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Abstract

Knowledge Discovery from Databases (KDD) is a relatively new research domain, which
aims at making better use of large amounts of data collected nowadays. Interesting pattern
discovery is a sub-domain of KDD.

This sub-domain has recently seen an impressive progress, due to an increasing pressure
from owners of large data sets and to the response of scientists by numerous theoretical
and practical results. The most of data sets addressed in the beginning of the surge were
sales data and the interesting patterns were in form of association rules. Very efficient
solutions to this practical problem were elaborated, the root of them was the so-called
APRIORI algorithm.

Then, the owners of other types of data wondered if these basic methods could help them.
Unfortunately, their data and/or the form of interesting patterns were different. Often,
these applications could not take advantage of APRIORI. The research following the
elaboration of the basic solution addressed the important application areas, where the
basic solution could not be used.

Me and my colleagues addressed the problems with mining frequent patterns in different
applicative contexts, especially the problems related to the large number of interesting
frequent patterns present in data that are not similar to the sales data.

We obtained a significant improvement of the performances, due above all to the use
of original condensed representations of frequent patterns. This is complementary to an
optimization of the evaluation function — the approach engaged by most of the recent
enhancements over the APRIORI algorithm. Our methods mine a collection of patterns
that may be quite different from the target pattern collection, and hopefully much more
efficient to be mined in some types of data. Moreover, that different pattern collection
must allow a subsequent “regeneration” of the target collection in a very efficient manner,
in our case without access to the original data set. The theoretical framework that enfolds
such methods is proposed. Since the intermediate representation will be often smaller than
the target collection, we call it a condensed representation.

The use of condensed representations is relatively novel in the field. However, as we will
show in the dissertation, a few isolated preceding solutions make implicit use of condensed
representations. The presented research proposes an explicit unified structure for the most

significant past results.



Then new major condensed representations of simple frequent patterns are proposed,
the algorithms to mine them and to derive the target pattern collections. We show the
practical advantages of the proposed condensed representations over the past methods,
and provide an abstract view of the proposed representations in the unified structure for

condensed representations.

keywords: data mining, descriptive statements, association rules, condensed representa-

tions
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Notations

Typical meaning of letters

A, B — items

X,Y, Z — itemsets

I/ — itemset enumeration tree

Gx, S, T — generalized itemsets

Sx,S4,S7,... — supports of itemsets or of generalized itemsets
0,0’ ,v — relative or absolute support thresholds

p — confidence threshold

0 — an absolute number of rows

R — binary database schema (set of items)

r,r,7’, ... — data sets (often binary databases)

Other Symbols

|I| — cardinality of the set I, used also with multisets

U, N — resp. set union and intersection, not used with multisets
V, A, 7 — resp. logical disjunction, conjunction and negation

i/e\l condition — aggregate logical conjunction over all 7 € I, V not used

'\e/l condition — aggregate logical disjunction over all ¢ € I, 3 not used
(3



Chapter 1

Introduction

1.1 Knowledge Discovery in Databases — the Domain

In general, observing and analyzing often precedes the discovery of something new. This
is true in several domains, and the ways of observing and analyzing are very diverse.
The development of electronic equipments and of computers suddenly increased the abil-
ities for observation and data storage, and in the recent years multiplied by orders of
magnitude the amount of actually stored facts. During the same period, the potential
for processing the stored data has evolved, especially for tasks that humans handle inef-
ficiently. These capacities (to observe, to store data and to analyze them) are growing
very fast and paved the way for employing data storage and analysis for new purposes
— since we have data, or can collect them easily, and can analyze them, we could make
some discoveries.

People can and actually do analyse presently much more data than in the past. For
example few centuries ago, who would bother to measure precisely and systematically

around the globe in the hope to have a return justifying the effort:
e the thickness of glaciers and of clouds,
e the temperature and height of the sea-level,
e the amount of ozone and other low-concentration gazes in the atmosphere,
e ... and other factors?

Nowadays, it is not simply possible, but it is actually accomplished with high spatial and
temporal resolutions by a single satellite (Envisat, see, e.g., [European Space Agency 02|)
addressing the question of the climate change on Earth. The average amount of data
collected by this satellite is of about 50 GB/day and is expected to grow during its
lifetime. These data are transmitted by Envisat and stored on the ground with goal to

be analyzed jointly with other observations to find possible relationships between them.



This amount of data corresponds to the present-day (A.D. 2002) computer storage abili-
ties, however a full in-depth analysis of such an amount of data requires large scale effort
involving many people and employing various methods!.

Envisat data are collected with the intention of analyzing them for a very wide range of
applications in mind. But in other domains, the data are typically collected routinely to
support some specific activities (e.g., plane reservation system). After their exploitation
(relative to their principal use) they are often stored, because the storage has a marginal
cost and there is a hope to reuse them in a productive, but different way in the future.
There is a wealth of such data — they have origins in various domains.

When we speak about large data sets, we mean data sets, where several thousands or
millions of individual observations are put together. The description of an observation
stored in the data set will be called a data point in the following. Such a description is a
collection of values for attributes (numerical, categorical, Boolean, etc.) of the observed
event or object. We assume in the following that all data points are described in a uniform
way, i.e., using the same attributes.

One of the most known examples of large data sets is the class of basket data, i.e., data
about the products bought by each client in a single transaction (e.g., in a supermarket
data are collected at the cashiers). Each data point is typically a collection of items from
a basket, which we can present as a vector of numbers, each of them corresponding to an
item, stating the quantity of this item in the basket (how many pieces or weight). Beside
inventories of stores and checking cashiers money, these data have served to analyze the
shopping behavior of customers.

Typically, the data collected routinely are a few orders of magnitude less voluminous
than the ones mentioned above for Envisat, yet the current state-of-the-art methods for
analyzing data have tractability problems. Moreover, in most cases they cannot produce
valuable statements without human guidance.

Knowledge Discovery from Databases (KDD) intends to analyze large data sets with hu-
man guidance and computer assistance, with the goal of eliciting valuable statements. Of
special interest are the statements that are scattered, not simple facts stored in the data
set, i.e., shallow knowledge. For example, the observation that a client bought milk, but
did not buy beer is a simple fact stored in data. Finding such observations requires only
to read the stored data. On the other hand, the observation that every client buying milk
does not buy beer is scattered over the data set — the property concerns all data points.
Neither KDD is interested in facts already known by experts, at least approximately (e.g.,
simple statistics).

Additionally, KDD addresses the problem of methods from the data analysis domain that

do not work for large volumes of data. The computationally extensive techniques used in

In [European Space Agency 02| one can read that two months before the launch of the satellite “|...]
over 700 [European scientists| have applied to work with the information that will flow from Envisat”.



KDD will be called data mining techniques.

Novelty, clarity, precision and usefulness are the key attributes of the elicited statements.
Pragmatically, an interesting statement becomes a piece of knowledge (and thus is inter-
esting to be discovered) if some adding-value action may be derived from it in a particular
context (business, research, etc.). Since the data sets concerned by KDD are large, a good
scalability with respect to the amount of data points and of output statements is a key
requirement for methods.

KDD is an active research domain, and it is positioned at the intersection of database
management, data analysis, statistics, machine learning and discovery science.

A KDD project is a joint effort between the KDD experts and the experts of the data
domain. The former are needed, because most of the KDD techniques are complex and /or
limited in applicability. The others, because an effective discovery process requires a
constant evaluation of the practical value of the generated results. Indeed, data mining
techniques provide properties that are observed in the data but only human experts can
decide whether some of them constitute a valuable piece of knowledge in their domain.
Suitable application domains of KDD range from specific breakdown prevention in a par-
ticular system to general problems as in fundamental social or natural sciences. Prototyp-
ical application of KDD is when we have relatively little understanding about a complex
system, but we suspect that, having enough data about it, some interesting relationships
or simplifications can be found. Moreover, if collecting data about it is not necessary
because we have them as a byproduct of another activity, the investment is smaller, but

the outcomes may be important.

We decompose the KDD tasks into:

e collecting data
e preparation of data for mining (preprocessing),
e rough knowledge extraction (data mining),

e identifying the most interesting conclusions (postprocessing).

Collecting data, as previously said, may be out of control of the KDD process. The
remaining part of the process is fundamentally iterative and each part can be repeated
until the results satisfy the end-users (i.e. some useful knowledge has been elicited).

As mentioned before, the data set subject to KDD are usually collected without a par-
ticular technique in mind. This is either because this is a secondary use of these data,
or because the data owner stores all observed details in order to try different techniques,
and hopes to gain some useful elicitation involving some of stored data points.

Such data have often weaknesses such that missing values (NULL values in database
terminology), attributes not relevant to the domain, different values designating the same

entity, etc.
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NULL values are part of the every day practice in databases. Attributes not relevant to
the domain, may be the source of problems, since they increase the load of data mining.
The existence of such attributes may be accidental, or a reminiscence of the database
evolution.

Since KDD process relies on data, the quality of data is crucial. Assessing the quality of
data implies that the KDD expert must understand the application domain and collect
some background knowledge. To this aim, the participation of the application domain
expert is often necessary.

The most of the weaknesses of the data need to be remedied, depending on the prob-
lem with data and on the particular techniques employed as data mining. E.g., some
techniques are resistant to the presence of a small amount of NULL values, but most of
them are not. Feature selection, i.e., selecting only some aspects of data for study, maybe
independently of the others, is done at this stage.

Additionally, we often want to take advantage of some background knowledge to improve
the quality of mined knowledge, or at least to avoid rediscovery of already known facts.
Finally, we must put the data under the form suitable for the data mining software.
Typically, resolving all these problems requires procedures specific to the data set.

Then, data mining tools can be applied, producing various forms of rough knowledge, such
as clusters or valid patterns. These tools basically try to give a less complex description
of a system than the data set itself. Simplifying the data set is a fundamental task of
data mining tools and permits to humans to make some abstraction of the data, and thus
of the studied system itself. There is a lot of different ways one can present the data and
the properties of the studied system in a simplified way. We are going to give the flavor
of various kinds of rough knowledge in Section 1.2.

Assessing an abstraction of the data is often done as a postprocessing step. During this

ultimate step in the discovery process the following aspects must be considered:

e the validity of the extracted properties for the studied system (as opposed to the

validity in the data, in which the properties can be assessed by computers),
e the novelty of the properties,
e the usefulness of the properties in the potential applications.

The first question requires a domain expert to correct the errors due to the use of col-
lected data. Indeed, the data in most cases describe a system in an inherently limited way.
Moreover, these data undergo a several-step processing, and may even lose the represen-
tativeness of the studied system. The domain expert can assess directly the validity of the
extracted rough knowledge, or investigate by independent means, if the potential appli-
cations are worth, but a higher confidence that the extracted properties are not erronous

w.r.t. the studied system is required. On the other hand, assessing the extracted rough
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knowledge does not mean to make sure it is in agreement with the expert’s prior knowl-
edge. An important possibility the domain expert must admit is that his/her background
knowledge is subject to verification and adjustment, i.e., may be incorrect or incomplete.
Often however, the expert will see properties already known. Indeed, data mining tools re-
discover what is well-known, because assessing the novelty of a property by the computer
requires we provide it with an exhaustive prior knowledge, which is virtually impossible.
Without stating the prior knowledge, the most “promising” properties will include trivial
ones, and the expert must filter them out.

Presenting the results in an easily readable form should also be included in the postpro-

cessing.

1.2 Data Mining Tasks and Tools

We do not intend to list exhaustively the data mining tasks and tools, either to give details

such as stating the hypotheses for applicability, but rather to give flavor of variousness.

1.2.1 Owutcome of Data Mining Tasks

Well-known forms of rough knowledge can be grouped in two families — into description
and prediction statements, depending on the function we assign to them. We will contrast
these notions in the end of this section. Below, we briefly describe high-level forms of the
outcome (which can be considered as rough knowledge) that data mining tools produce.
The family of descriptive forms of rough knowledge includes: descriptions by means of
clusters, collections of interesting patterns, valid equations, sets of outliers, ...

A description by means of clusters is a partitioning of all data points into clusters such
that there is a relatively few clusters, and data points that are similar are in a same
cluster, dissimilar ones are in different clusters. A small number of outliers can appear,
i.e. isolated data points (data points with no similar ones). These, very-different-than-
the-others data points are also considered as interesting source of discoveries, especially
if they correspond to observations breaking the laws (e.g., natural laws).

Interesting patterns are statements over a few attributes (of data points) in simple expres-
sions. In spite of selecting among all of patterns only the most promising ones (potentially
the most interesting), in general a great number of patterns are produced (say several
thousands).

When we describe all data points with a single complex equation, with a number of param-
eters, we usually say we are describing data using a dependency model. The description
is then such an equation with concrete numbers instead of parameters (an instance of the
model).

The second family of forms of knowledge is the family of predictive statements, such as

classification trees, quantitative laws, etc.
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A classification tree is a complex several-case equation, with a categorical (small domain)
variable on the left-hand side (target variable) and explanatory variables on the right-hand
side. It permits to assign the value of this target variable, given other characteristics of
the data point, presumably making rarely (or never) a mistake in the studied system.

A quantitative law is an equation between a quantitative target variable and an expression
involving ezplanatory variables. It permits to assign the value of this target variable, given
other characteristics of the data point, presumably making a small mistake (or none) on
the target variable in the studied system.

As shown above, the outcomes of different data mining tasks take different forms. The

domain is vast; in this thesis we focus on one form, notably on patterns and their discovery.

1.2.2 Evaluation Function

A task of mining rough knowledge is inherently linked to an evaluation function. An
evaluation function states how good the descriptive or predictive statement is, given the
data set.

In case the rough knowledge consists of a single “best” expression, this function will guide
the algorithms to find it according to the data.

In case the rough knowledge consists of a priori unspecified number of expressions, the
objective of this function is to let only the promising ones be output.

Here, we speak only about criteria that can be expressed explicitly in the form of computer
program, and can be computed relatively fast. The later requirement is very important,
given that we apply the function to large collections of data. It sometimes happens that
we construct the evaluation function with the first objective of being fast in execution,
and only as secondary we care about the reflecting exactly what interesting statements
are. We suppose the performance gain will overwhelm the (presumably small) quality loss,
and we expect that the later phases of the KDD process deal with the eventual problems.
Different evaluation functions score higher different statements, even if the same data
set is used. This is generally a desired behavior, because in different contexts different
statements are novel or useful. E.g., the evaluation function may differently penalize the
complexity of the considered expressions depending on how simple they must be w.r.t.

their intended use.

1.2.3 Data Mining Tools

Data mining tools are pieces of software capable of computing the forms of knowledge,
such as presented above, in an efficient way (on rather large data sets). Ideally, they find
the goal as specified by a condition on the evaluation function (e.g., the set of parameters
of a model maximizing the evaluation function). However sometimes, the end-user is

satisfied with an approximate or incomplete result, provided we specify how different
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the result from the goal is. A typical example is guaranteeing that the produced result
under the form of “best” expression is a locally best expression (a local maximum of the
evaluation function), but not necessarily globally.

Clustering methods (tools providing a description of data set by means of clusters) are
numerous, and differ in the used background knowledge or in the hypotheses they require
to hold. Most of clustering methods is foreseen for a single family of evaluation func-
tions. K-means [MacQueen 67|, hierarchical clustering (a recent algorithm of this
class may be found in [Guha 98|) are such algorithms (the latter relies on local evalua-
tion functions to split or merge clusters). Some clustering methods produce, beside the
clusters, perspicuous criteria for discrimination between these clusters.

