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Introduction

Each of these blocks is a challenge!

Sampling of the existing methods

Thanks to Pierre Alliez and Misha Kazhdan for providing some of the slides.
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Introduction: Acquisition of point clouds
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3d surfaces typical challenges:
Cleaning the physical measure
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3d surfaces typical challenges:
Registering and merging scans
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3d surfaces typical challenges:
Orienting the point set
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3d surfaces typical challenges: Building a mesh from a set of
points

Shape courtesy of blender
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Results of the acquisition process
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Outline

1 Geometry Processing basics

2 Surface reconstruction: Methods from Computational Geometry

3 Surface Reconstruction: Potential Field Methods
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Riemannian surface de�nition

Riemann Surface

A Riemann surface S is a separated (Hausdor�) topological space endowed with
an atlas: For every point x ∈ S there is a neighborhood V (x) containing x
homeomorphic to the unit disk of the complex plane. These homeomorphisms are
called charts. The transition maps between two overlapping charts are required to
be holomorphic.

At each point of the surface one can �nd an intrinsic parameterization
T (u, v).

We restrict this small introduction to surfaces of dimension 2 embedded in
R3.
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Let S be a smooth surface embedded in R3, parameterized over a bounded
domain Ω ⊂ R2 with parameterization:

x(u, v) =

x(u, v)
y(u, v)
z(u, v)


De�ne xu(u0, v0) = ∂x

∂u (u0, v0)

xv (u0, v0) = ∂x
∂v (u0, v0) is tangent to the curve on the surface de�ned by

s → x(u0, v0 + s).

xu(u0, v0) and xv (u0, v0) are two vectors tangent to the surface S.
If the parameterization is regular, (‖xu × xv‖ 6= 0), these vectors span the
tangent plane to the surface at x(u0, x0).
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Normal computation

If the parameterization is regular, the normal to the surface is computed as:

n =
xu × xv
‖xu × xv‖

Directional derivatives Given a direction w in the tangent plane, the
directional derivative of S in direction w is the tangent to the curve
Cw (t) = x(u0, v0 + tw)
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First Fundamental Form

De�nition (First Fundamental Form)

The First Fundamental Form is de�ned as I = J · JT (2× 2 matrix). or
equivalently:

I =

(
xTu xu xTu xv
xTu xv xTv xv

)
where J is the Jacobian matrix of S: J =

(
xu xv

)
(3× 2 matrix).
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Why is the �rst fundamental useful?

If a is a vector of Ω, ã its corresponding tangent vector, then:
‖a‖2 = ãT JT Jã = ãT I ã

Compute the length of a curve C (t) = x(u(t), v(t)):

l[a,b] =

∫
[a,b]

(
utvt

)
I
(
utvt

)T
The Surface Area A =

∫ ∫
A

√
detI dudv
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Second Fundamental Form

De�nition (Second Fundamental Form)

The Second fundamental form characterizes the way a surface bends:

II =

(
xTuu · n xTuv · n
xTuv · n xTvv · n

)
It is a quadratic form on the tangent plane to the surface.
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As a starter: curvature of a curve
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Normal Curvature

De�nition (Normal Curvature)

For each tangent vector t at a point p of the surface, the normal curvature is
de�ned as:

κn(t) =
tT · II · t
tT · I · t

.

Image from Crane et al. 2013

The normal curvature varies with t.
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Principal curvatures and directions

De�nition (Principal curvature)

Let κ1 be the minimum of κn(t) (normal curvature at p) and κ2 be the maximum
of κn(t). κ1 and κ2 are called the principal curvatures of the surface at p.

If κ1 6= κ2, the two associated tangent vectors t1 and t2 are called principal
directions and they are orthogonal

κ1, κ2, t1, t2 are the eigenvalues and eigenvectors of the Shape Operator:

S = I−1 · II
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Principal curvatures and directions

If κ1 = κ2, the point is called an
umbilic or umbilical point and the
surface is locally spherical.

κn(t) = κ1cos
2φ+ κ2sin

2φ (Euler)
(φ is the angle between t1 and t

(t1, t2,n) is called the local
intrinsic coordinate system.
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Curvature Tensor

De�nition (Curvature Tensor)

The Curvature Tensor is a symmetric 3× 3 matrix C whose eigenvalues are
(κ1, κ2, 0) and corresponding eigenvectors (t1, t2,n). More precisely:

C = PDP−1

where P is the matrix whose columns are t1, t2,n and D is a diagonal matrix with
diagonal values κ1, κ2, 0.

Mean curvature average of the normal curvature: H = κ1+κ2
2

Gaussian curvature product of the principal curvature K = κ1 · κ2
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Examples
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Representing manifold surfaces

Mesh Surface

Polygonal meshes are a piecewise linear approximation of the shape. It is a set of
polygons linked together by edges.

