Geometric Deep Learning

Julie Digne

Master ID3D LIRIS - CNRS Équipe Origami

06/11/2025

Teaser

Outline

- Introduction
- 2 Shape Analysis Architectures
- 3 Generative Models for Shape Synthesis
- 4 Implicit Neural representations and shape latent spaces
- 5 Machine Learning and Surface Reconstruction

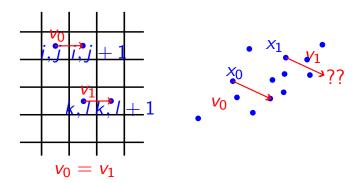
Introduction 3/74

Image versus geometry

(a)

Introduction 4/

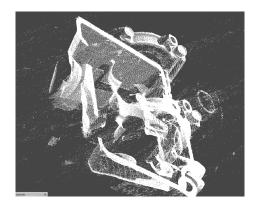
Geometric data



No grid structure.

Introduction 5/74

Sampling issues



Irregular Sampling, occlusions when scanning

Introduction 6/7

Geometric Deep Learning

- No image-like grid structure
- What is a good representation for working on geometric data?
- Various representations Meshes, Point sets...→ Networks adapted to this kind of data

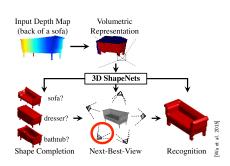
Introduction 7/74

Outline

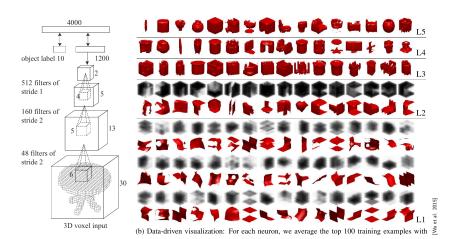
- Introduction
- Shape Analysis Architectures
- 3 Generative Models for Shape Synthesis
- 4 Implicit Neural representations and shape latent spaces
- 5 Machine Learning and Surface Reconstruction

3D CNN

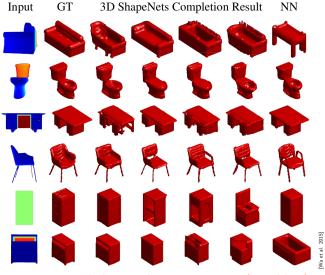
- 3D ShapeNets
- Represents a shape as a probability distribution over a voxel grid.
- Learns the model distribution over voxels+classes.



3D CNN

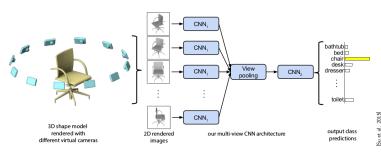


3D CNN - Shape completion



Issue: extremely low resolution: 24x24x24 (+padding)

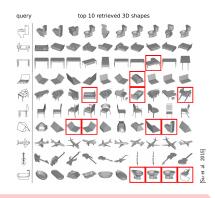
Multiview CNN [Su 2015]



Benefit from 2D convolution in a 3D-consistent manner.

Multiview CNN [Su 2015]

- Render a mesh from several viewpoints (up to 80)
- Process each image separately through a CNN

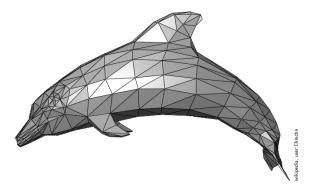


Multiview aggregation

- CNN features (or SIFT features) used as a vector description, min distance between the view features
- View-pooling: take the maximum feature values per pixel across all views.

^{*} f.t.=fine-tuning, metric=low-rank Mahalanobis metric learning

Meshes



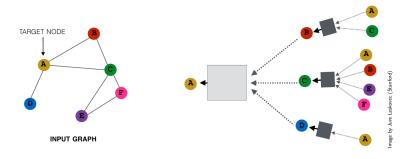
- When the data is represented as a mesh: there is some structure even if irregular!
- Mesh can be seen as a graph
- Graph CNN

Meshes vs graphs

Meshes are very special types of graphs, they define a manifold surface.