Efficient pattern extraction tools exist for a rather limited number of pattern classes.
Association rules, functional dependencies and very few other classes can be mined ef-
ficiently in some cases, but we know lot of classes of patterns for which, at the present
time, there is no efficient extraction tools. Since this category of rough knowledge is the
main objective of the thesis, most relevant existing tools will be described in the following
chapter.

Fitting a model to the data, i.e. instantiating a model, is sometimes possible analytically,
so we can produce the exact formulae for computing parameters of the model given the
data set, but this happens for relatively simple models and evaluation functions. Such
methods include principal component analysis and parametric density models
(both well-known in statistics). Otherwise, we rely on methods searching iteratively
within the space parameters the values that optimize evaluation function.

The tools for mining classification trees consider that data points belong to different
classes, one categorical variable being the guide (target attribute, also called class variable).
Then, they try to set a simple expression that divides data points into one partition that
is as homogenous as possible (following target attribute) and the remaining data points
as the second partition. The tools for mining classification trees differ especially in the
form of the expressions that can split a partition into two smaller ones. Then, to each
of the partitions we apply recursively the procedure, unless it is uniform w.r.t. the target
attribute (possibly with some quantitative criterion for that). Thus, we obtain a way to
find out the value of the target attribute given the values of other attributes. Supposing,
that the system producing observations did not change since the data were collected, this
permits us to predict the value of the target attribute for observations not stored in the
data set.

Another interesting family of classification tools are the algorithms based on Support
Vector Machines [Vapnik 95|, which try to split observations belonging to exactly two
partitions, to match the classes as well as possible using a single linear or quadratic
expression.

Fitting a model to the data with Bayesian statistics help to make a formula more predictive

14



than descriptive. Bayesian approaches can explicitly “model” our convictions and facts
that the data only partially describe the system and that some uncertainties raising from
the data set itself have a quantifiable influence of the conclusions we can draw from data
about the studied system.

Outlier detection tools consider that some of the tools presented above produced prop-
erties that describe most of the data points. The remaining ones, the most difficult to
fit, will be considered as outliers. Outlier detection tools differ from each other in what

method is employed to partition the data.

1.2.4 Terminology

Forms of rough knowledge can be grouped in two families — into description and predic-
tion statements, depending on the function it has. Sometimes to a same expression we
may assign two different functions, due to different interpretations.

Description statements are facts that are verifiable in the data. For example, in a data
set describing cars by their attributes, a description statement can be “if a car is black, it
has 4 doors”.

Prediction statements are facts that have certain chances to be true outside of the data
set, under the hypothesis that the mechanism that produced the data set is somehow
related to the one to which we want to apply the prediction. For example, “if a car is
black, it has 4 doors” can also be a prediction statement.

If we try to contrast these notions, we can see that the techniques mining some predictive
forms of knowledge are in trouble when the studied system changes — the purpose of the
knowledge explicitly being the prediction, the quality of the knowledge is generally lost.
The techniques mining descriptions simply report some potentially useful simplification

about the provided data. This kind of information is typically used for decision support.

1.3 Applications of Descriptive Patterns

In the mid-1990s, researchers from KDD domain came up with a method to extract and
analyze numerous associations within basket data sets, which are of particular interest of
marketing sciences.

A so-called association rule is an expression of the form:

{Pl,Pg,...,Pn}j{Rl,...,Rk} [S,C]

where {Py,..., P,} and {Ry,..., Ry} # () are disjoint sets of product identifiers (product
identifiers will be further called items). As evaluation functions, we consider s,c — two
values in [0, 1], called respectively support and confidence. The meaning of this rule is that

if the confidence is high a recorded transaction (a data point) with all products P; present

15



in the basket often contain also all products R;. The observed conditional probability
(observed in the data set) of the fact that a transaction that contains all products P; will
also contain all products R; is given by the confidence c. The observed probability that a
transaction has all P, and all R; is given by the support s?. Association rule mining task
consists in extracting from a data set all such statements that verify s > mingAc > min,.
ming, min, are fixed by a user, and we will refer to them respectively as support threshold
and confidence threshold.

Several basket data sets could have been analyzed with an efficient technique called
APRIORI [Agrawal 94, Mannila 94|, extracting such association rules. We will present
this basic technique in Chapter 2.

Mining association rules has applications in marketing (analyzing the shopping behavior,
which is the prototypical application of association rules). The data sets of other domains
did not have some particularities as basket data sets did have. Moreover, the other do-
mains aimed at different class of patterns. As stated in [Hand 01], beyond the exploratory
data analysis, successful primary applications of association rules are not numerous.

The application to other domains required further research, and the most successful ex-
tensions to the basic technique for mining association rules were techniques for mining
so-called episode rules. Episode rules are similar in form to association rules, the difference
being that they concern ordered data such as text or timed event sequences. The expres-
sion of episode rules reflects the ordered nature of data and possible associations between
data points close to each other following the order. Applications of episode rules include
constructing text summaries, predicting system breakdowns and Web usage mining? (also

called clickstream mining).

Descriptive patterns, such as association rules, are not trivial to use. Mining them typi-
cally requires sophisticated tools that can cope with large search space and data set sizes.
Moreover, as said previously, a knowledge discovery project requires a KDD expert to par-
ticipate, because combinatorial aspects of data mining tools are often not well understood
by the end-users®.

For example, a naive belief in pattern mining is to think that enumerating and evaluating
all possible patterns is a right way to find the interesting ones. In real-life pattern spaces,
this method would be undoubtedly intractable.

Let us take the example of association rules. Suppose we have mere 200 products in a
supermarket. Then the number of possible association rules (ignoring the thresholds of

support and confidence) is 3209 — 229 je. around 10%°. This is more than the number of

2The term “probability observed in the data set” refers to the ratio of data points stored in the data
set having a property over all data points stored in the data set.

3Finding typical patterns of navigation in documents structured with hypertext.

4Nonetheless, it is anticipated by the writer that with the development of the KDD domain the KDD
tools will be used more and more by the end-users, and KDD projects will be assisted by computer system
administrators, rather than KDD experts, same way as database management systems are nowadays.
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atoms in the Universe, making it hard to imagine that some computers could enumerate
or store them exhaustively even in a far future.

Not only good tools are needed, but even very advanced tools need to be used appro-
priately. Setting too low support threshold or too rich pattern language often leads to
intractable computations even with sophisticated tools. On the other hand, too high sup-
port threshold or inadequate pattern language may produce valid patterns, but none of
them may be, e.g., novel. We will come back to this question in Section 2.1.5 illustrating
potential problems using a real-life example.

We address the question of extracting collections of descriptive patterns when interesting

patterns are too numerous. The following section describes briefly our approach.

1.4 Informal Presentation of the Main Results — Con-

densed Representations of Frequent Sets

In this thesis, we propose a framework of condensed representations of patterns and study
its two specific instances on patterns called frequent sets. These two instances reflect our
idea to remove some kinds of redundancy in pattern collections.

Below, we introduce the collection of patterns to which we will apply the idea of condensed
representations, i.e., frequent sets. Just after, we give an informal description of the

condensed representations of frequent sets that we will investigate in details in this thesis.

1.4.1 Frequent Sets

In the context of basket analysis itemsets are expressions of the form:

where {Py,..., P,} is a set of product identifiers (items), n > 0 and s € [0, 1] is called
support of the itemset {Py, ..., P,}. The observed probability that a transaction includes
all items P; is given by the support s. Frequent set mining task consists in extracting
from a data set all such statements that verify s > ming (min, is fixed by a user).

The close relationship between frequent sets and association rules, which were defined
in the previous section, will be given in Chapter 2. Here, we mention that association
rules with a support threshold min, can be computed from frequent sets mined with the
same support threshold. In fact, various forms of knowledge that can be computed from
frequent sets.

The main result of the thesis concerns alternative, condensed representations of frequent
sets. The goal of condensed representations is to require less frequent sets in practical

data sets and to be able to efficiently derive the forms of knowledge mentioned above. To
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remedy the problem of the existence of too many interesting patterns holding in practical
data sets, we propose an approach by condensed representations.

First, in Chapter 2, we shortly introduce frequent sets as prototypical patterns. We
will show in details how frequent set mining is accomplished, with the state-of-the-art
methods. We give an emphasis on the performance issues. We show that computing the
evaluation function of itemsets, applied in practical data sets, is linearily dependent on
the data set size (i.e., the evaluation function has a large cost when working with large
data sets). The large cost of testing a pattern combined with an exponential growth of the
number of patterns leads easily to too heavy or untractable tasks. The basic idea is that
if the evaluation cost of a pattern that belongs to a condensed representation is about
the same as of an ordinary pattern, we can cut the mining cost along with the reduction
of the size of the collection of patterns. Besides the performance gains, the semantics of
these patterns may be interesting in some contexts.

An original framework of condensed representations is provided in Section 3.1.

In Sections 3.2 and 3.3, we propose original condensed representations of the full collection
of frequent sets. They may be used to represent all frequent sets without or with a small
loss to the overall knowledge discovery process.

Two original representations will be based respectively on so-called frequent o-free sets
and frequent disjunction-free sets. We provide the necessary toolkit: important theoretical
results, algorithms to mine them, experimental validation, and so forth.

Let us informally introduce these concepts.

1.4.2 Frequent /-Free Sets

X, a frequent set, is a frequent J-free set if and only if any 2 disjoint subsets Y, Z C X
are not related by any very strong positive correlation. We will examine the strenght of
such a correlation using the number of exceptions (data points) of the rule Y = Z (since
every rules with Z = () are trivially without exceptions, we exclude this possibility from
the examination). Every time a data point has not all items from Z, while having all
items from Y, we count 1 exception. X will be frequent d-free set if for every such Y, Z
there are more than ¢ exceptions.

We will show that if at least one such a rule has less than ¢ exceptions, the support of
X can be approximated by the support of one of its subsets, and thus (in most of cases)
outputting X may be omitted. This way, a lot of frequent sets may be omitted, and
important gains may be realized.

A question of an eventual error on support will be addressed and tight error bounds
(proportional to §) will be provided.

The publications related to the development of this condensed representation in-
clude [Boulicaut 00a, Boulicaut 00c, Boulicaut 03].
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1.4.3 Frequent Disjunction-Free Sets

The notion of frequent disjunction-free set is based on a different kind of relationships
between supports of itemsets. When for some A, B € X (A, B are items) the exceptions
of rules X \ {A} = {A} and X \ { B} = {B} hold on disjoint data points, the support of
X may be computed exactly using the supports of some subsets of X. Otherwise, we say
that X is disjunction-free.

We will show that the practical amount of frequent sets that can be “regenerated” from
the others can exceed 90%, or even more, thus leading to important pruning and the
associated gains.

The basic idea of this condensed representation has been presented in [Bykowski 01]. A

completed study can be found in [Bykowski 03].

1.4.4 Organization of the Thesis

In Chapter 2, we present a state-of-the-art patterns and focus on methods for computing
frequent sets.

In Chapter 3, we propose the condensed representation framework. We give a synthetic
view on the state-of-the-art techniques described in Chapter 2, which are assimilable to
that framework (of condensed representations). Then, we define formally both condensed
representations introduced informally above. We show that they are more interesting from
the performance point of view than the preceding results assimilable to the framework of
condensed representations.

Since frequent sets can be used to mine different forms of rough knowledge, in Chapter 4,
we detail how frequent sets and other closely related patterns may be efficiently obtained
from the condensed representations described in Chapter 3.

Chapter 5 shortly concludes and presents directions of future works.
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Chapter 2

State of the Art

In this chapter, we present some existing results relevant to this thesis. The contents of
the chapter presents an original, not published elsewhere, viewpoint on past studies.

We start with more formal presentation of pattern mining, with a focus on patterns that
have been investigated in the literature. At that point, we will focus on frequent sets, and
introduce formally convenient notations for them. Then, we describe the techniques for

mining frequent sets. Most relevant families of techniques include:

e levelwise: APRIORI [Agrawal 94, Mannila 94| (the basic successful technique,
foreseen for basket data sets), and derivatives, e.g., DIC |Brin 97a| (optimizing

the support counting procedure),

depth-first: FP-Growth |[Han 00|, Tree-Projection [Agarwal 99, Agarwal 01|,

border mining: Max-Miner [Bayardo, Jr. 98|, Pincer Search |Lin 98|,

guess and correct: sampling |Toivonen 96|,

mining closed frequent sets: CLOSE |[Pasquier 99¢| (levelwise), CLOSET |Pei 00|
(depth-first).

At least one technique of each family will be detailed in this chapter.

At the end of this chapter, we will give the direction of research that we will exploit.

2.1 Descriptive Patterns

2.1.1 Well-known Examples of Descriptive Patterns

As presented in Chapter 1, models and patterns are different directions of expressing
diffused properties of data. No sharp boundary exists and we tried to contrast these
notions in Section 1.2.4.

Below, we briefly present the patterns that have been largely investigated in the literature.

It is meaningless to speak about the form of the expressions alone, without giving the
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semantics of the expression and stating what kind of conditions they must satisfy. E.g.,
the way we introduced association rules in Section 1.3 makes immediately reference to the
support and confidence evaluation functions. They are not the only evaluation functions
for these patterns (a single “best” evaluation function does not exist, as suggested in the
introduction, because different contexts make a pattern unequally “interesting”). We are
going to mention few alternatives in Section 2.1.4. Not only different evaluation functions
have been proposed for association rules, but the term “association rules” has been used
by different authors either for the form of the expression or for the collection of such
expressions satisfying support and confidence criteria in a data set. The distinction is in
our feeling important.

Association rules have been proposed in [Agrawal 93] as interesting analytical tool for
transactional data sets. Closely related to association rules are frequent sets.

In order to extract possible additional associations between data points in ordered data,
Agrawal et al. proposed in [Agrawal 95| large sequential patterns and Mannila et al. pro-
posed in [Mannila 95| frequent episodes. They are both analogous to frequent sets in the
sense that they can produce rules similar to association rules, but dissimilar in taking ad-
ditionally into account that the data points are ordered. The resulting classes of patterns
require an ordering, at least partial, of data points that match it. We present one class
of such patterns, namely frequent episodes.

Episode rules, which follow frequent episodes in this presentation, can be derived from
frequent episodes in a similar way that we can derive association rules from frequent sets.
Finally we will present functional dependencies and inclusion dependencies. We tend to
put these expressions in the category of patterns, because in our opinion, they have more
characteristics of patterns than of models. Nonetheless, they have characteristics of both.
Now, let us go one-by-one with the patterns investigated in the literature. We give each

pattern class together with its original evaluation function.

Frequent Sets

Frequent sets for transactional data sets have been proposed in [Agrawal 93] as an in-
termediate pattern for mining association rules. We already introduced frequent sets for

transactional data in Section 1.4. Let us now see an example.

Example 1. If we consider the baskets represented in Table 2.1 and a support threshold
value of 2/8, then all frequent sets and their corresponding supports are:
0 ls/s],  {A} 48], {A, B} [2/8], {C} [5/8], {A, D} [2/],
{B} /8], {B,C} 48], {A,C} [2/8], {D} [4/8], {A,B.C} [2/3].
Frequent sets for data sets based on categorical attributes (attributes with few valuations)

can be generalized in the following way. Itemset expression is of the form:

Alzal/\AQ:ag/\.../\An:CLn [é]
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(A|B|C[D]

X X X
X X X
X X
X
X
X X
X X
X X X

Table 2.1: Baskets of customers

where Ay, ..., A, are n attributes, n > 0, each a; is a value in the domain corresponding
to A;, and s € [0, 1] is a value of support (the evaluation function, not part of the pattern).
Analogously to frequent sets for basket data, s is the observed probability that the data
point satisfies the conjunction.

