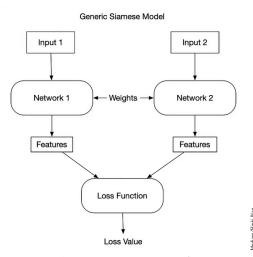
Metric learning - contrastive learning

Julie Digne


Master ID3D LIRIS - CNRS Équipe Origami

20/11/2025

Learning a distance

- Embed the objects in a high dimensional space
- Compute the distance between two objects
- Various cases:
 - ► Regular distance is too hard/expensive to compute (e..g. optimal transport...)
 - ► You cannot compute the distance (e.g. style...)

Siamese Network

viedium) Kiliki i

Generic siamese network.

Loss functions: Distance

- The distance is known from pairs of points (p_i, q_i)
- Use this distance to train the embedding

Distance loss

network f_{θ} , pairs (x_i, y_i) with known distance d_i for $i = 1 \cdots n$

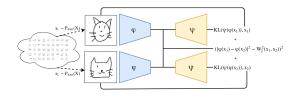
$$I(\theta,(x_i,y_i)) = \sum_i \left| |f_{\theta}(x_i) - f_{\theta}(y_i)| - d_i \right|$$

Loss function: pairwise siamese loss

- The distance cannot be computed..
- But one can have positive/negative examples

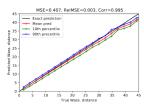
Pairwise loss L(X)

$$L^+(x, x^+) = \|f_{\theta}(x) - f_{\theta}(x^+)\|_2 \text{ et } L^-(x, x^-) = \max(0, m - \|f_{\theta}(x) - f_{\theta}(x^+)\|_2)$$

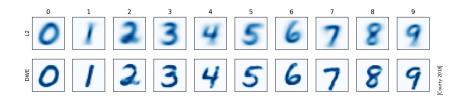

So that:

$$L(X) = \sum_{i} L^{+}(x_{i}, x_{i}^{+}) + \sum_{i} L^{-}(x_{j}, x_{j}^{-})$$

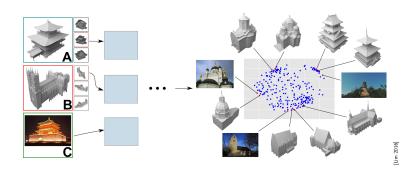
Loss functions: triplet loss


- The distance cannot be computed..
- But one can have positive/negative examples

An example in Optimal Transportation [Courty 2018]

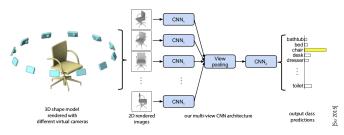

Wasserstein distances are too expensive to compute: learn them.

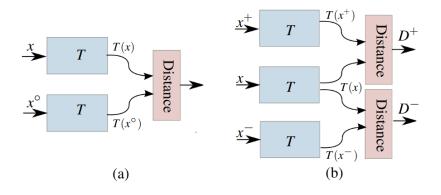
Time comparison



Method	W_2^2 /sec
LP network flow (1 CPU)	192
DWE Indep. (1 CPU)	3 633
DWE Pairwise (1 CPU)	213 384
DWE Indep. (GPU)	233 981
DWE Pairwise (GPU)	10 477 901

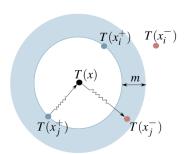
Results


An example for style comparison [Lim 2016]


• Converting the perceived style similarity into a distance measure.

Data

- A set of 3D shapes with metadata: 2 shapes look alike of not.
- Works with set of renderings (multiview cnn).



Triplet loss

- Siamese network: Learn from pairs (x, x^-) et (x, x^+)
- ullet Triplet network: Learn from triplets (x, x^+, x^-)

Triplet loss

Loss L(X)

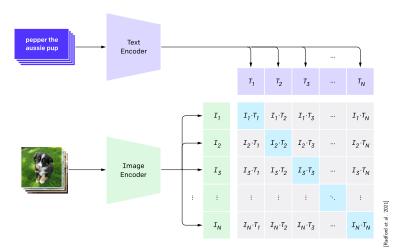
$$D^+(x,x^+) = ||T(x) - T(x^+)||_2$$
 and $D^-(x,x^-) = ||T(x) - T(x^-)||_2$
 $L(x,x^+,x^-) = max(0,m+D^+(x,x^+)-D^-(x,x^-))$

Finally:

$$L(X) = \frac{1}{n} \sum_{i} L(x_i, x_i^+, x_i^-)$$

Attract things that look alike and spreads apart things that are different

Résultats


Contrastive Loss

- A set of data x_i with labels y_i
- Minimize the same-label distance and maximize the inter label distance

$$L_{\theta}(x,y) = 1_{y_i = y_j} \|f_{\theta}(x_i) - f_{\theta}(x_j)\|_2^2 + 1_{y_1 \neq y_j} \max(0, \varepsilon - \|f_{\theta}(x_i) - f_{\theta}(x_j)\|_2)$$

CLIP [Radford et al. 2021]

1. Contrastive pre-training

Learns which caption goes with which image.

CLIP

Crucial to text-to-image methods. See Nicolas' course on Diffusion model.