Graph Neural Networks [Gori et al. 2005, Scarselli et al. 2005]

- Message passing between neighboring nodes
- Each nodes aggregates the messages and updates them
- Per node task: process the resulting per-node feature vectors
- Per graph task: aggregates the per-node feature vectors



Aggregation function

- For per-node aggregation: should be independent on the order (permutation invariance)
- In per-node tasks: the resulting vector should be permutation equivariant

Aggregation function

- For per-node aggregation: should be independent on the order (permutation invariance)
- In per-node tasks: the resulting vector should be permutation equivariant

Permutation-invariant functions

average, max, min, sum

Aggregation function

- For per-node aggregation: should be independent on the order (permutation invariance)
- In per-node tasks: the resulting vector should be permutation equivariant

Permutation-invariant functions

average, max, min, sum

Many GNN variants

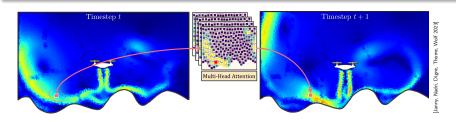
Features can also be on edges (dual graph), or on both edges and vertices. Graph CNN: convolution by a kernel $g_{\theta} = diag(\theta)$, U matrix of eienvectors of the normalized graph laplacian.

$$g_{\theta} \star x = U g_{\theta} U^{\mathsf{T}} x$$

Graph Neural Networks - new version

Graph transformers

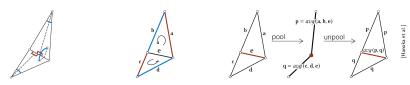
Transformer on graphs, large receptive field.



• Used in many machine learning-based physics simulation.

MeshCNN [Hanocka et al. 2019]

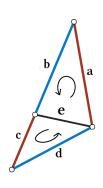
- Defines convolution and pooling layers on mesh edges.
- Meshes are assumed manifold, possibly with boundary vertices.
- Pooling prioritized by smallest edge feature.



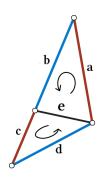
Input Edge features

Convolution operation

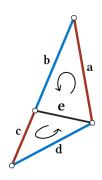
Pooling and unpooling



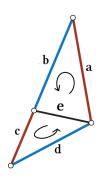
• Convolution: $e * k_0 + \sum_{i=1}^4 k_i e_i$



- Convolution: $e * k_0 + \sum_{i=1}^4 k_i e_i$
- Ambiguity: $e * k_0 + a * k_1 + b * k_2 + c * k_3 + d * k_4$ or $e * k_0 + c * k_1 + d * k_2 + a * k_3 + b * k_4$

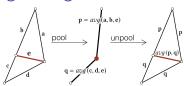


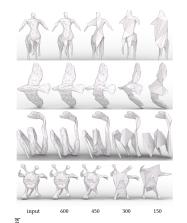
- Convolution: $e * k_0 + \sum_{i=1}^4 k_i e_i$
- Ambiguity: $e * k_0 + a * k_1 + b * k_2 + c * k_3 + d * k_4$ or $e * k_0 + c * k_1 + d * k_2 + a * k_3 + b * k_4$
- Solution: work with (|a-c|, a+c, |d-b|, d+b)



- Convolution: $e * k_0 + \sum_{i=1}^4 k_i e_i$
- Ambiguity: $e * k_0 + a * k_1 + b * k_2 + c * k_3 + d * k_4$ or $e * k_0 + c * k_1 + d * k_2 + a * k_3 + b * k_4$
- Solution: work with (|a-c|, a+c, |d-b|, d+b)
- Then usual 2d convolution on these "fake edge features"

MeshCNN - Pooling on edges





- Not all edges can collapse: prevent non-manifold faces creating edge collapses.
- Control the target mesh resolution by setting the targer number of edges.
- Store the history of pooling → can reinstore the original mesh topology.