Triangular or quadrilateral meshes are used.
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Triangular Meshes

Triangular Meshes

Each point on the surface can be expressed in terms of barycentric coordinates of
the three vertices of the facet it belongs to.

Euler Formula

Link between the number of triangles F , edges E and vertices V of a closed
non-intersecting triangular mesh [Coxeter89] with genus g (number of handles in
the surface).

V − E + F = 2(1− g)

�Manifoldness�: at each point, the surface is locally homeomorphic to a disk
(or half disk if the point lies on the boundary).
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Di�erential quantities estimation

Normal estimation

Compute the normal per triangle. For each vertex compute a (possibly weighted)
average of the normals of incident triangles.

Curvature tensor estimation

Normal Cycles: For each edge of the meshed surface, κ2 = 0 and κ1 = β(e) is
the dihedral angle between the normals of the two facets adjacent to edge e. Let:
ē = e/‖e‖

C (v) =
1

A(v)

∑
e∈N (v)

β(e)‖e ∩ A(v)‖ē · ēT .

Morvan, Cohen-Steiner 2003
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Our data: point clouds

Point Clouds

A set of 3D coordinates (xi , yi , zi )i=0···N−1 without any graph structure

We can still estimate di�erential quantities

We need some notion of neighborhoods: K-nearest neighbors or �xed radius
neighborhood
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Di�erential Quantities Estimation

Moving Least Squares

Around each point p �t a regression surface, and estimate the {Curvature,
Gradient, Normal,...} on this surface.∑

q∈N (p)

w(p, q)‖f (xq, yq)− zq‖2

Deriving the �rst and second fundamental form from f is easy.

Special Cases

Normal direction: eigenvector corresponding to the least eigenvalue of the
local covariance matrix [Hoppe92, Mitra2003]

Mean curvature: proportional to the displacement induced by projecting a
point to its local regression plane [Digne2011]

P(p)− p = −1

4
H(p)r2 + O(r2)
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Adding a graph structure to a point cloud

Goal

Build a surface mesh (a set of triangles glued by edges) that represents the surface.

Interpolating/Approximating?

Closed surface reconstruction? Boundary preserving surface reconstruction?

Smooth/piecewise smooth surface?

Detail preservation/representation sparsity?

Di�erent reconstruction methods depending on the application
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Outline

1 Geometry Processing basics

2 Surface reconstruction: Methods from Computational Geometry

3 Surface Reconstruction: Potential Field Methods
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Methods coming from computational geometry

Convex Hulls...

Crust, Eigencrust, powercrust

Delaunay �ltering

α-shapes

Ball Pivoting Algorithm
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Delaunay triangulation

A Delaunay Triangulation of S is the set of all triangles with vertices in S
whose circumscribing circle contains no other points in S∗.

Compactness Property: this is a triangulation that maximizes the minimum
angle
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Computational Geometry

The Voronoi Diagram of S is a partition of space into regions V (p) (p ∈ S)
such that all points in V (p) are closer to p than any other point in S .

For a vertex, we can draw an empty circle that just touches the three points
in S around the vertex.

Each Voronoi vertex is in one-to-one correspondence with a Delaunay triangle
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From Delaunay to a surface mesh

Given a set of points, we can construct the Delaunay triangulation

Label each triangle/tetrahedron as inside/outside

Reconstruction = set of edges/facets that lie between inside and outside
triangles/tetrahedra

Di�erent ways of assigning the labels [Boissonat 84], tight cocoone [Dey
Goswami 2003], Powercrust [Amenta et al. 2001] Eigencrust [Kolluri et al.
2004]
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The Crust Algorithm [Amenta et al. 1998]

If we consider the Delaunay Triangulation of a point set, the shape boundary
can be described as a subset of the Delaunay edges.

How do we determine which edges to keep?

Two types of edges:
I Those connecting adjacent points on the boundary
I Those traversing the shape

Discard those that traverse the shape
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The Crust Algorithm [Amenta et al. 1998]

In 2D:

Given a point set S compute its Voronoi diagram and Voronoi vertices V

Compute the Delaunay triangulation of S ∪ V

Keep only edges that connects points in S (eq. to keeping all edges for which
there is a circle that contains the edge but no Voronoi vertices)

In 3D: Not all Voronoi Vertices are added to the set. Only the poles (furthest
points of the Voronoi cell) are considered.
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Ball Pivoting Algorithm [Bernardini et al. 99]

BPA computes a triangle mesh interpolating a given point cloud

Three points form a triangle if a ball of a user-speci�ed radius ρ touches
them without containing any other point

Start with a seed triangle

The ball pivots around an edge until it touches another point, forming
another triangle

Expand the triangulation over all edges then start with a new seed
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Di�erent types of expansion

Advancing front triangulation

Front is a set of edges

f
e

v

(f) Expansion case

fe v

(g) Gluing case

e f
v

(h) Hole �lling case

e

v
f

(i) Ear �lling case
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Rotating the sphere

e
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Finding the R-circumsphere

A B

C

a

c

b
H

A B

C

ab
H

O

Such a sphere exists only if R2
b − R2 ≥ 0.