Frequent sets w.r.t. a data set are all such statements that verify s > ming (ming is fixed
by a user).

Some techniques have been proposed for data sets that contain several valuations of
attributes (e.g., real-valued attributes). They tend to map the domains of these attributes
into categorical domains, i.e., domains with few distinct values. For example, the real-
valued attribute age (for records about people) may be mapped into categorical attribute
taking values age0 20,age20 40, aged0 60, age60 80, age80+ (mapping for values of
age is suggested here by the names of categorical constants).

Rarely, but possibly, an attribute may be mapped into more than 1 categorical variable.
For example, day of year may be mapped into week of year and day of week to
be able to detect associations particular to a day of the week (e.g., Sunday patterns) or

a particular week (e.g., Easter week patterns).

Association Rules

Association rules for transactional data sets have already been introduced in Sections 1.3.

Example 2. With the example data set depicted on Table 2.1, we may find the following

association rule and its scores:

{C}y = {D, A} [0/8,0/5]

The collection of all association rules for the support and confidence thresholds respectively
of 2/8 and 1/2 is:
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0= {A} [4/8,4/8, {B}={A} [2/8,2/4], {B,A}={C} [2/8,2/2],
{A} = {C} [2/8,2/4], {D}={A} [2/8.2/4], {A}={B,C} [2/8,2/4],
0= {B} [4/8,4/8], 0= {B,C} [4/8,4/8], {B}={A,C} [2/82/4],
{CY={B} [4/8,4/5, 0={C} [5/8,5/8], {C,A}t={B} [2/8,2/2],
{A} = {D} [2/8,2/4], {B}={C} [4/8,4/4], {C,B} = {A} [2/8,2/4],
0= {D} [a/8,4/8], {A}= {B} [2/8,2/4].

For data sets based on attributes with few valuations, association rules are generalized as

follows. Such an association rule is an expression of the form:

Al:CLl/\Agzag/\.../\An:CLn:}Bl:bl/\.../\Bk:bk [S,C]

where {A;,..., A, },{Bi,..., By} are disjoint sets of attributes, n > 0, k > 0, each q;
(resp. b;) is a value in the domain corresponding to A; (resp. B;), and s, ¢ are two values
in [0, 1], respectively support and confidence.

The meaning of this rule when the value of the confidence is high is following. When
all attributes A; of a data point are valued to the corresponding values a;, the attributes
B; of that data point have often the corresponding values b;. The observed conditional
probability (observed in the data set) of the fact that a data point satisfying all A; =
a; equalities will satisfy also all B; = b; is given by ¢ (the confidence). The observed
probability that a data point satisfies all A; = a; and all B; = b; is given by s (the
support). As in case of basic association rules a user fixes ming, min, and the task consists
in extracting from a data set all such statements that verify s > mins A ¢ > man..
Further extensions of association rules include quantitative association rules [Srikant 96|,
association rules generalized for including hierarchies [Srikant 95|, association rules gen-

eralized for arbitrary Boolean expressions [Mannila 96b].

Frequent Episodes

Frequent episodes [Mannila 95| are patterns similar to frequent sets, with the difference
that they are designed for unidimensionally-ordered data, especially for temporal data.
In this case, data are ordered using a dedicated attribute, designated in the following
as time_ stamp. This attribute may be implicit (e.g., data point number) or explicit (a
specific attribute of data points with a total order defined on its values). We often use
the term event instead of data point, to emphasize that there is a distinguished attribute
for ordering.

Examples of implicit ordering include textual documents (when we consider for example
words as events) and DNA base sequences (base symbols, C, G, T, A, arranged in a long
string, are then events).

Explicit ordering may be based on attributes giving a precise coordinate, in time or in

space, of an event.
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An episode is a partially ordered collection of event constraints. An example of arbitrary
episode could be C; and Cy both followed by C3 (note that there is no assumed order
between C and Cs, unlike between two other pairs). This episode imposes both: the kinds
of events and their relative partial order of occurrence. It matches any sequence of events
that contains an event satisfying the constraint C'; and one satisfying the constraint Co,
in any order, but both followed by an event satisfying the constraint C3 (order of events
is given by their time stamps).

Of special interest are:

e serial episodes, e.g., Cy then Cy then C3 — the “matching” events must satisfy the
individual constraints and their time_stamps must additionally follow the order

corresponding to the episode (i.e., this order is defined totally),

e parallel episodes, e.g., C; and Cy and C3 — the “matching” events must satisfy

individual constraints, but their time stamps do not have to follow any order.

The language of episodes is often reduced in a particular extraction to a class of patterns
respecting some conditions of their structure, e.g., to serial episodes only, to guide the
tool in the discoveries.

We can formalize the pattern with a graph-like structure o = (V. <,g), where V is a
collection of nodes, = is an ordering relation between the nodes and g is a mapping

assigning to a node from V' the constraint it represents.

< ©
Q)@ c)
: @)

Figure 2.1: Examples of episodes: arbitrary (a), serial (b) and parallel (c).

We can conveniently visualize episodes using oriented graphs, with vertices denoting el-
ements of V' and the edges corresponding to the partial order <. Figure 2.1 shows the
graphs corresponding to the episodes given as examples so far (we show only the transitive
reduction).

In [Mannila 95|, for simplicity, the constraints on events are restricted to involve only one
attribute, the same for all constraints, and the only allowed form of constraint is that this
attribute and a constant are equal. That attribute is called an event type.

The evaluation function proposed in [Mannila 95] uses the the concept of window, through
which we will match episodes with data. We define it after [Mannila 95]. A window is
characterized by its beginning and end. Given a data set, the events in such a window (a
subset of all events in the data set) is made of events whose time__stamps take the values

in the half-open interval [beginning, end).
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Then an episode a matches the events in a window W if and only if for every node n of
a we assign an event e in W satisfying g(n) (recall that g(n) is a constraint of an event),
and the time_ stamps in the resulting collection of events (corresponding to all nodes of
«) respect the order <.

The support of an episode is the ratio of windows in which the events match this episode.
If this ratio is at least ming (the support threshold, fixed by the user), then the episode
is called frequent.

The population of windows is produced by “sliding” a window of width w (also fixed by
the user) over an interval [T, Tg|, with the beginning of the first window overlapping with
Ts, and the end of the last window overlapping with 7. Ts and Ty are coordinates from
the same dimension as time__stamps. They should be fixed also by the user, and should
be (respectively) not greater than the least time _stamp in the data set and greater than

the greatest time_ stamp in the data set.

Episode Rules

Rules obtained from the frequent episodes presented above have been formalized
in [Mannila 97¢|. To define the expression of such rules we need to define first the concept
of sub-episode of an episode. A sub-episode of an episode a = (V,=,g) is an episode
of = (V' = ¢) with:

o V' CV,

e for every node n € V', g(n) = ¢’(n) (each node of V' expresses the same constraint
as in V),

e for all ny,ny € V', ny =" ny = ny < ny (the pairs of nodes that are ordered in o/
) )

are ordered as well in «).

o’ is a proper sub-episode of the episode « if additionally « is not a sub-episode of /.

Episode rule is then an expression of the form:

o = a [s,c]

where o’ is a proper sub-episode of the episode a. As evaluation functions (so not a
part of the pattern) called respectively support and confidence. Thier respective values,
denoted s, c, are defined as follows. s is the probability of observing events in a window
that match «, and c is the conditional probability of observing events matching « in a

window given the events of that window match o’.

An alternative definition of episode rules is presented in [Mannila 96a. It allows better

handling of multiple window sizes and a more intuitive semantics of evaluation functions.
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Data Dependencies (Functional and Inclusion Dependencies)

The relational database theory gives quite a lot of attention to so-called functional and in-
clusion dependencies, which were informally introduced in [Codd 70| and formally studied
in many textbooks like [Ullman 80, Abiteboul 95]. We shortly present them now, slightly

adapting the description to our vocabulary.

Functional dependencies across a data set (a universal relation, in the original context)

are expressions of the form:

{Al,AQ,...,An}—>{Bl,...,Bk}

where {A;,...,A,} and {By,..., By} are disjoint sets of attributes, n > 0, k > 0. Let us
consider a pair of data points r, ¢ such that the value of attribute A; is the same for both
points, for all i € {1,...,n}. We say that this functional dependency holds in a data set
if and only if for every such a pair of data points they also have the same corresponding
values for all attributes By, ..., Bg.

Extensions of functional dependencies include approximate functional dependen-

cies [Kivinen 92, Huhtala 99, Novelli 01].

Inclusion dependencies are expressions like:

R[<Ri,Ry,...,R,>] C S [<Sy,..., 5>

where R and S are two data sets (two relations, in the original context), <Rji,..., R,>
and <951, ...,5,> are sequences of attributes without duplicates, respectively from R and
S, with n > 0. We say that this inclusion dependency holds in the two data sets if and
only if for every data point r from the data set R, there is a data point s from the data
set S with the value of every attribute S; (i € {1,...,n}) of s being equal to the value of
attribute R; of r.

Summary of Different Kinds of Patterns

A summary of the classes of patterns described above could lead to a better insight into
the particularities of each pattern class.

One of the most important characteristics of the classes is the extent of a particular
pattern, i.e., how many points are potentially concerned by a descriptive or predictive
semantics of a pattern. Some patterns, called further local patterns, state directly prop-
erties of a limited number of data points and the other points are not concerned directly.

If a pattern directly states a property of all data points, we call it global.

LConcerning the whole data set is one of the characteristics of models, but it is not a sufficient
condition, in our opinion.
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‘ Pattern class ‘ local ‘ incorporating order ‘

frequent sets yes no
association rules yes no
frequent episodes yes yes
episode rules yes yes
functional dependencies | no no
inclusion dependencies no no

Table 2.2: Summary of characteristics of patterns presented in the section.

Locality of a pattern raises the question of its statistical significance. For example, if
a property that has been extracted from a large data set concerns only one data point
of that data set, how significant the property is for the studied system? Actually, quite
significant if the property is of pure qualitative kind (“for all” or “there exists”), because
it can disprove the former or prove the latter. But it is not very significant in the case of
a quantitative law derived only from that single point. It could also point out erroneous
data points (isolated points in large databases are often due to errors, and rarely to a real
feature of the studied system).

As a simple substitute of the statistical significance of a local pattern one may use the
observed probability of the fact that the pattern is supported by the data?. If the statis-
tical significance of a property is monotonic with that probability, mining properties of a
guaranteed minimum statistical significance may be reduced to applying a threshold to
the observed probability of fact that a pattern holds. This leads to the family of frequent
patterns, e.g., association rules, frequent sets, frequent episodes and episode rules.
Functional dependencies are global — each instance requires the corresponding property
to hold for the entire set of data points, to be exact for all data point pairs. Inclusion
dependencies, which involve 2 data sets, assign different roles to the data points of each
of them. Nonetheless, an inclusion dependency directly concerns all data points of the
left-hand-side data set, and in that sense it is global.

Another important feature is whether a pattern states a property resulting from an even-
tual ordering of data points. We call such patterns order incorporating patterns. This
family includes frequent episodes and episode rules. The remainder of the patterns pre-
sented above are patterns not order-incorporating (note that inclusion dependencies make
appear an explicit order of attributes, but it is not related to an ordering of points).

The discussed characteristics are summarized in Table 2.2.

2.1.2 Why Focus on Frequent Sets?

From now on, we will focus on frequent sets, and only occasionally mention other patterns.

The reasons for choosing frequent sets include:

2We do not precise here what is the whole population corresponding to the discussed probability nor
what it means that the pattern is “supported”, because it depends on the semantics of a pattern.
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e frequent sets have simple and precise meaning, they are an educational class of
patterns — relatively easy to understand and to observe the disparity between the
simplicity of the task definition and the practical difficulties related to mining them;

the simplicity makes also research results easily assimilable by the other researchers,

e they are generic, i.e., some concepts and techniques defined for frequent sets can be

adapted to other patterns,

e they share several properties with other patterns, but seem to be the most basic of

them,

e different kinds of knowledge discovery tasks can make use of frequent sets (besides as-

sociation rules, similarity measures [Das 98|, clustering techniques [Das 98, Han 98|,

),

e frequent sets are used for exploratory analysis in a wide range of application do-

mains.

Similar reasons must have lead other researchers to investigate this class of patterns,

because most of recent publications in pattern mining focus on frequent sets.

2.1.3 Notations

In this section, we formalize the notions that we will use along this thesis. When possible,
we follow the notational conventions and definitions of [Mannila 96b, Mannila 97b|. In
particular, we use multisets to represent collections of rows and given such a multiset r,

we write ¢ € r to denote that a particular row ¢ belongs to .

Definition 1. (binary database) Let R be a finite set of symbols called items. A row
is a subset of R. A binary database r over R is a multiset of rows.

Let < be a linear order for the items from R.

A row in a binary database is typically the mapping of a single data point. For transac-
tional data sets, the mapping is straightforward. As we suggested in the section devoted
to frequent sets (see Section 2.1.1), for non-transactional data sets an item usually rep-
resents a particular value (resp. a range of values) of an attribute, and its inclusion in a
row means that the attribute of the data point takes the corresponding value (resp. takes
a value in the corresponding range).

In the following, we will rarely make reference to the real property represented by an item,

so the results are applicable in both cases.

Definition 2. (itemset and its support) Let r be a database over R. Let X be any

subset of R. Any such a set of items will be called an itemset and | X| its size.
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We note M(r, X) = {t € r: X Ct} the multiset of rows matched by the itemset X and
Sup(r, X) = |M(r, X)| the support of X in r, i.e., the number of rows matched by X?3.

Definition 3. (frequent sets) Let o be a support threshold (¢ is an absolute number of
rows), Freq(r,o) = {X : X C R and Sup(r,X) > o} is the set of all so-called o-frequent

itemsets in r (frequent sets, for short, when ¢ and r are clear in the context).

The following lemma is a fundamental property for the frequent itemset extraction. It
states that the functions M and Sup are anti-monotone w.r.t. itemset inclusion. The anti-
monotonicity of Sup has been demonstrated in [Agrawal 94, Mannila 94| as an efficient

pruning criterion.

Lemma 1. Let r be a binary database over R, and X.,Y be sets of items such that
Y CX CR. Then M(r,X) C M(r,Y) and Sup(r, X) < Sup(r,Y).

Proof.  Let t be any row in r that belongs to M(r, X). From Definition 2, a row ¢
belongs to M(r, X) if and only if X C ¢t. Y C X C ¢ implies t € M(r,Y), and thus
M(r, X) C M(r,Y). Consequently, Sup(r, X) < Sup(r,Y). O

Corollary (of Lemma 1) Let X, Y be the same as in the lemma. If X is o-frequent in

r, Y us o-frequent in r. If Y is not o-frequent, so neither is X.

For notational convenience, we also need the following specific definitions.
Let us adapt the concept of positive and negative border from [Mannila 97b] to our

context.

