Geometric Deep Learning

Julie Digne

Master ID3D LIRIS - CNRS Équipe Origami

21/11/2024

MeshCNN [Hanocka et al. 2019]

Outline

- 2 Shape Analysis Architectures
- 3 Generative Models for Shape Synthesis
- 4 Machine Learning and Surface Reconstruction

Image versus geometry

Geometric data

 $v_0 = v_1$

No grid structure.

Introduction

Sampling issues

Irregular Sampling, occlusions when scanning

Introduction

Geometric Deep Learning

- No image-like grid structure
- What is a good representation for working on geometric data?
- \bullet Various representations Meshes, Point sets... \rightarrow Networks adapted to this kind of data

Outline

2 Shape Analysis Architectures

3 Generative Models for Shape Synthesis

4 Machine Learning and Surface Reconstruction

3D CNN

- 3D ShapeNets
- Represents a shape as a probability distribution over a voxel grid.
- Learns the model distribution over voxels+classes.

3D CNN

3D CNN - Shape completion

Multiview CNN [Su 2015]

Benefit from 2D convolution in a 3D-consistent manner.

Multiview CNN [Su 2015]

- Render a mesh from several viewpoints (up to 80)
- Process each image separately through a CNN

Multiview aggregation

- CNN features (or SIFT features) used as a vector description, min distance between the view features
- View-pooling: take the maximum feature values per pixel across all views.

Multiview CNN [Su 2015]

Method	Training Config.			Test Config.	Classification	Retrieval	
Method	Pre-train Fine-tune #Views		#Views	#Views	(Accuracy)	(mAP)	
(1) SPH [16]	-	-	-	-	68.2%	33.3%	
(2) LFD [5]	-	-	-	-	75.5%	40.9%	
(3) 3D ShapeNets [37]	ModelNet40	ModelNet40	-	-	77.3%	49.2%	
(4) FV	-	ModelNet40	12	1	78.8%	37.5%	
(5) FV, 12×	-	ModelNet40	12	12	84.8%	43.9%	
(6) CNN	ImageNet1K	-	-	1	83.0%	44.1%	
(7) CNN, f.t.	ImageNet1K	ModelNet40	12	1	85.1%	61.7%	
(8) CNN, 12×	ImageNet1K	-	-	12	87.5%	49.6%	
(9) CNN, f.t.,12×	ImageNet1K	ModelNet40	12	12	88.6%	62.8%	
(10) MVCNN, 12×	ImageNet1K	-	-	12	88.1%	49.4%	
(11) MVCNN, f.t., 12×	ImageNet1K	ModelNet40	12	12	89.9%	70.1%	
(12) MVCNN, f.t.+metric, 12×	ImageNet1K	ModelNet40	12	12	89.5%	80.2%	
(13) MVCNN, 80×	ImageNet1K	-	80	80	84.3%	36.8%	
(14) MVCNN, f.t., 80×	ImageNet1K	ModelNet40	80	80	90.1 %	70.4%	
(15) MVCNN, f.t.+metric, $80 \times$	ImageNet1K	ModelNet40	80	80	90.1 %	79.5%	

* f.t.=fine-tuning, metric=low-rank Mahalanobis metric learning

[Su et al. 2015]

Meshes

- When the data is represented as a mesh: there is some structure even if irregular!
- Mesh can be seen as a graph
- Graph CNN

Meshes vs graphs

Meshes are very special types of graphs, they define a manifold surface.

Graph Neural Networks [Gori et al. 2005, Scarselli et al. 2005]

- Message passing between neighboring nodes
- Each nodes aggregates the messages and updates them
- Per node task: process the resulting per-node feature vectors
- Per graph task: aggregates the per-node feature vectors

Aggregation function

- For per-node aggregation: should be independent on the order (permutation invariance)
- In per-node tasks: the resulting vector should be permutation equivariant

Aggregation function

- For per-node aggregation: should be independent on the order (permutation invariance)
- In per-node tasks: the resulting vector should be permutation equivariant

Permutation-invariant functions

average, max, min, sum

Aggregation function

- For per-node aggregation: should be independent on the order (permutation invariance)
- In per-node tasks: the resulting vector should be permutation equivariant

Permutation-invariant functions

average, max, min, sum

Many GNN variants

Features can also be on edges (dual graph), or on both edges and vertices. Graph CNN: convolution by a kernel $g_{\theta} = diag(\theta)$, U matrix of eienvectors of the normalized graph laplacian.

$$g_\theta \star x = U g_\theta U^T x$$

Graph Neural Networks - new version

Graph transformers

Transformer on graphs, large receptive field.