MeshCNN: application to mesh classification

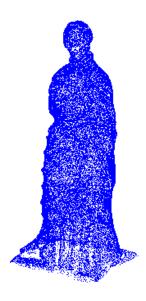
• Add a global pooling layer and linear layers, after several meshcnn layers.

Cubo Engre	ving Classi	fication
method	input res	
MeshCNN	750	92.16%
PointNet++	4096	64.26%

MeshCNN: application to mesh segmentation

• Only meshcnn layers.

Point sets

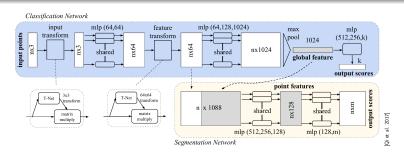


- No structure anymore
- Missing data
- Various number of points, point ordering can change.

PointNet [Qi 2017]

Principle

Affine transform per point followed by permutation invariant pooling on channels



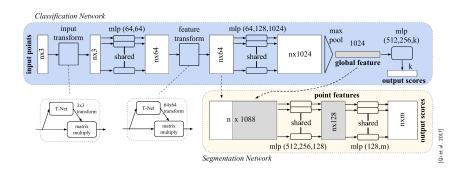
PointNet - An approximation theorem

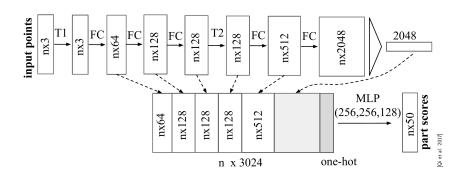
Theorem 1. Suppose $f: \mathcal{X} \to \mathbb{R}$ is a continuous set function w.r.t Hausdorff distance $d_H(\cdot, \cdot)$. $\forall s \in \mathcal{S}$ 0, \exists a continuous function h and a symmetric function $g(x_1, \ldots, x_n) = \gamma \circ \mathsf{MAX}$, such that for any $S \in \mathcal{X}$,

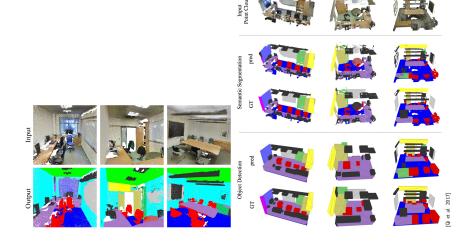
$$\left| f(S) - \gamma \left(\max_{x_i \in S} \left\{ h(x_i) \right\} \right) \right| < \epsilon$$

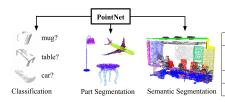
where x_1, \ldots, x_n is the full list of elements in S ordered arbitrarily, γ is a continuous function, and MAX is a vector max operator that takes n vectors as input and returns a new vector of the element-wise maximum.

• Proof derives directly from the universal approximation theorem.









	#params	FLOPs/sample
PointNet (vanilla)	0.8M	148M
PointNet	3.5M	440M
Subvolume [18]	16.6M	3633M
MVCNN [23]	60.0M	62057M
		•

[Qietal. 2017]

Issues

Looses locality. Improved in PointNet++ (also in 2017).

Light Networks

- Deep networks are expansive (large computation time and environmental cost)
- PointNet is rather light
- Combine pointnet + light 2D network to get competitive results for RGBD segmentation.