Let us denote by n the normal to the triangle plane, oriented such that is has
a nonnegative scalar product with the vertices normals. Provided R2

b −R2 ≥ 0
(hence the sphere existence), the center O of the sphere can be found as:

O = H +
√
R2
b − R2 · n.
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Properties and Guarantees of the resulting mesh

The surface is guaranteed to be self-intersection free (no triangle will
intersect each other except at an edge or vertex, and at most two triangles
can be adjacent to an edge).

Normal coherence on a facet.

For each triangle there exists an empty ball incident to the three vertices with
empty interior
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Detailed area
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Smaller ball radius
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Smaller ball radius
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Smaller ball radius

Surface reconstruction: Methods from Computational Geometry 38/74



(j) r = 0.02 (k) r = 0.03 (l) r = 0.05

Figure: Radius too small: areas with lower density are not triangulated. Large radius :
higher computation times + detail loss.
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Figure: Reconstructing the Stanford Bunny point cloud, with a single radius (0.0003),
two radii (0.0003; 0.0005) and three radii (0.0003; 0.0005; 0.002).
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Radius Time(s) vertices facets boundary edges
0.0003 10s 318032 391898 272832

0.0003; 0.0005 21s 356252 698963 22727
0.0003; 0.0005; 0.002 29s 361443 713892 7897
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(a) Detail loss (b) Hole creation (c) A possible correction: us-
ing multiple radii

Figure: Detail loss and hole creation due to a too large radius (left) and a too small one
(middle). A possible solution is to use multiple radii (right).
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(a) r = 0.05 (b) r = 0.02; 0.03; 0.05

Figure: Applying the ball pivoting to a noisy sphere: r = 0.05 (left) and
r = 0.02; 0.03; 0.05 (right). A single radius does not allow to interpolate the input data
and applying multiple radii is not a solution in addition to being di�cult to tune.
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Figure: Bunny and Dragon reconstruction

Surface reconstruction: Methods from Computational Geometry 44/74



Problems and solutions

The larger the ball radius the slower the computation

The larger the ball radius the more details will be lost

The smaller the ball radius the more dependent on the sampling

Varying ball radius ← slow down the process

Use of a scale space: a multiscale representation of the point cloud.
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Summary: Advantages/Drawbacks of the ball pivoting

Drawbacks Advantages

Size of the ball?

No suppression of redundant points

No hole closure

Control on the size of the triangles
created

Radius of the ball determines what
is a hole

Surface boundary preservation

Modi�cation through the use of a scale space for better detail preservation [Digne
et al. 2011].
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Outline

1 Geometry Processing basics

2 Surface reconstruction: Methods from Computational Geometry

3 Surface Reconstruction: Potential Field Methods
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Implicit surface reconstruction - Level set methods

See the surface as an isolevel of a given function

Extract the surface by some contouring algorithm: Marching cubes [Lorensen
Cline 87], Particle Systems [Levet et al. 06]
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Surface reconstruction from unorganized points
[Hoppe et al. 92]

Input: a set of 3D points

Idea: for points on the surface the signed distance transform has a gradient
equal to the normal

F (p) = ±min
q∈S
‖p − q‖

0 is a regular value for F and thus the isolevel extraction will give a manifold

Compute an associated tangent plane (oi , ni ) for each point pi of the point
set

Orientation of the tangent planes as explained before.
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Surface reconstruction from unorganized points
[Hoppe et al. 92]

Once the points are oriented

For each point p, �nd the closest centroid oi

Estimated signed distance function: f̂ (p) = ni · (p − oi )
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Poisson Surface Reconstruction [Kazhdan et al. 2006]

Input: a set of oriented samples

Reconstructs the indicator function of the surface and then extracts the
boundary.

Trick: Normals sample the function's gradients
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Poisson Surface Reconstruction [Kazhdan et al. 2006]

1 Transform samples into a vector �eld

2 Fit a scalar-�eld to the gradients

3 Extract the isosurface
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Poisson Surface Reconstruction [Kazhdan et al. 2006]

To �t a scalar �eld χ to gradients ~V , solve:

min
χ
‖∇χ− ~V ‖

∇ · (∇χ)−∇ · ~V = 0⇔ ∆χ = ∇ · ~V
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Gradient Function of an indicator function = unbounded values on the
surface boundaries

We use a smoothed indicator function

Lemma

The gradient of the smoothed indicator function is equal to the smoothed normal
surface �eld.