• Used in many machine learning-based physics simulation.

MeshCNN [Hanocka et al. 2019]

- Defines convolution and pooling layers on mesh edges.
- Meshes are assumed manifold, possibly with boundary vertices.
- Pooling prioritized by smallest edge feature.

Convolution operation

Pooling and unpooling

q = ava(c, d, e)

a pool

unpool

Hanoka et al.]

• Convolution:
$$e * k_0 + \sum_{i=1}^4 k_i e_i$$

- Convolution: $e * k_0 + \sum_{i=1}^4 k_i e_i$
- Ambiguity: e * k₀ + a * k₁ + b * k₂ + c * k₃ + d * k₄ or e * k₀ + c * k₁ + d * k₂ + a * k₃ + b * k₄

- Convolution: $e * k_0 + \sum_{i=1}^4 k_i e_i$
- Ambiguity: e * k₀ + a * k₁ + b * k₂ + c * k₃ + d * k₄ or e * k₀ + c * k₁ + d * k₂ + a * k₃ + b * k₄
- Solution: work with (|a c|, a + c, |d b|, d + b)

- Convolution: $e * k_0 + \sum_{i=1}^4 k_i e_i$
- Ambiguity: $e * k_0 + a * k_1 + b * k_2 + c * k_3 + d * k_4$ or $e * k_0 + c * k_1 + d * k_2 + a * k_3 + b * k_4$
- Solution: work with (|a c|, a + c, |d b|, d + b)
- Then usual 2d convolution on these "fake edge features"

MeshCNN - Pooling on edges

- Not all edges can collapse: prevent non-manifold faces creating edge collapses.
- Control the target mesh resolution by setting the targer number of edges.
- Store the history of pooling \rightarrow can reinstore the original mesh topology.

MeshCNN: application to mesh classification

• Add a global pooling layer and linear layers, after several meshcnn layers.

	A A	SI	S				
	XX	×	<u>to</u>	Cube Engra	wing Classi	fication	-
A A P			3	method	input res	test acc]
				MeshCNN	750	92.16%	j
		4201	A A	PointNet++	4096	64.26%	1

MeshCNN: application to mesh segmentation

• Only meshcnn layers.

Point sets

- No structure anymore
- Missing data
- Various number of points, point ordering can change.

PointNet [Qi 2017]

Principle

Affine transform per point followed by permutation invariant pooling on channels

PointNet - An approximation theorem

Theorem 1. Suppose $f : \mathcal{X} \to \mathbb{R}$ is a continuous set function w.r.t Hausdorff distance $d_H(\cdot, \cdot)$. $\forall \epsilon > 0$, \exists a continuous function h and a symmetric function $g(x_1, \ldots, x_n) = \gamma \circ \mathsf{MAX}$, such that for any $S \in \mathcal{X}$,

$$\left| f(S) - \gamma \left(\max_{x_i \in S} \left\{ h(x_i) \right\} \right) \right| < \epsilon$$

where x_1, \ldots, x_n is the full list of elements in S ordered arbitrarily, γ is a continuous function, and MAX is a vector max operator that takes n vectors as input and returns a new vector of the element-wise maximum.

• Proof derives directly from the universal approximation theorem.

PointNet - Results

PointNet - Results

PointNet - Results

Issues

Looses locality. Improved in PointNet++ (also in 2017).

Light Networks

- Deep networks are expansive (large computation time and environmental cost)
- PointNet is rather light
- Combine pointnet + light 2D network to get competitive results for RGBD segmentation.