Methods	InputType	GT	NbParam	2D backbone	mIoU
CMX* [29]	RGB + Depth (HHA)	2D	66 M	SegFormer-B2	51.3
RFBNet 36	RGB + Depth (HHA)	2D	No info	ResNet-50	62.6
Ours (LPointNet + U-Net34)	RGB + Point cloud from Depth	2D	26 M	ResNet-34	63.2
SSMA 37	RGB + Depth (HHA)	2D	56 M	AdaptNet++	66.3
ShapeConv [28]	RGB + Depth (HHA)	2D	58 M	Deeplabv3+	66.6
3D-to-2D distil 30	RGB + Point cloud	2D	66M	ResNet-50	58.2
Ours (KPConv + U-Net34)	RGB + Point cloud	2D	49 M	ResNet-34	63.8
BPNet* [2]	RGB + Point cloud	2D/3D	96 M	ResNet-34	64.4
Ours (LPointNet + U-Net34)	RGB + Point cloud	2D	26 M	ResNet-34	66.1
VirtualMVFusion [25] (single view)	RGB + Normals + Coordinates	3D	No info	xcpetion65	67.0
Ours (LPointNet + SegFormer-B2)	RGB + Point cloud	2D	30 M	SegFormer-B2	69.0

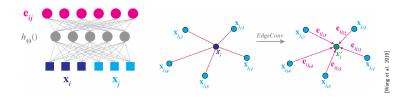
Dynamic Graph CNN [Wang 2019]

- Builds a k-nearest neighbors graph
- Defines an edge convolution

Idea

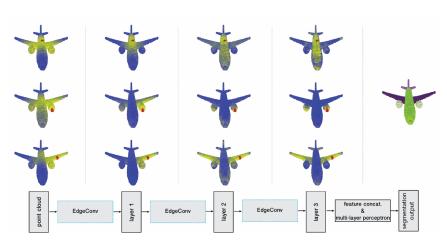
Recompute the nearest neighbor graph in the feature space after each layer.

DGCNN - Edge convolution



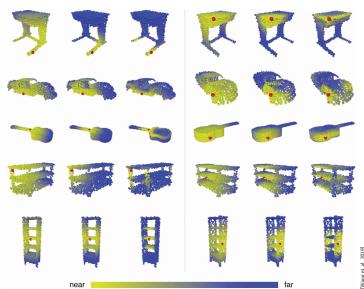
- Compute an edge feature using an MLP on the channels of the end vertices
- Aggregate the edge features by permutation invariant pooling on each vertex

DGCNN - Architecture

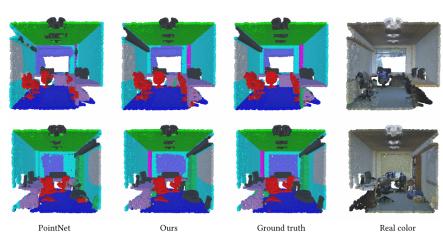


ang et al. 2019]

DGCNN - feature distance

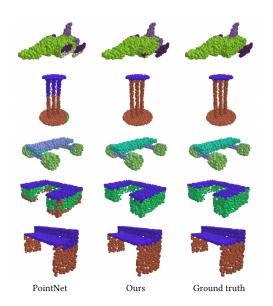


DGCNN - Results



ng et al. 2019

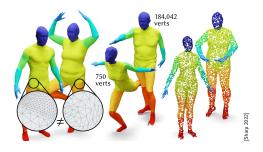
DGCNN - Results



[Wang et al. 2019]

Diffusion is all you Need [Sharp 2022]

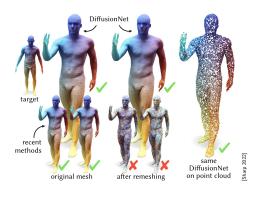
• Representation agnostic model, based on diffusion on the shape



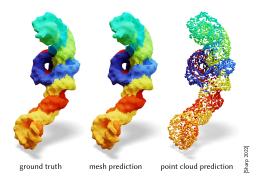
Diffusion is all you Need

- $u \in \mathbb{R}^V$ feature + obtained by pointwise MLP
- $\frac{\partial x}{\partial t} = \Delta x(t)$
- Diffusion layer $H_t(u_0) = exp(t\Delta)u_0$, use the Laplacian eigenbasis to reduce computation load
- To get non radially symmetric filters: add local gradient operators.