Definition 4. (negative border) Let C be a downward-closed collection of itemsets*
over R. The negative border of C is noted Bd~(C) and is defined as follows: Bd~(C) =

{(X:XcRXgCn J\ Yec)

Definition 5. (positive border) Let C be a downward-closed collection of itemsets
over R. The positive border of C is noted Bd™(C) and is defined as follows: Bd*(C) =
{X: XCR, XeCA Y/D\XY§ZC}'

Definition 6. (collection of frequent sets and their supports) FreqSup(r,o) is
the set of all pairs containing a frequent itemset and its support, i.e., FreqSup(r,o) =
{<X, Sup(r,X)>: X C R and Sup(r,X) > o}.

We wish to work sometimes on association rules in a formal way, so we define now the

related concepts formally.

3Note that we use the absolute number of rows, unlike in previous sections, where we used the observed
probability, i.e., the fraction of data points from the data set. Given a non-empty binary database, both
are equivalent, but for all reasonings in this thesis, we prefer using the absolute supports.

4 . .
I.e., C is such a collection that c/e\c Y/C\C Y eC.
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Definition 7. (association rule) Let XY, 7 be three itemsets (subsets of R) such
that X C Z,Y C Z\ X and Y # (. An association rule over Z is an expression of the
form X = Y. We call Y the head of the rule and X its body.

Let Sup(r, X = Y) = Sup(r, X UY) be the support and Conf(r,X = Y) = %
be the confidence of rule X = Y in the database r.

Definition 8. (frequent and confident association rules) Let r be a binary
database. Let o € (0,|r|] be a frequency threshold, p € [0,1] a confidence threshold.
X =Y is a o-frequent and p-confident association rule in r iff Sup(r, X = Y) > o and
Conf(r,X =Y) > p. We use also the term frequent and confident association rule, when

r, o, p are clear from the context.

Definition 9. (collection of frequent and confident association rules with their
supports and confidences) Let r, 0, p be as in Definition 8. Let Z be an itemset. We
denote RulesSuppConf(r, o, p, Z) the collection { X = Y [Sup(r,X = Y), Conf(r,X =Y)]| :

X =Y is a frequent and confident association rule over Z in r}.

To keep the presentation concise, we consider notational conventions to handle negative

form of items as well as accessing individual items of an itemset.

Definition 10. (generalized item and full clause over an itemset) Let R =
{A1, A, ..., Ag|} be a set of symbols. The symbols in R will be called positive items,
and for each positive item A; € R we consider a negative item noted A;. Genlt(R) =
RU{A; : A; € R} is the set of generalized items based on R. We assume non-ambiguity
of the symbols, i.e., that for every A; € R, A, & R.

Let FullClauses(R) denote the set {A;, A1} x {As, Ao} x ... x {Ar|, Ajr|}- A full clause
over R is any member of the set FullClauses(R).

In a full clause over R each item of R appears exactly once, either in a negative or a positive
form. For example, the set {4, B,C, D, E} is a full clause over the set {A, B,C, D, E},
whereas {B,C,E} and {B, B,C, E, E} are not.

Definition 11. (generalized itemset) Let R be a set of symbols. A subset of a full
clause over R is called a generalized itemset based on R. Formally, the set of all generalized
itemsets is {T": T' C Fr A Fr € FullClauses(R)}. Note that a full clause F over R is
also a generalized itemset.

We denote the items appearing positively and negatively in a generalized itemset 7" as
follows, Pos(T) ={A€ R: A€ T} and Neg(T)={A€c R: AcT}.

The semantics of these concepts are given by the following definition.

Definition 12. (generalized itemset support) Let r be a binary database over R
and X be a generalized itemset based on R. Then we extend the functions M and Sup
defined previously, as M(r, X) = {t € r : Pos(X) Ct A Neg(X) Nt =0} is the multiset
of rows matched by X and the support of X in 7 is Sup(r, X) = |[M(r, X)]|.
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Intuitively, the rows matched by a generalized itemset X are the rows that contain all
positive items in X but none of the items appearing under a negative form in X. For
example, in Table 2.1 the generalized support of {4, B,C} is 2.

The matching and support functions on generalized itemsets are also anti-monotone w.r.t.

the generalized itemset inclusion. This is stated by the following lemma.

Lemma 2. Let r be a binary database over R and X,Y be generalized itemsets based on
R. If Y C X then M(r,X) C M(r,Y) and Sup(r, X) < Sup(r,Y).

Proof. Let t be any row in M(r, X). t € M(r, X) implies Pos(X) C t and Neg(X)Nt =
(. Since Y C X then Pos(Y) C Pos(X) and Neg(Y) C Neg(X), and then we have
Pos(Y) C tand Neg(Y)Nt = (. Thus, t € M(r,Y"). The second conclusion is immediate.

U

Definition 13. (index-based access of items from itemsets) We make use of a no-
tation for accessing individually the items in the itemsets as follows. Let X be an itemset,
ordered_list(X) be the list of all items in X sorted in ascending order according to the

linear order < for items. Then, X[i] denotes the 7" element in the list ordered list(X).

2.1.4 Main Uses of Frequent Sets

We mentioned in the previous section that frequent sets have been proposed as an inter-
mediate pattern for mining association rules. Deriving association rules remains the main
use of frequent sets, so we describe it first. Few other uses will be given at the end of this
section.

Deriving all association rules from frequent sets is accomplished in the following way. Let
o, p be respectively the support and confidence thresholds for the association rules. Let
F'S be the collection of all o-frequent itemsets and their corresponding supports in a data
set 1.

Algorithm 1 shows the pseudo code of a program performing the derivation of the corre-
sponding association rules from F'S. It considers all pairs X,Y such that X is frequent
and Y is a proper subset of X (lines 2-3). The statement of line 4 finds in F'S the support
Sy of Y. Y C X (line 3), so Sx/Sy (line 5) is the confidence of the rule Y = X \ Y.
Observe that the algorithm does not make any use of 0. This threshold does not need to
be checked, because the support of the rule Y = X \ Y (lines 5 and 6) is, by definition,
the support of the union of Y and of X \ Y, i.e., the support of X, which is known to be

at least o, because it is in /'S (line 2).

Theorem 1. Algorithm 1 finds all and only association rules with support and confidence

values greater of equal to the corresponding thresholds.
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Proof. Let U =V [s,c| be an association rule with s > ¢ and ¢ > p. We show that
U=V [s,c will be in the output of that program.

The support of the itemset U UV, which is equal to the support of the rule U = V, equals
to s. s > o implies that U UV is a frequent set, so <U UV, s> must be in F'S and will
be considered in line 2. Since U C U UV (recall V' # ()), U is considered in line 3, and
we are sure to find it and its support in F'S (line 4), because every subset of a frequent
set is frequent too (see Corollary of Lemma 1).

So all o-frequent p-confident association rules are generated. And by construction only

o-frequent p-confident are output. O

We know how to derive all association rules with support and confidence values greater
or equal to their corresponding thresholds. These rules fulfil the stated criteria on the
evaluation functions, but it does not necessarily mean they are all interesting in the
application domain. Some problems may occur, such as redundancy of the discovered
rules, or extraction of rules that are already known to the expert. In a few words, the
measures of support and confidence are not monotonic with the interest of a particular
rule in some particular application, i.e., higher support and confidence values do not
necessarily guarantee a higher derived added-value in that application.

It is well known that only a relatively small number of association rules is ultimately used
to derive knowledge (i.e., small fraction of the collection of rules brings the majority of
the added-value in a particular context). Once, they have been identified and the actions
have been derived, the remainder of the collection, even if it contains high-confidence

rules, is discarded.

Algorithm 1. (Deriving association rules from frequent sets [Agrawal 94])

Input: F'S the collection of all o-frequent itemsets and their corresponding supports in a
data set r (i.e., FreqSup(r,o)), p a confidence threshold.

Output: The collection of all frequent and confident association rules with their supports
and confidences (i.e., RulesSuppConf(r,o,p, R)).

I: let C = 0;
2: for all <X, Sx> € F'S do

3 for all Y C X do

4 let Sy be a natural such that <Y, Sy > € F'S;
5 if g—i > p then // confidence of Y = X \ Y

6 let C:=CU{Y = X\Y [5x, 2]},

7. fi

8: od

9: od

10:output C;
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Two principal directions of research have been proposed: interactive tools assisting an
expert in browsing the collections of discovered rules [Klemettinen 94| or trying to find

other, more pertinent evaluation functions. Let us recall a few of them.

Definition 14. (Piatetsky-Shapiro’s measure) In |Piatetsky-Shapiro 91| an un-
named measure was proposed, which we call PS. It is defined as: PS(r,X = Y) =
Sup(r, X UY)/|r| = Sup(r, X)Sup(r.Y)/|r[*.

The main idea is to consider how the properties X and Y depart from the independence.
If X and Y are independent®, PS(r, X = Y) will be equal to 0. The more statistically
dependent they are, the higher is the value of the measure.

A serious drawback of the Piatetsky-Shapiro’s measure is that it is symmetrical, scoring
in the same way rules X = Y and Y = X, which have in general different intuitive

meaning.

Definition 15. (conviction) Brin et al. in [Brin 97a| proposed the measure called con-
viction, which is defined for a rule {A} = {B} as:

Sup(r {ADSup(r, {B})

conviction(r,{A} = {B}) = Sup(r.{A, BY |r]

The intuition behind the formula is that we can measure the strength of the connection
between C' and D (statistical events) using the so-called departure from independence,
but unlike in the Piatetsky-Shapiro’s measure we take the ratio P(C'D)/(P(C)P(D))
(the so-called statistical dependence®), a measure monotonic with the strength of the
connection.

We should also observe that the logical implication A = B is equivalent to =(A A =B)
so the strength of the connection between A and —B is the opposite of the strength of
the “implication” A = B. The authors propose a combination of these two ideas, first to
obtain P(A A —-B)/(P(A)P(—B)), and secondly to inverse it to obtain measure (given in
Definition 15) monotonic with the strength of the “implication”.

Unfortunately, the authors do not precise how to compute them for a rule with head
and /or the body involving more than one item. Bayardo et al. generalized this definition
in [Bayardo, Jr. 99a].

Definition 16. (conviction for longer rules) Conviction of the rule X = Y is defined

as:
Sup(r, X)(1 = Sup(r. Y)/Ir]

conviction(r, X =Y) = Sup(r, X) — Sup(r, X UY)

5Two statistical events C' and D are independent iff P(CD) = P(C)P(D).
6The statistical dependence P(CD)/(P(C)P(D)) measures how dependent two events are. Its value
is 1 in the case of independence.
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Definition 17. (improvement) Bayardo et al. in [Bayardo, Jr. 99b] proposed improve-

ment, which is defined as:

improvement(r, X =Y) = )r(nir;((Conf(r,X =Y)—Conf(r,X'=Y)).
'C

In |Bayardo, Jr. 99b|, the extracted rules are aimed at the prediction. Therefore, a rule
with lesser confidence is considered as potentially less useful. If a rule with subset body
(more general) has a higher confidence, e.g., {A, B} = {C} [s1,95%] for {A, B, D} =
{C} [s2,93%], the improvement is negative. Thus, the authors consider that such a rule
may be pruned, and suggest to use for prediction the rule involving as body X'’ that is

the subset of X corresponding to the highest confidence.

There is a multitude of proposed interestingness measures, providing emphasis on different
aspects. Since this thesis is not focused on scoring association rules, we do not enumerate
all proposed measures, we only give few more pointers to the papers presenting them.
Other recognized measures include interest |Brin 97a], intensity of implication [Suzuki 98,
Guillaume 98] and J-measure [Smyth 92|. The statistical significance can also be used for
that matter.

Note that if the framework is constructed to extract rules interesting in a context, the
authors may call differently the extracted rules, to emphasize different evaluation functions
or the use made of these rules.

Interested reader can find an independent comparative summary of statistical measures

in [Tan 02], including detailed qualitative and quantitative properties.

Frequent sets are also used for other tasks than pattern mining. E.g., in [Das 98] Das
et al. use frequent sets to define external similarity measures for binary attributes and

clustering techniques using frequent sets are considered in |[Das 98, Han 98].

Frequent sets have inspired mining forms of patterns other than association rules or
episode rules. E.g., Brin et al. in [Brin 97b| proposed correlation rules, Mannila et al.
in [Mannila 96b| proposed mining generalized Boolean rules.

Generalized Boolean rules are similar to association rules, but both sides of the rule,
instead of being sets of items, are Boolean expressions involving items as operands.

The correlation rules are less intuitive, so we recall them more formally.

Definition 18. (correlation rules) Given min,» (a significance threshold), o € [0, ||]
(a support threshold), v € [0,1] (a population ratio threshold), a correlation rule is an
itemset X such that [{Gx € FullClauses(X) : Sup(r,Gx) > o}| > v |FullClauses(X)]

and

= Min,z,

(Sup(Gx) — E[Gx])?
Z ElGx]

Gx €FullClauses(X)

where E[GX] = |7‘| HIEG’X Sup({f})_

7|
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Intuitively a correlation rule is an itemset X such that the full clauses based on X (see
Definition 10) are not independent. The independence of all full clauses based on X is
assessed in this framework using a chi-squared test. The consideration is further restricted
to itemsets such that at least a fixed fraction () of full clauses over X has a minimum
support o.

Note that all the uses presented in this section are generic for frequent patterns, e.g., the
mentioned interestingness measures may be applied in episode rule mining, episode rule
derivation from frequent episodes is analogue to association rule derivation from frequent
sets, and so forth.

Note however that the investigations on all combinations of these have not necessarily

been reported in the literature.

2.1.5 Potential Problems Associated with Pattern Discovery

For pattern mining, the most important potential problems are related to the choice of
pattern language and attributes.

Pattern languages with high expressive power tend to make numerous patterns look inter-
esting in practical data sets, even between attributes that are unrelated in reality. This
is due to the fact that within a huge number of patterns, some may happen to fit the
data accidentally. This is a situation in pattern mining equivalent to overfitting for mod-
els. Thus, a statistical significance assessment must be carried out for patterns with high
expressive power (often in the postprocessing step).

High expressive power may be due to the complexity of the language itself (e.g., rich syn-
tax), or simply to the abundance of terminals’ of the language (e.g., items in association
rules), or both.

Therefore, a KDD process often starts preprocessing with so-called feature selection step,
where we select for example attributes and the relationships that we want to study. A
combined effect of language expression power, number of features, data set, evaluation

function, ...can lead to two extreme situations:

e None or too few patterns are interesting,

e Too many patterns are interesting.

Both situations give no significant insight in data.

The first situation may happen if we are unlucky, and the selected features cannot be
related by patterns. More frequently however, the situation will arise if the evaluation
function is too demanding.

The second situation may happen if we are unlucky, and the selected features are strongly

related, and furthermore if several interesting relationships can be combined to give new

7Also called terminal symbols, or tokens. It denotes an atomic symbol in a grammar.
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| number of attributes | number of items | number of interesting association rules |

1 2 0

2 8 0

3 12 1

4 22 22

5 24 207

6 33 1390
7 35 5492
8 37 18728
9 39 63 240
10 51 167197
11 53 534 246
12 58 1770927
23 119 ?

Table 2.3: Number of multi-valued attributes, attribute-value pairs (items) and corre-
sponding association rules.

interesting ones. A combinatorial explosion may happen, leading to an untractable task,
or (at best) a result which cannot be reasonably analyzed in a postprocessing step (e.g.,
if we cannot ask the domain expert about each individual pattern out of a collection of
1 million statements). We will refer to such a situation by saying that with respect to a
task the data set is highly correlated.