Methods	InputType	GT	NbParam	2D backbone	mIoU
CMX* 29	RGB + Depth (HHA)	2D	66 M	SegFormer-B2	51.3
RFBNet 36	RGB + Depth (HHA)	2D	No info	ResNet-50	62.6
Ours (LPointNet + U-Net34)	RGB + Point cloud from Depth	2D	26 M	ResNet-34	63.2
SSMA 37	RGB + Depth (HHA)	2D	56 M	AdaptNet++	66.3
ShapeConv [28]	RGB + Depth (HHA)	2D	58 M	Deeplabv3+	66.6
3D-to-2D distil 30	RGB + Point cloud	2D	66M	ResNet-50	58.2
Ours (KPConv + U-Net34)	RGB + Point cloud	2D	49 M	ResNet-34	63.8
BPNet* 2	RGB + Point cloud	2D/3D	96 M	ResNet-34	64.4
Ours (LPointNet + U-Net34)	RGB + Point cloud	2D	26 M	ResNet-34	66.1
VirtualMVFusion [25] (single view)	RGB + Normals + Coordinates	3D	No info	xcpetion65	67.0
Ours (LPointNet + SegFormer-B2)	RGB + Point cloud	2D	30 M	SegFormer-B2	<u>69.0</u>

Dynamic Graph CNN [Wang 2019]

- Builds a k-nearest neighbors graph
- Defines an edge convolution

Idea

Recompute the nearest neighbor graph in the feature space after each layer.

DGCNN - Edge convolution

- Compute an edge feature using an MLP on the channels of the end vertices
- Aggregate the edge features by permutation invariant pooling on each vertex

DGCNN - Architecture

Wang et al. 2019]

DGCNN - feature distance

DGCNN - Results

DGCNN - Results

[Wang et al. 2019]

Diffusion is all you Need [Sharp 2022]

• Representation agnostic model, based on diffusion on the shape

Diffusion is all you Need

- $u \in \mathbb{R}^V$ feature + obtained by pointwise MLP
- $\frac{\partial x}{\partial t} = \Delta x(t)$
- Diffusion layer $H_t(u_0) = exp(t\Delta)u_0$, use the Laplacian eigenbasis to reduce computation load
- To get non radially symmetric filters: add local gradient operators.

Diffusion is all you Need - Results

Diffusion is all you Need - Results

Outline

- 2 Shape Analysis Architectures
- 3 Generative Models for Shape Synthesis
 - 4 Machine Learning and Surface Reconstruction

But: only for *static* geometry

How do we cope with generative tasks

An example for generating shapes [GRASS, Li et al. 2017]

• Input data: set of shapes with a semantic segmentation into parts.

Algorithm

- Step 1: Learn a code representing an arrangement of boxes.
- Step 2: Train a GAN for generating a new structure
- Step 3: Use voxelization in each box to synthesize the local geometry.

Application: shape query

Li et al. 2017]

MeshGPT [Siddiqi et al. 2023]

• Following text generation idea: generate a mesh as a sequence of triangles

MeshGPT - Principle

- Learns a vocabulary of latent representations of faces
- Uses these latent representations as tokens
- GPT-like transformer: predicts next token from previous tokens auto-regressively.
- 1D Resnet decodes the latent representation sequences into triangles

MeshGPT - Architecture details

- Graph CNN encoder on the graph of faces (each face = a node) learns a latent per face representation, input features: vertex coordinates (9-dimensional).
- SAGE convolution layer: samples neighborhood and aggregates features from it. For a mesh of *N* faces:

$$Z=(z_1,\cdots,z_N)$$

 Residual Vector Quantization: quantization on a primary codebook, residuals quantized on a secondary codebook... Yields a codebook and D codes per face (with additional tricks)

 $T = (t_1, \cdots, t_N); t_i = t_i^j$ index of an embedding in the codebook.

- Decoder (1d resnet) G decodes the token into 9 coordinates.
- Codebook and graph encoder given to the transformer using T as a sequence.

Result

Resuls is a triangle soup: needs post-processing to turn it into a watertight mesh

MeshGPT - Results

MeshGPT - Results

Outline

Introduction

- 2 Shape Analysis Architectures
- 3 Generative Models for Shape Synthesis

4 Machine Learning and Surface Reconstruction

Machine learning based surface reconstruction

- Needs a differentiable pipeline
- Challenge: intrinsically a combinatorial problem...
- Not necessarily example-based: surface reconstruction can be done per shape.

AtlasNet [Groueix 2019]

- Some definitions:
 - A manifold surface S in ℝ³ is topological set such that each point has a neighborhood which is homeomorphic to an open disk of mathbbR².
 - Local map (or chart):s a homeomorphism φ from an open subset U of S to an open subset of R².
 - Atlas: a indexed family of local charts (U_i, ϕ_i) from U_i to open subsets of \mathbb{R}^2 ; such that the U_i s cover S.