Diffusion is all you Need - Results



Diffusion is all you Need - Results



Outline

- Introduction
- Shape Analysis Architectures
- 3 Generative Models for Shape Synthesis
- 4 Implicit Neural representations and shape latent spaces
- 5 Machine Learning and Surface Reconstruction

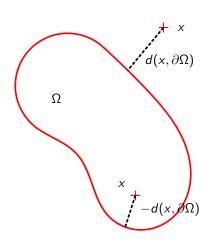
But: only for static geometry

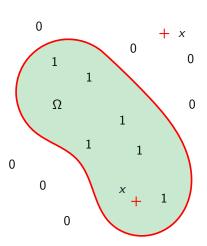
How do we cope with generative tasks

Outline

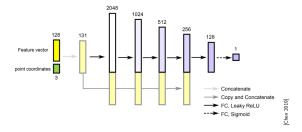
- Introduction
- Shape Analysis Architectures
- 3 Generative Models for Shape Synthesis
- 4 Implicit Neural representations and shape latent spaces
- 5 Machine Learning and Surface Reconstruction

Implicit neural representations





Learning Occupancy functions [Chen 2019, Mescheder 2020]



- Use an encoder (e.g. PointNet [Qi 2017]) to get the shape latent description α .
- Train a neural network to compute the occupancy network of a shape given (x, y, z, α) .

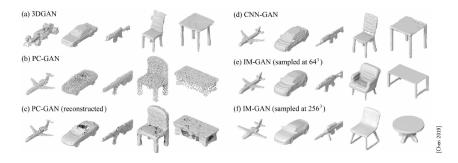
Data and Losses

- A set of N shapes S_i with points y_{ik} for which the occupancy is known.
- Training loss:

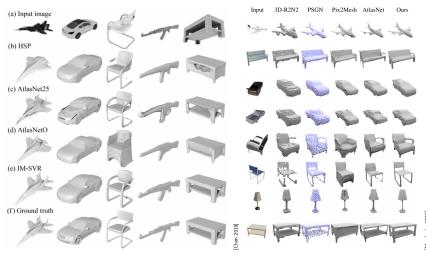
$$\frac{1}{|\mathcal{B}|} \sum_{i=1}^{N} \sum_{k=1}^{K} \mathcal{L}(u_{\theta}(y_{ik}, \alpha_i), o_{ik})$$

- $\mathcal{L}(u_{\theta}(y_{ik}, \alpha_i), o_{ik}) = |u_{\theta}(y_{ik}, \alpha_i) o_{ik}|^2$
- Chen et al. [2019] adds a sampling density weight
- Mescheder et al. [2020] adds a KL divergence between a latent description prior and the encoder distribution.

Results and Comparisons



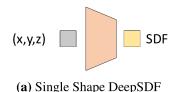
Results - single view reconstruction

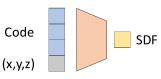


DeepSDF

• Represent an entire class of shapes in an implicit way

Training





(b) Coded Shape DeepSDF

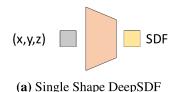
Park 2019

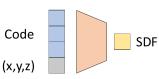
Single shape version

$$\mathcal{L}(\mathit{f}_{\theta}(x),s) = |\mathit{clamp}(\mathit{f}_{\theta},\delta) - \mathit{clamp}(x,\delta)|$$

with $clamp(x, \delta) = \min(\delta, \max(-\delta, x))$, s isovalue.

Training





(b) Coded Shape DeepSDF

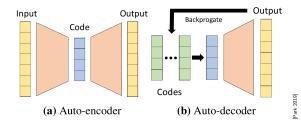
Park 2019]

Latent shape version

$$f_{\theta}(z_i, x) = SDF^i(x)$$

Model several distance fields with a single network (factor in shape space)

Auto-decoder



- Usually: train an auto-encoder + throw away the encoder.
- Here: avoid spending computational resources on encoder.
- Handle shapes of different number of samples.

Model for the auto-decoder

- Data: *N* shapes $X_i = \{(x_j, s_j), s_j = SDF^i(x_j)\}.$
- Latent code z_i , prior $p(z_i)$ = centered Gaussian with spherical covariance.