The multitude of interesting patterns will also arise if the evaluation function is too
feeble (unselective), or the number of selected features is too high (leading to myriads of
“accidental” relationships, as explained above).

Coming in-between these extremes may require a number of tries on the data, trading the

evaluation function, the pattern language or the number of selected features.

Example 3. Let us make an experiment concerning the number of actual interesting
patterns within a practical data set. Let us suppose we analyze Mushroom data setd. It
describes 8124 various mushroom species using 23 attributes for each species. Altogether
119 attribute-value pairs (called “items” further on) are actually present in this data set.
In this data set we look for association rules with support and confidence thresholds set to
ming = 0.01 and min. = 0.9, i.e., we consider as interesting the rules with support of at
least 1% and with confidence of at least 90%.

Now, let us observe in Table 2.3 the growth of the number of extracted association rules,
as we increase the number of attributes (we included attributes in the order they appear
in the data set). For the first and two first attributes (resp. 2 and 8 items) the result is
empty. One association rule is extracted when considering three first attributes (12 items).

Further on, their number grows rapidly. We stopped the experiment when we judged that

8A benchmark data set well-known in machine learning community. A preprocessed version of the
data set is available at http://www.almaden.ibm.com/cs/quest/data/long_patterns.bin.tar
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going any further would produce only less readable insight in the data set’. At that time,
we have included only about a half of the attributes.

One cannot postprocess any number of rules. E.g., if the postprocessing consists in an in-
dividual assessment of each rule with respect to the expert’s knowledge, not even 1770 927
rules, but 1000 rules will probably be too many. Then, at most five first attributes can
be included in the study. Moreover, considering less than five attributes brings almost no
rules, so the study risks to be unproductive (the postprocessing may filter out all extracted

rules).

As it can be inferred from the above example, a tough compromise is needed. When the
combinatorial explosion is possible, the choice of the number of attributes included in a

study, for example, is particularly slim.

2.2 State of the Art in Frequent Set Discovery

Let us now focus on recent algorithms that compute frequent sets.

2.2.1 APRIORI

The first algorithm effectively fulfilling the task of extraction of all frequent sets in a
transactional data set is called APRIORI [Agrawal 94, Mannila 94].

This algorithm uses a simple but very efficient safe pruning strategy: supersets of an
infrequent set can not be frequent (see Corollary of Lemma 1). APRIORI searches in
the lattice of itemsets (ordered by set inclusion) starting from singletons and identifies
level by level larger frequent sets until the largest frequent sets are found. A join-based
procedure has been proposed in [Agrawal 94] to generate candidates efficiently.

In the following, we describe important aspects APRIORI. The presentation is slightly
different than in the original papers. We take into account that the algorithm must output

frequent sets and their supports to be able, e.g., to derive and score association rules!®.

We present a version of APRIORI enhanced with the prefix-tree data structure inspired
from [Mueller 95].

Algorithm 2 shows the pseudo-code of APRIORI. This algorithm creates the first candi-
date itemsets in line 1. Each item potentially present in the database (each item belonging
to R) becomes a singleton itemset in C;. Then, the algorithm enters a loop (lines 2-7).

i" iteration of the loop corresponds to itemsets of size i. As long as the current collection

9Here, as well as in all further experiments in this thesis, we stop varying the experiment parameters
when the number of patterns goes over 1 000 000. We set this condition as a convention, because depending
on the actual postprocessing step, the saturation may happen for a few orders of magnitude less patterns,
or (rarely) for a few orders of magnitude more.

10Gee Algorithm 1.
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of candidate itemsets C; is not empty (line 2), the program interleaves the following 2

operations:
e checking for each individual candidate itemset of size i if it, is frequent (lines 3 and 4),

e constructing the collection of candidates of size i + 1 (candidates for the following

iteration) from the frequent sets of size i (line 5).

In line 8, the program reports all discovered frequent sets and their corresponding supports
in 7. The empty set is also output; it is the only frequent set for which the support test
may be skipped, because Sup(r,0) = |r| > o (recall: o € (0,]|r]]).

The collection of candidate itemsets C; is stored in a prefix-tree!! structure of height 7. This
structure implements an efficient storage of (ordered) sequences of elements. Each edge
of such a tree stores an element of the sequence (an item for itemsets), and a sequence is
obtained as the juxtaposition of path elements from the root of the tree (a path for short).
Since the tree is supposed to represent itemsets of size i, a sequence in the collection C;
corresponds only to nodes at depth 2, and there is no leaves in the tree at other depths.
Sequences obtained as paths to an intermediate node are prefizes of (possibly multiple)
actual sequences stored in the tree. In other words, the tree aggregates the same sequence
prefixes into one sequence, the first differing element starts a distinct sub-tree.

To make an itemset correspond to a path in a non-ambiguous way, we take advantage
of the linear order of items < (see Definition 1) and actually store the sequence of items
ordered_list(X) for an itemset X (see Definition 13).

An example prefix-tree, storing itemsets of size 2 is depicted in Figure 2.2. On that figure,

the itemsets stored in the tree correspond to rightmost nodes (leaves of the tree). The

1We will use the common terms related to trees, such as height.

Algorithm 2. (APRIORI)

Input: 7 a binary database over a set of items R, and o € [0,|r|] an absolute support
threshold.
Output: FreqSup(r,o).

I:let C, :={{A}: A€ R}, i:=1;

2: while C; # () do

3 Scan r and compute supports of itemsets in C;;
FS;:={Y :Y €C; andY is o-frequent in r};

Cir1 ={X: XCRA|IX|=i+1A

4

b7} Y|=i=Y € FS;};
6: let i:=1+ I;

7

§:

YcCcX
od ;

output U, {<X, support of X>:X € FS;} U<, |r|>;

<t
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Figure 2.2: Example prefix-tree representing itemsets {3,4}, {2,4}, {2,3}, {1,4} and
{1, 3}, assuming < is the order < of natural numbers.

itemsets corresponding to the prefixes also shown. Neither leaves nor the remaining nodes
contain this information — it is shown for clarity, but in the structure only the values

associated with the edges need actually be stored.

The prefix-tree structure also allows an efficient support counting. To explain that claim,
let us first observe on Algorithm 3 how APRIORI counts the individual supports of all
itemsets in a collection C; within one database scan (the operation occurring in line 3 of
Algorithm 2). Algorithm 3 processes one row ¢ of r at a time. For each row t, APRIORI-
Supports considers every itemset of Cy (line 2), and if the row matches the candidate
itemset, the support count of that candidate is incremented by 1 (line 4).

The advantage of the prefix-tree in this task is the following. The itemset C' can be tested
for inclusion in ¢ (line 3) by testing successively each item of ¢ against C' and finishing
when |C] items of ¢ are found in C' or there is no more items in ¢. Thus, the testing does
not have to be repeated for itemsets that share a prefix with C for the items of ¢ that have
been already found in the shared prefix. Note that ¢ is fixed each execution of lines 2—6
and that we must check all possible itemsets from C; (they all have size k), i.e., there is
no fixed C' as suggested above.

Therefore, in order to consider all candidates of the prefix-tree we start at the root node

Algorithm 3. (APRIORI-Supports)

Input: Cy collection of itemsets of size k, r a binary database.
Output: Computed supports of all itemsets in Cy, according to the contents of r.

1: for all t € r do

2 for all C € C;, do

3 if C Ctdo

4: increase by 1 the support counter of C;
5 fi

6: od

7- od
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corresponding to an empty prefix. We take the first item of ¢ and see if with this item ¢[1]
in the prefix we still can find itemsets in C. For that, we look up for an edge labeled with
the item ¢[1]. If it is found, the tree contains itemsets with ¢[1] in the prefix, so we move
to the corresponding child node. We keep adding items from ¢ to the prefix as long as we
keep finding itemsets in C, with that prefix, i.e., as long as we can find the edge from the
current node labeled with the latest item. If we do not find any, we skip the item from
t and try with the following one until we accumulated k items in the prefix or none of
items from ¢ is the label of an outgoing edge. If we accumulated k items in the prefix, we
found actually an itemset in Cy, because the current node is a leaf (so we increment the
corresponding support counter). Then, we backtrack and consider remaining items of ¢
with the prefix corresponding to the parent.

That way, the cost of the test of a single item added to a prefix (the edge look-up) is
shared among all itemsets matching the prefix. In general there is a high overlap between
prefixes of itemsets, so the cost per itemset is low. The exception is the last element of a

path, which is not shared, because it corresponds to exactly one itemset.

Algorithm 4 shows how to implement efficiently line 5 of Algorithm 2. The operation
starts with the production of a superset of the desired collection (lines 1-4). APRIORI-
Gen obtains potential candidate itemsets of size k£ + 1 by performing the union of every
pair of itemsets of size k that share first £ — 1 items (according to <). Taking additionally

advantage of the properties of sequences representing itemsets (based on the linear order

Algorithm 4. (APRIORI-Gen)

Input: FSy collection of all frequent sets of size k (where k > 1).
Output: Ciy1 collection of itemsets of size k + 1 such that for every of them C all its
subsets of size k are in FSy.

insert into Cj

select NJ[1],N[2],..., N[k — 1], N[k|, R[k]

from FS, N,FS, R

where NJ[l] = R[l] and N[2] = R[2] and ... and N[k — 1] = R[k — 1]
and N[k|] < R[k|;

for all C' € C;,; do
for all A€ C do
if C'\ {A} € FS) then
delete C from Cpiq;

NSNS

: fi
10 od
11:0d

12:output Cpyq;
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of items <), APRIORI-Gen avoids the multiple generation of a same candidate. It
also partly realizes the pruning, which is completed in lines 6-10, where APRIORI-Gen
checks if a generated candidate C of size k+ 1 has all its subsets of size k in the collection
of frequent sets (all frequent sets of size k are already known), and if not, C' may be safely
removed from the candidate set. Checking all subsets of size k for a candidate C' of size
k + 1 guarantees (by recurrence) that all proper subsets of that candidate are frequent.
This is the so-called APRIORI trick.

As described in [Mueller 95|, the prefix-tree is also useful to optimize the candidate gen-
eration step. We must recall that an instance of the prefix-tree C; in APRIORI-Gen
may only represent a collection of itemsets that all have the same size. Furthermore, the
selection condition on a pair of itemsets (line 4) enforces that they share the same first
k — 1 items. Therefore, the program recursively enters the prefix-tree, until it reaches the
last-but-one level of nodes (last non-leaves). For each node N of that level, it combines
the leaves that are children of N into pairs and adds each pair separately to the common
prefix. Having a common prefix ensures without actual test that the first £ — 1 conjuncts

of the where clause in line 4 are satisfied.

There are many improved techniques based on the APRIORI algorithm. We describe
in the rest of the chapter some of them. We also present existing approaches that differ
considerably from APRIORI.

2.2.2 Sampling Algorithm

APRIORI makes multiple scans of the data set, typically 5 to 10. The cost associated
with these scans is the main load of the extraction of frequent sets. Reducing the number
of scans has been the driving motivation for Toivonen to propose a sampling algorithm
in [Toivonen 96].

The sampling algorithm aims at reducing to 1 the number of scans of the data set
(concluding with a second scan in the worst case). First, it tries to make a guess of which
itemsets are frequent in the data set, and then to complete one full scan of the data set
to check if these itemsets are indeed frequent. Checking an itemset consists in counting
its support and comparing it with the support threshold o.

The proposed method realizing a guess, described later, is imperfect — the actual collec-
tion of frequent sets may be different than in the guess'?. Discovering that some of the
itemsets that were supposed to be frequent actually are not is a not a big problem, unless
they are so numerous that the support counting procedure is intractable. The bigger
problem being the itemsets that were not “suspected” to be frequent, but they are. If the
sampling algorithm detects after the first scan of data set that some actual frequent

sets could have been missed (the guess was not enough “large”), a second scan of the data

12Qtherwise, it would not be called a guess.
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set is necessary, checking itemsets that are the potentially missed frequent sets. Therefore,
the sampling algorithm prefers to consider a candidate collection that contains extra
candidates rather than to miss actual frequent sets.

Let denote by r the binary database and o the support threshold. The goal is to extract
Freq(r,o).

The itemsets likely to be frequent in r (the guess) are obtained as actual frequent sets
present in a sample of the binary database. First, sampling algorithm draws a random
sample of rows of the binary database, called further 7/, then it computes actual frequent
sets present in the sample, i.e., itemsets from F'req(r’, '), where ¢’ denotes the absolute
support threshold to be used on the sample.

Given that a little fluctuation of the relative support of an itemset is likely to occur
between the sample of the data set and the data set itself, a slightly lower relative support
threshold is used on the sample than on the data set itself, i.e., ﬁ < ﬁ
lead to a guess that is a super-collection of the collection frequent sets of r (i.e., we wish
to have Freq(r,o) C Freq(r’,o’)). On the other hand, the support threshold ¢’ should

not be too low, in order to avoid considering unnecessarily big number of candidates.

The goal is to

In |Toivonen 96| the reader may find the details on how to choose the right support
threshold ¢’ and size of 7’ to make (almost) sure that Freq(r’,o’) will not miss any
frequent set from F'req(r,o). As a basic rule, we may find that reducing the probability
of the second scan requires increasing size of the sample 7’ or decreasing the value of o’
The basic APRIORI is used on the sample 7’ to obtain F'req(r’,¢’), but given that the
sample is relatively small, it may be read from the disk once and stored in memory. Thus,
one reading of the sample is necessary and the several scans required by APRIORI can
be handled without actual disk scans.

Summarizing the technique, the goal of reducing number of disk scans is achieved by
performing a random sample reading (a single reading of a fraction of the data set), one
full scan of the data set (more exactly of the remainder of the data set) and a possible-
but-unlike second scan of the data set. Reducing the probability of the second scan is
traded-off against a larger random sample size used by the APRIORI-like frequent set
computation technique (with a relatively high CPU load) in the first step or against
a smaller ¢’ leading to a larger candidate collection for the full-scan support counting
(higher memory and CPU loads).

2.2.3 DIC

Brin et al. proposed in [Brin 97a] an algorithm called DIC (for Dynamic Itemset Count-
ing). Like APRIORI, this algorithm identifies larger and larger frequent sets starting
from singletons and until the maximal frequent sets are found. Though the order in which
itemsets are considered respects the partial order of itemsets defined by the set inclusion,

the itemsets of a same size do not have to be considered simultaneously, as it was the case
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in APRIORI.

The essence of the approach is to consider a collection of candidates that dynamically
changes while scanning a binary database. Observe that APRIORI considers an itemset
as a candidate when all its subsets are known to be frequent. DIC considers an itemset
as frequent if its support counter shows a value greater or equal to 0. DIC tests if that
condition is satisfied earlier than at the end of a scan, notably at few preset points of a
scan.

If a new candidate is detected (all its immediate subsets turned out to be frequent), it
will be considered from that point of the scan by the support counting procedure. This
may lead to a simultaneous counting of its support and of the supports of its subsets (at
that time the latter are known to be frequent).

For the itemsets whose support counting started inside a data set scan, at the end of
a scan DIC wraps and continues from the beginning of the data set until all rows of
the binary database have been taken into account. The scan (or scans) of the data set
continues until the supports of all candidates are counted over the whole data set and
there is no further candidates.