Parameterization

This is the base for surface parameterization problems in geometry processing: Try to unwrap a surface onto a planar patch (usually a square).

AtlasNet [Groueix 2019]

- Model the local maps as affine maps, they can be inverted if they are full rank.
- A ReLU-based MLP computes a piecewise affine map (full rank). This is due to ReLU activation.
- Start with N patches and compute their deformation onto the surface (*Papier mâché*). Deformed patches may overlap.

AtlasNet for surface reconstruction

- Start with a latent representation x of a shape
- For a set of points A of points sampled in $[0, 1]^2$, we optimize the weights θ_i of N functions (MLP) f_{θ_i}
- Sample a set \mathcal{S}_d of M points on the surface \mathcal{S}
- Chamfer Loss

$$\sum_{\boldsymbol{p}\in\mathcal{A}}\sum_{i=1}^{N}\min_{q\in\mathcal{S}_{D}}\|f_{\theta_{i}}(\boldsymbol{p},\boldsymbol{x})-q\|_{2}^{2}+\sum_{q\in\mathcal{S}_{d}}\min_{i=1\cdots N}\min_{\boldsymbol{p}\in\mathcal{A}}\|f_{\theta_{i}}(\boldsymbol{p},\boldsymbol{x})-q\|^{2}$$

Result

Results: reconstruction from single view

[Groueix et al. 2019]

Differentiable Surface Reconstruction [Rakotosaona 2021]

- A set of points $v_j \in \mathbb{R}^d$ with weights w_j
- Weighted Delaunay Triangulation: projected lower envelop of points $(v_j, \|v_j\|^2 w_j) \in \mathbb{R}^{d+1}$
- Any 2D (d = 2) triangulation can be obtained as a perturbation of a 2d Weighted Delaunay Triangulation.

Differentiable weighted Delaunay triangulation in 2D

- All possible triangles with vertices in V are given an inclusion score e_i .
- defs: c_i circumcenter of triangle i = {j, k, l}, a_{i|j} reduced Voronoi cell of vertex j onto triangle i. Then

$$e_i = \begin{cases} 1 & \text{if } c_i \in a_{x|i} \ \forall x \in \{j, k, l\} \\ 0 & \text{otherwise} \end{cases}$$

• Continuous inclusion score

$$egin{aligned} s_{i|j} &= \sigma(lpha d(c_i, a_{j|i})) \; (\sigma \; ext{sigmoid}) \ s_i &= rac{1}{3}(s_{i|j} + s_{i|k} + s_{i|l}) \end{aligned}$$

Differentiable weighted Delaunay triangulation in 2D

Weighted Voronoi cell a^w

Intersection of half planes $H_{j\leq k} = \{x \in \mathbb{R}^2 | \|x - v_j\|^2 - w_j \leq \|x - v_k\|^2 - w_k\}$

- redefine: c_i weighted circumcenter of triangle $i = \{j, k, l\}$, $a_{i|j}$ reduced weighted Voronoi cell of vertex j onto triangle i.
- Same expression for the continuous inclusion score

$$egin{aligned} s_{i|j} &= \sigma(lpha d(c_i, a^w_{j|i})) \; (\sigma \; ext{sigmoid}) \ s_i &= rac{1}{3}(s_{i|j} + s_{i|k} + s_{i|l}) \end{aligned}$$

Turning 3D triangulation problems into 2d triangulation problems

- Segment 3D shapes into *developable sets* by Least Squares Conformal Maps [Lévy 2008].
- Differentiable 2D meshing on each of the sets with boundary constraints.

Losses

• Area prescribing loss (A: function on the surface):

$$\mathcal{L}_{\textit{area}} = rac{1}{\sum_{i,j} s_{i|j}} \sum_{i,j} (rac{1}{2} \| (v_j - v_k) imes (v_l - v_k) \| - \mathcal{A}(v_j))$$

• Boundary preservation loss:

$$\mathcal{L}_b(V, \mathcal{P}) = rac{1}{|V|} \sum_j \exp(arepsilon - \min(arepsilon, (v_j - b_j) \cdot n_j^b))$$

• Other possible losses: angle loss, curvature alignment loss.

Conclusion

- Very small overview of geometric deep learning
- In particular, it's missing the nice definitions of equivariant convolutions or methods based on the bundle Laplacian.
- Missing also implicit surfaces: next time