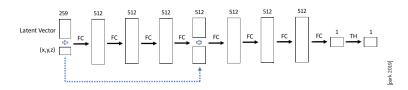
$$p_{\theta}(z_i|X_i) = p(z_i) \prod_j p_{\theta}(s_j|z_i,x_j)$$

 $p_{\theta}(s_j|z_i,x_j) = \exp(-\mathcal{L}(f_{\theta}(z_i,x_j),s_j))$ with f_{θ} an MLP predicting the SDF.

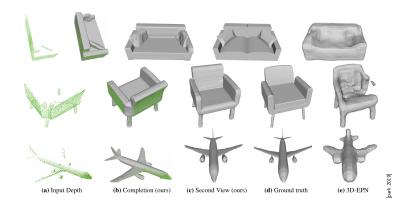
Training, miniziming the negative log of the posterior

$$\underset{\theta, \{z_i\}_{i=1}^{N}}{\operatorname{argmin}} \sum_{i=1}^{N} \sum_{j=1}^{K} \mathcal{L}(f_{\theta}(z_i, x_j), s_j) + \frac{1}{\sigma^2} \|z_i\|_2^2$$

Network architecture



results



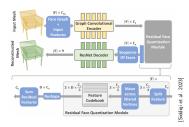
• solve for the shape code from partial shapes and reconstruct

(e) $\alpha = 0.05$

MeshGPT [Siddiqi et al. 2023]

• Following text generation idea: generate a mesh as a sequence of triangles

MeshGPT - Principle



- Learns a vocabulary of latent representations of faces
- Uses these latent representations as tokens
- GPT-like transformer: predicts next token from previous tokens auto-regressively.
- 1D Resnet decodes the latent representation sequences into triangles

Result

Resuls is a triangle soup: needs post-processing to turn it into a watertight mesh

MeshGPT - Results

MeshGPT - Results

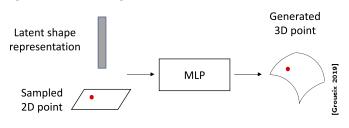
Outline

- Introduction
- 2 Shape Analysis Architectures
- 3 Generative Models for Shape Synthesis
- 4 Implicit Neural representations and shape latent spaces
- 5 Machine Learning and Surface Reconstruction

Machine learning based surface reconstruction

- Needs a differentiable pipeline
- Challenge: intrinsically a combinatorial problem...
- Not necessarily example-based: surface reconstruction can be done per shape.

AtlasNet [Groueix 2019]



- Some definitions:
 - A manifold surface S in \mathbb{R}^3 is topological set such that each point has a neighborhood which is homeomorphic to an open disk of $mathbbR^2$.
 - ▶ Local map (or chart): a homeomorphism φ from an open subset U of S to an open subset of \mathbb{R}^2 .
 - Atlas: an indexed family of local charts (U_i, ϕ_i) from U_i to open subsets of \mathbb{R}^2 ; such that the U_i s cover S.

Parameterization

This is the base for surface parameterization problems in geometry processing: Try to unwrap a surface onto a planar patch (usually a square).

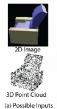
AtlasNet [Groueix 2019]

- Model the local maps as affine maps, they can be inverted if they are full rank.
- A ReLU-based MLP computes a piecewise affine map (full rank). This is due to ReLU activation.
- Start with N patches and compute their deformation onto the surface (*Papier mâché*). Deformed patches may overlap.

