Rakotosaona 2021]
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Losses
@ Area prescribing loss (A: function on the surface):

Lo = 5= (505 = ) % (v = )| = A(v)

iJ Silj i

o Boundary preservation Ioss:
Ly(V,P)= v Zexp(s min(e, (v; — bj) - n; )

@ Other possible losses: angle Ioss, curvature alignment loss.

triangle size li
input [Loseille 2017] ours target sizes input [Jakob et al. 2015] ours target directions
p =

o
e
i
141
138
0.57/0.40

Machine Learning an:] Surface Reconltructlon

0.69/0.46 . . 7.49/6.98

0.60/0.49

from [Rakotosaona 2021]
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Conclusion

@ Very small overview of geometric deep learning

@ In particular, it's missing the nice definitions of equivariant convolutions or
methods based on the bundle Laplacian.

@ Missing also implicit surfaces: next time

Machine Learning and Surface Reconstruction 64/64
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