The important advantage of the method over APRIORI is a reduced number of data set
scans — in most of real data sets a couple of them is enough. Observe that at least one
full scan is needed and that above one full scan fractions of a scan (to one of the preset
points of the scan) may lead the algorithm to finish. Therefore, when the number of scans
is the primary cost factor, the speed-up will be remarkable.

On the other hand, DIC requires some additional memory related to each node and each
candidate — the starting point of the support counting for a candidate (to be able to find
out when a full scan for that candidate has been achieved and the counter must become

inactive).

2.2.4 Max-Miner

Max-Miner [Bayardo, Jr. 98| is developed on the base of the following observation. From
Corollary of Lemma 1, we know that if X is a frequent set and Y C X, then Y is a frequent
set, too. Therefore, Bayardo proposes in [Bayardo, Jr. 98] to extract only the maximal
frequent sets, i.e., the frequent sets not having other frequent sets as proper supersets for
a given o.

Note that this collection can also be described as the positive border of the collection of
all frequent sets, Bd*(Freq(r,o)) (see Definition 5). Therefore, Max-Miner can be seen
as a tool to find the (positive) border of frequent sets.

Pincer Search |Lin 98| is an independently proposed algorithm for mining the maximal
frequent sets. In the following, we focus on one of them, namely on Max-Miner.

The point of mining maximal frequent sets only is that this collection is very attractive

compared to the collection of all frequent sets, because the sizes of these collections typi-
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Figure 2.3: Example itemset-enumeration-tree representing all itemsets over {1,2,3,4}.

cally differ by orders of magnitude, but information frequent /infrequent for each itemset
is preserved. In other words, given all maximal frequent sets we may find out if any given

itemset Y is frequent. The procedure is sketched in terms of the following theorem.

Theorem 2 (determining frequent/infrequent status of an itemset). Let r be a
binary database over R and o be a frequency threshold. Y is frequent iff among mazimal

frequent sets there is a superset of Y.

Proof. If among maximal frequent sets there is a superset X of Y we justify that Y is
frequent by the already-mentioned corollary of Lemma 1.

We prove the forward-directed implication by contraposition. If Y was frequent, either
it would be a maximal frequent set, or one of its proper supersets would have to be
frequent. If the latter is not a maximal frequent set, we recursively search for larger and
larger frequent sets, until we find one without frequent proper superset (R, the itemset of
maximal size, is finite, so moving to larger frequent sets must finish at some point). At
the end, we get a maximal frequent set that is a superset of Y (D is transitive). So, if

among all maximal frequent sets, there is no superset of Y, Y cannot be frequent. O

In this case, the proposed extraction algorithm counts the supports of much less itemsets
(in general) than there is in the collection of all frequent sets.

The algorithm uses a heuristic to skip checking large portion of the itemset space. It is
described below.

Max-Miner stores the candidates in a prefix-tree. In the i" scan of data in the prefix-tree
is of height i and candidates correspond only to nodes at depth i (in which Max-Miner
is similar to APRIORI). However, for a single node N we count the support of two
itemsets: of the one represented by the path to the node (referred to as head) and of the
union of the itemsets that are children of the current node in a complete set-enumeration-
tree. Let denote this union by N.U and the head of the node N.H. Obviously, the value
of N.U depends directly on the applied set-enumeration-tree. Let us denote by FE this

tree.

44



E is a different tree, not to be confused with the candidate storage prefix-tree. FE can
be defined in advance of the mining — in that sense it is independent of the candidate
storage prefix-tree.

To simplify the following discussion, we neglect that the candidates are stored in a prefix-
tree, and the only tree we refer to is going to be the set-enumeration-tree (“nodes”, “chil-
dren” and so on will refer to this tree). Consequently, instead of a node for a candidate
itemsets N.H and N.U, we use the term a group, and we reserve the term node to nodes

of the set-enumeration-tree.

Example 4. If the head of the group G.H is {2}, and we use the set-enumeration-tree
depicted on Figure 2.3, then the children of node G.H are {2,3}, {2,4} and their union
is G.U ={2,3,4}.

G.U is the superset of all descendants of G.H, so if it is frequent, all itemsets that are
descendants of G.H in E will be frequent as well. In this case, Max-Miner does not
enumerate them and skips counting their supports, i.e., it prunes the sub-tree and keeps
G.U as a potential maximal frequent set. Some other sub-trees may also be pruned,
because GG.U may be a superset of the maximal itemset represented in another sub-tree.
Thus, we prune all groups G; such that G;.U C G.U because we are interested only in
maximal frequent sets, and counting any subset of any known frequent set is useless in
this context. Pruning of a group GG means that we do not probe the children nodes of
GG.H nor their descendants.

Following Example 4, if G.U = {2,3,4} (corresponding to G.H = {2}) is frequent, the
group G’ with G'.H = {3} and G'.U = {3,4} may be pruned, too.

Additional optimizations are integrated in Max-Miner, such that:

e dynamic construction of the set-enumeration-tree between scans of the data set,
defining level by level the nodes which are required for that particular scan. Defining
this tree influences the G.U itemset of each created group and lets enhance the

pruning described above,

e to compute the supports of G.H and G.U, a row is first matched with G.H, and
then every additional item present GG.U is checked if it is in the current row. Each
of these individual checks may be reused separately to efficiently count the supports
of the heads of the node’s children (one level ahead),

e given the supports gathered for ancestors of a node Max-Miner uses a simple sup-
port bounding to determine whether some candidates are frequent without counting

their supports.

The last of the above optimizations and the group pruning described previously could have
been employed, because Max-Miner considers maximal frequent sets as self-sufficient de-

scription of all frequent sets. The idea to consider only some frequent sets that provide the
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necessary information to determine all frequent sets (in this case the frequent /infrequent
status of every itemset) is important.

There is however a major drawback of maximal frequent sets — they do not provide the
actual support values for all frequent sets, which are required, for example, by Algorithm 1
to score the association rules. Bayardo proposes in [Bayardo, Jr. 98| as remedy to scan the
data set and count the supports of all frequent sets (this latter collection is derived from
the maximal frequent sets). The cost of this final scan is in the same order of magnitude
as of running APRIORI, and that part of computation dominates the running time
(|[Bastide 00b] offers, among other results, an experimental comparison of two steps of
frequent set computation using Max-Miner).

As for the number of scans, Max-Miner reduces it slightly, not as much as by employing

DIC or the sampling algorithm.

2.2.5 FP-Growth

Recently, Han et al. proposed in [Han 00| FP-Growth — a technique for mining frequent
sets that is more different from APRIORI than the techniques described hitherto. FP-
Growth explores the search space in a depth-first manner. We should also mention here
an independently proposed Tree-Projection [Agarwal 99, Agarwal 01|, an early bird of
depth-first techniques for frequent set mining.

FP-Growth considers an itemset as candidate only if its parent itemset is frequent. The
parent is determined as the parent in a complete set-enumeration-tree (denoted F in the
)13,

following This allows a divide-and-conquer approach. The set-enumeration-tree is

used to never generate twice the same candidate.

Algorithm 5 shows the top-level pseudo-code of FP-Growth. The pseudo-code represents
a recursive function FindF'S that explores the set-enumeration-tree E in a depth-first
manner. A call FindFS(X,r, 0, F) finds in 7’ the o-frequent itemsets (and their supports)
in a well-defined partition of the search space — the function will consider only the part
of F corresponding to the descendants of X. X itself is supposed to be processed by the
function calling FindF'S. FP-Growth makes sure that the supports of descendants of
X mined in 7’ are the same as in r, so the frequent sets found in these 7’ (different in
each call of F'indF'S) are identical to frequent sets in 7. We justify it shortly, after the
description of the top-level pseudo-code of FP-Growth.

Since () is the root of I, all itemsets except the empty set itself are its descendants, so the
call FindFS(D,r,0,F) returns FS and we have FreqSup(r,o) = FSU{<0,|r|>}. As
in case of other algorithms, the empty set can be added without computing its support,
because Sup(r,0) = |r| > o (recall: o € [0, |r|]).

13An example set-enumeration-tree, depicted in Figure 2.3, accompanies the description of Max-
Miner.
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In line 1, the algorithm initializes a temporary variable for the result (returned in line 10).
Then, it considers successively all children Y of the entry point node (i.e., of X) in line 4.
If Y is frequent (line 5) descendants of Y are considered (recursive call in line 6) and all
frequent sets from the sub-tree rooted at Y are stored in the buffer (line 7).

A particular operation is based on the following remark. Notice that the rows matching
every descendant of Y must also match Y, so the rows matching Y (i.e., M(r,Y)) are
sufficient to determine all frequent sets that are descendants of Y. Moreover, given that
for every X,Y such that X C Y we have M(r,Y) C M(r, X) (see Lemma 1), we may
compute M(r,Y’) incrementally'* as M(r,Y) = M(r'.Y), where r' = M(r, X). So the
trick works in the recursive manner for nested calls (in line 6).

Another good property linked to this depth-first manner of computing frequent sets is that
the difference between Y and X (i.e., the difference between a child and its parent in E)
contains 1 item. Let us denote this item by A. Notice that M(r,Y) = M(r, X U {A}) =
{ter:te M(r,X)Ant € M(r,{A})}. Therefore, obtaining M(r,Y) from ' = M(r, X)
consists in applying an elementary filter defined as: t € M (', Y) iff t e ¥ N A € ¢.

It is necessary to determine the support of a candidate itemset to compare it to o (line 5)
and eventually to store it in the temporary variable (line 7) the latter serving as buffer
for output (line 10). It is accomplished in line 3.

As explained above, the rows matching Y may be obtained as rows matching 1 item in

4The term “incremental” may be misleading, because the collection of rows matching the itemset never
grows, and typically decreases, and it is the matched itemset which grows.

Algorithm 5. (FP-Growth)

Function FindFS(X,r' o, F)

Input: X the itemset considered as the current starting point in the search space, r a
binary database over a set of items R, o an absolute support threshold, and E is a complete
set-enumeration-tree.

Output: All pairs <Y, Sup(r’,Y)> such that Y is a descendant of X in E and it is
o-frequent in r’.

1. FS = 0;

2:let C:={Y :Y € children of X in E};

3: Scan r' and compute supports of itemsets in C;
4:for all Y € C do

i} if Y is a o-frequent item in v’ then

6: F' = FindFS(Y,M(r",Y),0,F);

7 FS :=FSUF U{Y,support of Y>};
& £

9: od

10:return FS;
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r’, so the support counting for Y (counting the number of rows matching Y') is compu-
tationally a very simple operation on r’. However, one scan of a disk resident r’ per call
to FindF'S is not reasonable, because it would result in the same number of disk scans
as the number of frequent sets (likely to be several thousands in real contexts). Even if
the size of r’ decreases for recursive calls of F'indF'S, the resulting Input/Output load'®
would be unacceptable.

t16 and stores the entire

Therefore FP-Growth uses a single disk scan of the data se
binary database in memory. Further accesses (all scans by FindF'S) are then redirected
to a memory resident binary database.

An efficient storage of a binary database is then necessary to fit it in memory, which is
a critical question for typically large data sets processed in KDD. The proposed solution
is...again a prefix-tree. It is not unreasonable, given that a binary database is a collection
of itemsets (see Definition 1) and several advantages of that structure were made clear in
the section devoted to APRIORI. However, the use of the structure is now quite different
— it is used to store the rows of the binary database and not the candidates. In this case,
all rows of a binary database are stored in a single prefix-tree.

Each node (recall: it corresponds to a unique prefix) has as attribute a positive integer. It
stores the number of rows in the binary database starting with the corresponding prefix.
Different prefixes are thus mapped into different nodes (and their paths) and same prefixes
(of different rows) are aggregated into 1 node (and its path), the node attribute reporting
the corresponding number of rows. This way, the itemsets of different sizes or possible
several occurrences of same rows are handled without loss of relevant information.

Then, the support counting of an itemset ¥ = X U {A} in the (incrementally updated)
" = M(r, X) consists in traversing the prefix-tree representing the rows of 7’ and summing
up the number of all rows containing A. It may be accomplished by summing up the
attributes of the nodes that have the incoming edge labeled with A, the explanation is
the following. Every row containing an item A may be split into the prefix of the row
ending with the item A and the reminder of the row. All the rows starting with the
same such a prefix P are aggregated in the prefix tree, and share that prefix. Therefore,
their number is counted by the attribute of the node Np corresponding to the prefix P
(ending with A, so the incoming node is labeled with A). Then, it is sufficient to sum
up the attributes of these nodes (no need to enter the sub-tree below Np because all
rows represented in there have been taken into account by the attribute of Np). On the
other hand, collections of rows not having a common prefix ending with A are necessarily
disjoint, so the summing counts exactly once each row containing A.

The support counting of line 3 performs a simultaneous counting for all candidates in C

(candidates produced by the current call of FindF'S). Therefore, we may create an array

151/0 load, from now on.
6Two scans, if we take into account of an optimization described later.
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of |C| counters, each corresponding to a different item A; (each A, is an item that must be
added to X to obtain one of X’s children). Then, the scan would traverse completely the
prefix-tree representing /. For each traversed edge labeled with an item A; and leading
to a node with an attribute value S, we would increment by S the counter corresponding
to A; (if X U {A;} is one of the candidates in C).

Further optimizations in FP-Growth (described briefly, in the order of successive conse-

quences) include:

e instead of a full tree I, each call to F'indF'S uses only an ordered set of items T'ail x
(disjoint from X') such that the itemsets X and X U Taily delimit the partition of
the search-space to be considered by FindFS'7,

e Tailx is further reduced to the items that are frequent in 7/, which eliminates parts

of E that are simply known to contain only infrequent sets,

e when calling FindF'S(Y, M(r",Y), 0, Taily) in line 6, M(r',Y) preserves only the
items contained in T'aily, because the presence of all items Y is already checked by
computing M(r',Y") and the exploration of the corresponding partition of the set-
enumeration-tree neither contains items other than Y UTaily nor requires supports

involving them,

e by dynamically adapting the order in T'ailx for each X, FP-Growth dynamically
adapts £ and defines it level by level, on the when-needed basis. When defining the
sub-tree of a node representing X in the no-longer-materialized set-enumeration-
tree F, most frequent children Y are given a least T'aily (small sub-tree), which
enhances sharing prefixes for parts of the binary database containing lot of rows.
The counterpart is to allow bigger T'aily to the least frequent children Y, but the
corresponding prefix-trees are likely to be small because the part of the database

contains less rows,

e dynamic definition of the order of items that is used to sort the items in rows before
the construction of a particular prefix-tree (representing an 7’). Redefining this
order each time a prefix-tree corresponding to a collection of rows is constructed
may enhance the overlap between the prefixes of the rows. On the other hand, it
requires a preliminary disk scan over the binary database to determine the order of
items to be used during the second disk scan when the first prefix-tree, corresponding

to the full binary database, is constructed (bringing the number of scans to 2), and

e when the current prefix-tree (for an 7’) consists of a single path (the tree has only
one leaf), a dedicated very fast procedure directly enumerates the frequent sets that

are descendants of the current node.

I7If the order of items of an ordered Tailx is respected for the full sub-tree, X and Taily uniquely
define that sub-tree of a set-enumeration-tree.
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Summarizing, FP-Growth is a technique very different from APRIORI for mining
frequent sets and their supports. Several optimizations are employed to improve CPU
performances. The binary database is hold in memory to reduce otherwise excessive I/0
load.