AtlasNet for surface reconstruction

- Start with a latent representation x of a shape
- For a set of points $\mathcal A$ of points sampled in $[0,1]^2$, we optimize the weights θ_i of N functions (MLP) f_{θ_i}
- ullet Sample a set \mathcal{S}_d of M points on the surface \mathcal{S}
- Chamfer Loss

$$\sum_{p \in \mathcal{A}} \sum_{i=1}^{N} \min_{q \in \mathcal{S}_{D}} \|f_{\theta_{i}}(p, x) - q\|_{2}^{2} + \sum_{q \in \mathcal{S}_{d}} \min_{i=1 \cdots N} \min_{p \in \mathcal{A}} \|f_{\theta_{i}}(p, x) - q\|^{2}$$

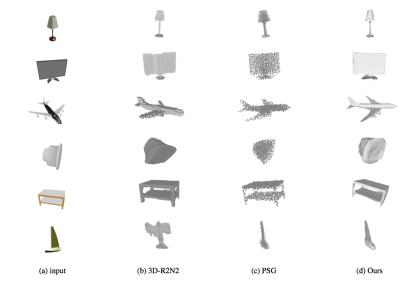


(b) Output Mesh from the 2D Image

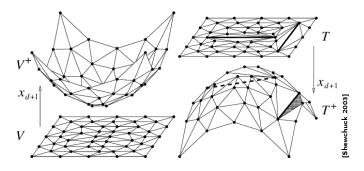
(c) Output Atlas (optimized)

(e) 3D Printed Output

Results: reconstruction from single view



Differentiable Surface Reconstruction [Rakotosaona 2021]



- ullet A set of points $v_j \in \mathbb{R}^d$ with weights w_j
- Weighted Delaunay Triangulation: projected lower envelop of points $(v_j, ||v_j||^2 w_j) \in \mathbb{R}^{d+1}$
- Any 2D (d = 2) triangulation can be obtained as a perturbation of a 2d Weighted Delaunay Triangulation.

Differentiable weighted Delaunay triangulation in 2D

- All possible triangles with vertices in V are given an inclusion score e_i .
- defs: c_i circumcenter of triangle $i = \{j, k, l\}$, $a_{i|j}$ reduced Voronoi cell of vertex j onto triangle i. Then

$$e_i = \left\{ egin{array}{ll} 1 & ext{if } c_i \in a_{x|i} \ orall x \in \{j,k,l\} \ 0 & ext{otherwise} \end{array}
ight.$$

Continuous inclusion score

$$s_{i|j} = \sigma(\alpha d(c_i, a_{j|i})) \ (\sigma \ ext{sigmoid})$$
 $s_i = rac{1}{3}(s_{i|j} + s_{i|k} + s_{i|l})$

Differentiable weighted Delaunay triangulation in 2D

Weighted Voronoi cell aw

Intersection of half planes $H_{i < k} = \{x \in \mathbb{R}^2 | ||x - v_i||^2 - w_i \le ||x - v_k||^2 - w_k\}$

- redefine: c_i weighted circumcenter of triangle $i = \{j, k, l\}$, $a_{i|j}$ reduced weighted Voronoi cell of vertex j onto triangle i.
- Same expression for the continuous inclusion score

$$egin{aligned} s_{i|j} &= \sigma(lpha d(c_i, a^w_{j|i})) \; (\sigma \; ext{sigmoid}) \ s_i &= rac{1}{3}(s_{i|j} + s_{i|k} + s_{i|l}) \end{aligned}$$

Turning 3D triangulation problems into 2d triangulation problems

- Segment 3D shapes into developable sets by Least Squares Conformal Maps [Lévy 2008].
- Differentiable 2D meshing on each of the sets with boundary constraints.
- \bullet Optimize for the weights, select triangles with inclusion score > 0.5



Losses

• Area prescribing loss (A: function on the surface; v' = 3d lifted coordinates):

$$\mathcal{L}_{\textit{area}} = rac{1}{\sum_{i,j} s_{i|j}} \sum_{i,j} s_{i|j} (rac{1}{2} \| (v_k' - v_j') imes (v_l' - v_j') \| - \mathcal{A}(v_j))$$

- Boundary preservation loss to encourage the point to stay within the patch.
- Other possible losses: angle loss, curvature alignment loss.



Conclusion

- Very small overview of geometric deep learning
- In particular, it's missing the nice definitions of equivariant convolutions or methods based on the bundle Laplacian.