∇ · (χ ? F̃ )(q0) =

∫
∂M

F̃ (q0 − p) · ~N∂M(p)dp

Chicken and Egg problem: to compute the gradient one must be able to compute
an integral over the surface!!
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Approximate the integral by a discrete summation

Surface partition in patches P(s):

∇ · (χ ? F̃ )(q0) =
∑
s

∫
P(s)

F̃ (q0 − p) · ~N∂M(p)dp

Approximation on each patch:

∇ · (χ ? F̃ )(q0) =
∑
s

|P(s)|F̃ (q0 − s) · ~N(s)

Let us de�ne V (q0) =
∑

s |P(s)|F̃ (q0 − s) · ~N(s)
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Problem Discretization

Build an adaptive octree O
Associate a function Fo to each node o of O so that: Fo(q) = F ( q−o.c

o.w ) 1
o.w3

(o.c and o.w are the center and width of node o).⇒ multiresolution structure

The base function F is the nth convolution of a box �lter with itself

~V (q) =
∑
s∈S

∑
o∈N (s)

αo,sFo(q)s. ~N

Look for χ such that its projection on span(Fo) is closest to ∇V :

Minimize
∑

o∈O〈∆χ−∇ · V ,Fo〉2

Extracted isovalue: mean value of χ at the sample positions
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Varying octree depth
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Varying octree depth
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Varying octree depth
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Resilience to bad normals

Image from Mullen et al. Signing the unsigned, 2010
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detail preservation

Poisson BPA Scale Space + BPA
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Advantages and drawbacks of the Implicit surface
reconstruction methods

Drawbacks Advantages

Only semi-sharp, loss of details

Final mesh not interpolating the
initial pointset

Marching cubes introduces artefacts

Watertight surface, very bad with
open boundaries

Noise robustness

Watertight surface, hole closure

Most standard way of
reconstructing a surface
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From the signed distance function to the mesh

At each point in R3, the signed distance function to the surface can be
estimated

Extract the 0 levelset of this function: points where this function is 0

Approximation

Evaluate the function at the vertices of a grid and deduce the local geometry of
the surface in each grid cube.
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Example in 2D
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Example in 2D
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From Marching Squares to Marching Cubes

Drawing lines between intersection points is ambiguous and does not give a
surface patch.
Images by Ben Anderson
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Look-up tables

There are 28 = 256 possible cases for cube corner values.

By symmetry + rotation arguments it reduces to 15 cases.

It is thus possible to build a look-up table giving the grid cell triangulation
based on the corner values case.
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And then? Laplace-Beltrami discretization on a mesh

Mesh triangles are not regular in general
I Triangle edges DO NOT have constant length
I Triangle angles ARE NOT constant

Yet we need to account for the function variations on the surface

Mesh Laplacian

There exist many di�erent Laplacians. We follow the terminology of [Zhang et al.
2007] and [Vallet and Levy 2008]
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Combinatorial Laplacian

De�nition

Given a triangular manifold mesh with N vertices (vi )i=1···N , let E be the set of
edges. The uniform Laplacian, umbrella operator is de�ned as a matrix L such
that:

Li,j =

{
1, if (vi , vj) ∈ E

0 otherwise

Directly derived from the graph Laplacian.
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Combinatorial Laplacians

Tutte Laplacian

Lij =

{
1
di

if (i , j) ∈ E

0 otherwise

Normalized Graph Laplacian

Lij =

{
1√
didj

if (i , j) ∈ E

0 otherwise

Other Discretizations: Mean Value Coordinates, Wachspress coordinates....
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Combinatorial Laplacian

Combinatorial Laplacian

A combinatorial Laplacian depends solely on the connectivity of the mesh.

The Laplacian is computed independently of its geometrical embedding
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Processing with Combinatorial Laplacians

Compression using Normalized Graph Laplacian

Image from Zhang et al. 2004
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Geometric Laplacian

Pinkall Polthier 93

(Lf )i =
∑
j∈Ni

1

2
(cotαij + cotβij)(fi − fj)

vi

vj

αij

βij

Avi

There is no perfect Laplacian discretization on triangle meshes [Wardetsky et
al. 2007]
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Laplacian Comparisons

Combinatorial Laplacian, unweighted cotan, weighted cotan, two versions of the
symmetrized weighted cotan

Image from [Vallet and Lévy 2008]
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Applications of the Laplace-Betrami Operator
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Conclusion

Point Set = raw output of many measurement devices

Graph structure not always necessary for early processing

Topics not addressed: denoising, entire shape matching, normal orientation,
rendering...
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