2.2.6 CLOSE

Pasquier et al. proposed in [Pasquier 99¢|] CLOSE — an algorithm apparently similar
to APRIORI, but with fundamental differences making it an important innovation in
frequent set mining. The fundamentals of the method are in Galois connections [Ore 44]
and formal concept analysis [Wille 82.

The algorithm aims at mining highly correlated binary databases, i.e., databases where
many strong correlations between items hold and the resulting frequent sets are long and
NuUmerous.

This technique is based on the so-called frequent closed sets. So, we first recall the neces-
sary definitions. For proofs of lemmas and of claims as well as for a detailed description
see |Pasquier 99c].

We defined in Section 2.1.3 the multiset M (r, X') of rows matched by the itemset X in r.

Now, we give the definition of Z(r’), the set of items matching a multiset of rows r’.

Definition 19. (itemset matching a set of rows) Given 7’ a binary database over R,
Iy ={Ackr: [\ Acu.

Definition 20. (closed set) Given r a binary database over R, X is a closed set w.r.t.
riff X = Z(M(r,X)). Closed(r) ={X : X C R and X =Z(M(r, X))} denotes the set

of all closed sets in 7.

Definition 20 states that an itemset X is closed w.r.t. r if and only if it contains every
item that is present in all rows of r matched by X. In other words, for each item A not
in a closed set X, there is an object in the database that has all items of X, and does not
have the item A.

Example 5. In Table 2.1 (Section 2.1.1), the itemsets { A} and { B, C'} are closed, whereas
the itemset { B} is not. Observe that the rows matching { B} are the first two and the last
two, all containing also the item C. So, {B} # Z(M(r,{B})) = {B,C} and thus {B} is

not closed.

The compound function Z(M(r, X)) returns the so-called closure of X w.r.t. v, and the
corresponding operator is denoted in the following as Z o M. Relevant properties of this

operator are stated in the following lemmas.

Lemma 3. Letr be a binary database over R, and X, Y be itemsets such that X CY C R.
ZoM(r,X)CTZoM(rY).
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Lemma 4. Let r be a binary database over R, and X be an itemset such that X C R.

Y €T oM(r.X) Sup(r,Y) = Sup(r, X) .

Lemma 5. Let r be a binary database over R, and X, Y be itemsets such that X CY C R.
Sup(r,Y) = Sup(r, X) implies Y C T o M(r, X).

A closed set is called frequent closed set when its support in the database is not less than

a given threshold o. The following definition formalizes the notion.

Definition 21. (frequent closed sets) Given r a binary database over R and

o a frequency threshold, the set of all frequent closed sets w.r.t. r is defined as
FreqClosed(r,o) = Freq(r,o) N Closed(r).

Algorithm 6 shows the pseudo-code of CLOSE.

CLOSE belongs to the class of levelwise algorithms. At i*" iteration, corresponding to the
it" sacn over the binary database, it considers only the candidates of size i. They are stored
as generators in CG,;. The algorithm starts with CG; initialized to the set of candidates
of size one (line 1). Each item potentially present in the database (each item belonging
to R) becomes a singleton generator in CG;. In each iteration, CLOSE makes a scan of
the database, computes supports of the candidate itemsets and their respective closures
(line 3). Once the scan is accomplished, the closed sets for which corresponding generators
are frequent (line 4) are to be stored with their respective supports (for simplicity, we
represent only the storage of generators in a temporary variable, but both their closures
and their supports should be stored too). The iteration completes by generating the next

iteration candidates (line 5). Once it has been confirmed that all frequent closed sets have

Algorithm 6. (CLOSE)

Input: 7 a binary database over a set of items R, and o € [0,|r|| an absolute support
threshold.

Output: FreqClosed(r, o) and the corresponding support values (with a possible exception,
see explanation in text).

I: let CG, :={{A}: A€ R}, i :=1;

2: while CG; # () do

3. Scan r and compute supports and closures of itemsets in CG;;
4 FGi:={Y :Y €C; and Y is o-frequent in r};

5 CGip1 ={X X CRA|IX|=i+1A

Y|=i= (Y € FG, AN X € closure of Y)};

YcX
6: let i := 1+ 1;
7-od ;
8: output Uj<i{<closure of X,support of X>:X € FG,};
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been computed, i.e., there are no more generators (line 2), the program finishes iterating,
outputs the frequent closed sets removing duplicates and terminates.

The algorithm CLOSE does not consider the empty set the same way as other itemsets.
This is a similar behavior to other algorithms, because the empty set is know to be
frequent. However in case of CLOSE, only frequent closed sets should be output, so we
cannot simply add {<0, |r|>} to the result — we know that () is frequent, but we do not
know if it is closed without looking at the data. Fixing the error is straightforward, e.g.,
one may consider separately () as a candidate generator, compute its closure along with
the first scan of the binary database and add to the result the pair consisting of the empty
set’s closure and support. In the following, for simplicity we suppose that the error is
fixed that way'®.

Algorithm 7 shows how to realize efficiently line 3 of Algorithm 6.

As compared to Algorithm 3, Algorithm 7 has the additional task to compute the closure
of each generator. It is accomplished in lines 5-9, according to Lemma 5. That lemma
states that if an item A is present in all rows matching an itemset C, it is a member of
the closure of C'. A is present in all rows matching C' also means that A belongs to the
intersection of all rows matching C. An item not present in a row matching C neither is
in its closure (see Definition 20), so the intersection of all rows matching C' contains all
and only items from the closure of C'.

So Algorithm 7 finds out the closure of C' by computing the intersection of all rows

18In the experiments presented in this thesis, we used the implementation of CLOSE that handles all
itemsets up to size 2 in a specific, optimized manner, so the empty set is processed specifically anyway.

Algorithm 7. (CLOSE-Supports-and-Closures)

Input: CGy, collection of itemsets of size k (where k > 1), r a binary database.
Output: Computed supports of all itemsets in CGy following the contents of r. The
closures of itemsets in CGy matched by at least 1 row are computed as well.

1: for all t € r do

2. for all C € CG,, do

3 if C Ctdo

4: increase by 1 the support counter of C;
5: if closure of C' = () then

6: let closure of C :=t;

7. else

8: let closure of C :=tNclosure of C;
9 fi

10 fi

11: od

12:0d
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matching C', and that for each itemset from CGy.

Algorithm 8 shows how to realize efficiently line 5 of Algorithm 6. In this line there is a
major difference with APRIORI on which CLOSE relies to boost its performances on
highly correlated data.

We shortly explain the properties of the itemset lattices on which that substantial opti-
mization relies. First, the supports of an itemset, of its closure and of all intermediate
itemsets (w.r.t. the itemset inclusion) are the same (Lemma 4). Thus, once identified the
closure of an itemset to be different from this itemset, we can exclude the closure and all
intermediate itemsets from the support counting procedure (their supports are all known
to be the same). Pruning an itemset C' that is included in the closure of its subset of
size |C'| — 1 appears in line 7 as the second disjunct. Supersets of such an itemset C'
are pruned as the combined effect of both conditions stated in line 7, because once an
itemset is rejected to be considered as generator, the first disjunct stated in line 7 blocks
its proper supersets from being generators.

But what if an itemset X is a superset of a pruned itemset C' on the base of the closure
of a C'\ {4}, but X itself is not included in the closure of that C'\ {A}? Can it be safely
pruned?

Note that X \ {A} is not a superset of C' and it may be a generator. If so, based on

Lemma 3, its closure will contain A and thus we will know the support of X (which is

Algorithm 8. (CLOSE-Gen)

Input: FGy collection of all frequent generators of size k (where k > 1).
Output: CG1 collection of itemsets of size k + 1 such that for every of them C all its
subsets of size k are in FGy and none of its subsets in FGy. has as closure an superset of

C.

insert into CGy,4

:select N[1],N[2|,...,N[k — 1], N[k|, R[k]

from fSk N,fSkR

where N[1] = R[l] and N[2] = R[2] and ... and N[k — 1] = R[k — 1]
and N[k| < R[k];

for all C' € CGy,1 do
for all A€ C do
if O\ {A} € FGy or C C closure of C'\ {A} then
delete C from CGji1;

fi
od

~
SeXRD:

11:0d
12:output CGp,q;
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the same as the support of X \ {A}). On the other hand, if X \ {A} is not a generator,

either:
1. it is in the closure of one of its proper subsets, or

2. it is a superset of an itemset that had been pruned based on a closure, but X \ {A}

itself is not included in that closure.

If the first case holds then the support of that subset is the same as of X \ {4}, and
consequently we know the support of X (equal to the support of X \ {A}).

If the second case holds then we consider recursively smaller itemsets, and repeat the
reasoning until we find an itemset that has been a candidate generator. We denote that
generator X', and the string of support equalities accumulated on the way permits to
affirm that Sup(r, X) = Sup(r, X').

Pruning due to a too low support (infrequent sets) works as in APRIORI and avoids
considering the proper supersets of an infrequent set. This pruning works independently
of whether these proper supersets have been pruned based on the closures. Therefore,
infrequent sets may be correctly determined based only on infrequent generators, and no

interference with the pruning on the closures occurs.

Interesting alternative techniques to mine frequent closed sets include CHARM |[Zaki 02]
and A-Close [Pasquier 99b|.

Mining frequent closed sets is one step, but if we want to compute all frequent sets, we
need to convert the frequent closed sets into frequent sets. The corresponding algorithm
is given as Algorithm 9. We modified it slightly, to avoid relying on the specific order
of itemset enumeration described in the example accompanying the original algorithm
in [Pasquier 99c].

We take advantage of this algorithm to introduce a handy notation that we will use
for some algorithms. We will be using a record-like access to data. The data record

corresponding to one frequent set will be called a node. Here is its structure:

itemset : set of items
support : integer

Let FS; denote the collection of nodes corresponding to itemsets of size i. A collection
of such nodes is stored in an itemset-prefix-tree, a structure allowing efficient access, as
we explained for the previous algorithms.

For a node N, the access to these fields is denoted respectively N.itemset and N.support.

N.itemset corresponds to a frequent itemset'® and N.support is its support.

19The field itemset is represented in the algorithm for clarity, but using an itemset-based prefix-tree
structure provides a much more compact storage of the items in this itemset.
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In lines 2-7 Freq-Closed-To-Freq loads the input and converts it into the records
(nodes). The frequent closed sets are partitioned following their sizes in order to access
them in descending size order in the main loop (lines 8-19).

The main operation is to consider every C' in line 9, either a frequent closed set or a
regenerated frequent set, and to enumerate each proper subset of C' of size |C| — 1 (each
item is removed separately in line 11). If the node corresponding to that subset is already
in F8|c|-1, the support is updated. Otherwise, a new node is created, and the support
of that subset is set to the value of support of C' (lines 12-16).

Mining frequent closed sets instead of all frequent sets is a big step towards more efficient
techniques for highly correlated data sets. CLOSE checks against the data set only some
frequent sets (generators) and stores only their closures (which are closed sets) and their
supports. The remaining frequent sets may be derived from the former ones using Freq-

Closed-To-Freq in a sound and complete manner. Moreover, that algorithm can derive

Algorithm 9. (Freq-Closed-To-Freq)

Input: FC a collection of all frequent closed sets (i.e., FreqClosed(r,c)) and their cor-
responding supports.
Output: FreqSup(r,o).

1: let max_size := 0;

2: for all X € 7C do

8 Create new node Nx in FS|x| with Nx.support := support of X,

Nx.itemset := X; // partitioning FC
if | X| > max_size then
let mazx_size :== | X|;
fi
od

for all N € FS; do
for all A € N.itemset do

4:

5:

o:

7.

8: for i := max_size downto 1 do

9:

10

11 Find N4 in FS; 1 such that N,.itemset = N.itemset \ {A};

12 if such N4 erists then

18 let Na.support := max(N 4.support, N.support);

14: else

15: Create new node N, in FS;_1 with Nj.support := N.support,
Nj.itemset := N.itemset \ {A};

16: fi

17 od

18 od

19:0d

20:0utput U< o sizel <N.itemset, N.support>: N € FS;};
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the support for each frequent sets without any access to the original data set, unlike in
the Max-Miner approach.

We studied the behavior of CLOSE on real data sets with our own implementation of
that algorithm (see [Bykowski 99, Boulicaut 00a]). Considering less candidates reduces
CPU and memory loads, typically an order of magnitude on highly correlated data. Addi-
tionally, the fact that the largest generators are typically smaller than the largest frequent
sets leads to a reduced number of scans, typically by half on highly correlated data as

compared to APRIORI (not as much as the sampling algorithm or DIC).

2.2.7 Comparative Critique of Frequent Set Mining Tools

The basic frequent set mining technique, APRIORI, has been quite successful on the
basket-type data, for which it was designed. It makes several linear scans of data (in
general less than a dozen), considers one row at the time and increments the support
counters for candidate itemsets included in the row.

This technique typically does not work very well on different types of data, especially
on highly correlated data. High correlation makes some long itemsets relatively highly
“supported” (see [Bayardo, Jr. 98]). If the size of the largest frequent set is IV, the number
of its subsets is 2"V and the number of scans APRIORI makes is N (sometimes N + 1).
So, if the largest frequent set gets larger, it may result in an exponential increase of the
number of candidates to be considered by APRIORI and a linear increase of the number
of scans.

Early proposals after APRIORI were designed to reduce the number of scans of the
binary database. The sampling algorithm reduces the number of scans to one full scan,
the second full scan remains possible, but unlikely. DIC does not provide any worst-case
improvement over APRIORI for the number of scans, but the average figure (typically a
couple of scans) is better than for APRIORI and slightly worse than for the sampling
algorithm.

Then, other types of data sets were considered, and it became obvious that the principal
difficulties to mine them are related to the high number of frequent sets (leading the
high CPU and memory loads) and not to the number of scans. We did not present
research results that parallelize the task of frequent set mining?°. Though these are very
challenging techniques, they do not reduce the total CPU or memory load, but they split
it up and assign to several computers or processors in order to make the extraction faster.
We looked rather for methods that reduce the overall CPU and memory loads. Indeed,
they could be studied further for parallelization if necessary.

From that view point, the sampling algorithm and DIC do not reduce the memory

load, but they are likely to reduce the CPU load. We base the following explanation on

20 An interested reader should see e.g., [Zaki 97].

o6



the hypothesis that we use the prefix-tree structure to represent candidate itemsets (as
described in Section 2.2.1).

Let us now assume that the data set is very large. Due to large size of the data set all
operations except scans have negligible loads as well, which is approximately what we
observe typically using APRIORI on large data sets. Moreover, on current platforms,
the marginal I/O load of reading one row is negligible before the marginal load of support
counter updates corresponding to the row (see, e.g., [Mueller 95] for details).

So, we compare exclusively the support counting procedures of APRIORI, of the sam-
pling algorithm (after the guess step) and of DIC. Then, the major factors contributing
to the CPU load are: the inclusion test (corresponding to line 3 of Algorithm 3) and unit
support increments (corresponding to line 4 of Algorithm 3).

Note that the number of unit support increments in DIC is exactly the same as in APRI-
ORI, because the same overall collection of candidates is considered by both algorithms
and there is the same elementary support counter update (increment by 1). Therefore,
this part of the cost remains unchanged.

In the sampling algorithm, the number of candidates is at least the same and typically
is larger than in APRIORI. The elementary support counter update remains the same,
so this part of the cost typically increases when compared to APRIORI.

The second retained operation with assumed major cost is the inclusion test of a candidate
in a row. Recall that APRIORI stores the candidates in a prefix-tree and searching
for candidates matching a row is performed by edge look-ups, going to child nodes and
backtracking (see the description accompanying Algorithm 3).

Both the sampling algorithm and DIC consider more candidates at the time than
APRIORI. This difference has an effect on the performances of the inclusion test.

We would not achieve any gain if all three algorithms stored the candidates in prefix-trees

partitioned according to the candidate sizes:

e the sampling algorithm would make additional edge look-ups (as compared to
APRIORI) due to larger number of candidates. Since the additional candidates

are not frequent, the overhead is low,

e DIC would lose more efficiency — it would have to make additional edge look-ups,
not because of infrequent sets, but because a particular prefix-tree would likely be
accessed during more than one scan due to asynchronous creation of candidates
of the same size (a prefix may be shared between 2 itemsets, but if the support
counting of one itemset is finished before the beginning of the support counting of
the other, the sharing of the prefix does not benefit the support counting and there
is a duplication of the work to do as compared to APRIORI). Since this happens
for prefixes with high support (prefixes are never less frequent than frequent sets

starting with these prefixes), the overhead would be significant.
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We can possibly achieve some CPU load gain in this context using a unique prefix-tree for
all candidates. This gain might come because more candidates than in APRIORI may
share a same prefix, so edge look-ups in prefixes shared by several candidates would be
shared too (however the asynchrony of candidate generation in DIC and thus of support
counting goes up against).

Under our assumptions, an optimistic upper bound for relative CPU gain over APRIORI
we might achieve with DIC is therefore the ratio:

number of edge look-ups leading to a leaf in APRIORI
total number of edge look-ups in APRIORI

gain limit =

which means, we must have at least 1 edge look-up per candidate itemset (edge look-
up leading to a node with the corresponding support counter) and per support counter
increment. The above algorithms cannot overcome this limit.

But for highly correlated data sets, this ratio is indeed quite high and thus the resulting

gain may be fine.

Max-Miner reduces CPU load at a much higher level than DIC and the sampling
algorithm when mining frequent sets on highly correlated data, but it does not provide
the support values for all frequent sets.

One additional scan of the data set performed by Max-Miner to count the supports of all
frequent sets takes advantage of storing all candidates in a single prefix-tree, as do DIC
and the sampling algorithm, but cannot break through the limit of one edge look-up
per unit support increment. Therefore, neither Max-Miner cannot overcome the CPU

gain limit indicated above, when computing frequent sets and their supports.

A rather important advance for mining frequent sets in highly correlated data comes
with FP-Growth. It aggregates different rows into one and thus can increment support
counters by more than 1 in a single operation. Several other optimizations accompanying

this idea make it quite profitable in general.

A different idea is the essence of the algorithm CLOSE, which increments the support
counters 1 by 1, but considers much less candidates than APRIORI, DIC, the sam-
pling algorithm and FP-Growth?'. CLOSE processes less candidates without loss of
information by detecting the most obvious form of redundancy. Since the algorithm only
works directly on selected itemsets (i.e., on closed sets; the definition is in the section
devoted to CLOSE), it typically considers much less candidates, which saves CPU and

memory resources.

2IMax-Miner also considers much less candidates than these algorithms, but only to find maximal
frequent sets, which can be seen as an important loss of information about all frequent sets. In order to
compute the supports of all frequent sets, Max-Miner retreats and considers them all for the support
counting.
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Trait \ Algorithm APRIORI sampling |DIC Max-Miner
algorithm (maximal fre-
(after guess) quent sets)

search space traversal |levelwise none ordered by in-|levelwise

clusion

candidate processed to-|all having alall in the|dynamically |all having a

gether same size guess changing same size

candidate collection |prefix-tree prefix-tree  |dynamic prefix-tree

structure prefix-tree

candidate generation join guess on alnot specified|children in F
sample (join?)

pruning supersets of in-|none supersets  of|descendants of

frequent infrequent infrequent, sub-
sets of frequent

support counting primi-|increment by 1 |increment |increment by|increment by 1

tive by 1 1

intended itemsets all frequent all frequent |all frequent |maximal  fre-

quent

data access when sup-|linear scans linear scans |linear scans |linear scans

port counting

typical disk scan number| N 1 (rarely 2) |< N <N

| Trait \ Algorithm |[FP-Growth [CLOSE |CLOSET
search space traversal |depth-first levelwise depth-first

candidate processed to-

siblings in F/

all having a same

siblings in F/

sets except generator

gether size

candidate collection |array prefix-tree array

structure

candidate generation children in E |join children in F

pruning descendants |supersets of infre-|descendants of infrequent,
of infrequent |quent, closure sub-|descendants of child with

same support as parent

support counting primi-
tive

aggregated

increment by 1

aggregated

intended itemsets

all frequent

frequent closed

frequent closed

data access when count-|in memory |linear scans in memory
ing support
typical disk scan number |2 <N 2

Table 2.4: Selected characteristics of algorithms (/V is the size of the largest frequent set,
F is the set-enumeration-tree)
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Table 2.4 resumes the selected characteristics of frequent set mining algorithms presented
in the state-of-the-art (CLOSET is going to be described). Each of these algorithms can

be summarized in a concise way as following:

e APRIORI: basic, introduces APRIORI trick (pruning strategy), efficient join-
based candidate generation and simultaneous support counting for all candidates of

a same size,

e DIC: support counting and data set scan number optimizations based on better-

timed candidate generation,
e Max-Miner: (positive) border of frequent sets mining only,

e the sampling algorithm: frequent set collection guess and correct, data set scan

number optimization, simultaneous support counting for candidates of all sizes,
e FP-Growth: depth-first, aggregating rows to make amassed support increments,

e CLOSE: mining an equivalent, less voluminous information, deriving all frequent

sets in a simple and very efficient way.

An interesting remark from this comparative critique of those algorithms is that among
the ideas presented in this summary some are complementary and might be combined.
The most promising is to consider a depth-first, row aggregating method to mine frequent
closed sets, which could be superior to any of them separately. It has been recently
considered by Pei et al. in [Pei 00], and the resulting algorithm, called CLOSET, is
briefly presented below.

2.2.8 CLOSET

CLOSET [Pei 00| computes frequent closed sets and their corresponding supports using
a technique similar to FP-Growth. It explores the search space in a similar, depth-
first manner and uses a complete set-enumeration-tree (denoted £ in the following). An
itemset is considered as candidate if its parent itemset is frequent, but an additional

requirement is that the child’s support is different (i.e., strictly lesser) from the parent’s.

Algorithm 10 shows the top-level pseudo-code of CLOSET'. The pseudo-code represents a
recursive function FindFCS. A call FindFCS(X,r', 0, F) finds in 7’ the frequent closed
sets (and their supports) in a well-defined partition of the search space — the function will
consider only the part of £ corresponding to X and its descendants in £. This is a subtile
difference with FindF'S of FP-Growth, which considered that X itself is processed by
the function calling FindF'S.

Since () is the root of F, all itemsets are considered by the call FindFCS(),r, o, E), so
it returns FC and we have FreqClosed(r,0) C FC. A second step (not represented in
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Algorithm 10) must remove all non-closed sets from FC. It can be done by testing for
inclusion every pair of itemsets in FC, and if two itemsets have the same support and one
is a proper subset of the other, the former is not closed.

In line 1, the algorithm generates the candidate itemsets for the following scan (line 2) of
data. Like FP-Growth, CLOSET stores the binary database r’ in memory, so the scan
can be implemented relatively efficiently. In line 3, it initializes a temporary variable for
the result (returned in line 10). The value stored in the buffer is the set containing a pair
itemset-support: the first element is a possibly incomplete closure of X, the second is the
support of X (and thus of its closure). The closure is complete only if X is an ancestor
of its own closure in E or if X itself is its own closure. Since for each closed set there is
at least one such an X it follows that the algorithm is complete (unsound elements are
removed in a second step mentioned above). Then, it considers successively all children
Y of the entry point node (i.e., of X) in line 4. If Y is frequent, but not included in
the closure of X (line 5) descendants of Y are considered (recursive call in line 6) and all
frequent closed sets from the sub-tree rooted at Y are stored in the buffer (line 7).
Similar optimizations to the ones used in FP-Growth are integrated in CLOSET aiming
at aggregating the rows when it can be done without loosing any relevant information
(see FP-Growth).

Summarizing, CLOSET is a technique marrying the most promising ideas in frequent
set mining tools of the past. It will be our reference algorithm for depth-first methods.
Typically, on highly correlated data CLOSET should be the most efficient among the

Algorithm 10. (CLOSET)

Function FindFCS(X,r' 0, F)

Input: X the itemset considered as the current starting point in the search space, v a
binary database over a set of items R, o an absolute support threshold, and E is a complete
set-enumeration-tree.

Output: All pairs <Y, Sup(r',Y)> such that Y is frequent and closed in r' and it is in
the sub-tree of E rooted at X.

I:let C:={Y : Y € children of X in E};

2: Scan r’ and compute supports of itemsets in C;

8 FC = {<X UUyeelY :support of Y = ||}, |r'|>};
4:for all Y € C do

5. if support of Y in 1’ € [o,|r’|) then

6: FC' = FindFCS(Y, M(,Y), 0, E);
7 FC = FCUFC;

g £

9: od

10:return FC;
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ones we presented, however in this thesis, we will also show that on some data sets and
typical conditions of experiments, CLOSE outperforms CLOSET.

2.2.9 Note on the Implementations Used in the Experiments

For experiments we implemented CLOSE and CLOSET, two mining tools computing
frequent closed sets. This is not only because the use of frequent closed sets leads to
tools that are fastest on highly correlated large data sets, but also because the idea of
mining only some frequent sets (here frequent closed sets), instead of all frequent sets
presents some important advantages. This idea will be more formally stated as condensed
representation framework and developed through this thesis.

Additionally, we implemented APRIORI, to see if the use of frequent closed sets has an
adverse effect on performances in the circumstances of our experiments.

We notice however that the implementations of all algorithms (including HLin-Ex and
VLin-Ex, which will be introduced in Chapter 3) use the same low-level data structures
and techniques, in order to ensure a fair comparison. All prototypes have been imple-
mented in C++, and a similar effort has been spent on specific fine-tuning of each of
them.

Our implementations have been cross-validated with independently realized tools?? and
results®?, as well as cross-validated between the tools implemented by ourselves. They pass
all these tests — we consider them as reliable and the presented behavior in experiments

as typical.

2.3 Future Direction: Investigating Condensed Repre-

sentations

Condensed representations have been actually used in the computer science for long, even
if the people using them do not explicitly call them that way. Let consider informally the
concept.

A condensed representation is such an alternative form of data and procedures manipu-
lating them that from the external point of view the manipulating the alternative form of
data is easier than of the corresponding original form of data (e.g., it is more pertinent to
inspect or more efficient to obtain). Additionally, we wish that there were little or no loss
of quality of the result (comparing to the more difficult processing of the original form of
data).

22Thanks to Prof. H. Toivonen (from the University of Helsinki) who provided an implementation of
APRIORI and to T. Daurel (from INSA-Lyon and Schlumberger-Clamart) who provided an implemen-
tation of ACE3, a specialized association rule extractor.

23We are grateful to the Prof. L. Lakhal’s research group from the University of Clermont-Ferrand for
having sent us relevant outputs of their implementation of CLOSE.
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This informal definition is quite broad, let us take some examples.

Example 6. In Section 2.1.1 we introduced the concept of functional dependencies (FD)
across a data set. We say that the FD {Ay, As, ..., A} — {Bi,..., By} holds when for
every pair of data points r, q such that the value of attribute A; is the same for both
points, and that for all i € {1,...,n}, they also have the same corresponding values for
all attributes By, ..., By.

Now, observe that if the above rule holds, and two data points r and q have the same
values (pairwise) of all attributes A;, they will have the same values (pairwise) of all
attributes B;, and that independently of the values of remaining attributes. So we may
add an attribute A, .1 to the left-hand-side of the dependency and still be sure that any
r and q having the same values (pairwise) of all attributes A; (now including A1) will
have the same B;s. This latter dependency is a logical consequence of the former, and
thus s redundant.

Therefore, computer scientists tend to use a non-redundant cover of a collection of FDs.
The can be handled easier than the collection of all FDs. A non-redundant cover ¢ of a
collection of FDs s (see [Bernstein 76/, the term non-redundant covering of a collection
of FDs is used) is the collection of FDs that permits to logically infer the same FDs as
from the original collection s, but none of the proper sub-collections of ¢ does.

In this case, the set of all FDs is the original collection and the FD cover is its condensed

representation.

The functional dependency cover is typically orders of magnitude smaller that the repre-
sented collection of functional dependencies, so it makes sense to call the cover a condensed
representation of all FDs.

The following example recalls another typically used trick, in this case to simply increase

performances.

Example 7. Trigonometric functions sin(x) and cos(z) are quite costly to evaluate, in
general. However, they are periodic and they vary little over a small range. Thus one
could sample their values over one period (e.g., [0,27)) and store them in tables (one for
each function). When the precision is not much a concern (rapid animations using sine
and cosine to define a trajectory), the sampling rate could be actually quite rough, e.g.,
only one value per angular degree (resulting in an array of 360 reals). Then, all input
values can be transformed to integer degrees and when their sine or cosine is needed, the
value may be read from the corresponding table. In general, earlier that transformation is

done, better for the performances.

Remark that in the latest example, the original representation is a real number and its
“condensed” counterpart is a small integer from {0,1,...,359}. The advantages related

to the performances might be interesting and the “condensation ratio”, depending on
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the chosen representation for numbers, will typically be limited to a small (constant)
factor. Though interesting, the example shows a rather modest advantages. Therefore,
the framework is rather proposed for condensing large collections.

The last example (given later) will show a second (after FDs) application of the idea to

large collections, possibly resulting in a high degree of condensation.

The use of condensed representations in data mining has been suggested in [Mannila 97a|
as a promising direction of research. Such condensed representations could be gathered
off-line before the interactive step of the mining process. In that case, the goal is to
improve the step of processing involving humans (querying, pattern assessment, ... ).
Other promissing promising directions of research have been proposed and investigated
to acheive these goals. On-line behavior can be improved, e.g., reusing the result of one
query for obtaining the next result in a way different from re-computing the whole answer
from the data set (see e.g., [Diop 02, Bykowski 02b|). Such approaches can greatly benefit
from “similarity” of successive queries to reduce the loads.

Also combinations of the above ideas are recently considered, e.g., [Jeudy 02,

Giacometti 02]. In this thesis, we focus on promising condensed representations.

The condensed representations can be divided into lossless representations and representa-
tions with loss. Example 6 corresponds to the lossless class, Example 7 is a representation
with loss (a bounded error).

One of the existing frameworks for representations with loss is the framework of e-adequate
representations. We recall it after Mannila and Toivonen [Mannila 96b| and exemplify on
itemset support queries with an alternative answer mode using the collection of frequent

sets and their supports.

Definition 22. (c-adequate representation) An e-adequate representation for S w.r.t.
a class of queries Q, is a class of structures (', a representation mapping rep : S — C

Q(s) —

and a query evaluation function m : Q x C' — [0, 1] such that
m(Q,rep(s))| < e.

QRQeQ sef

Table 2.5 describes all components of an e-adequate representation and illustrates them
with a complete example. Remark that in that example the original representation is a
binary relation and its “condensed” counterpart is a collection of itemset-support pairs.
The “condensation ratio” depends on the instance of binary matrix  and on ¢ the support
threshold. For a given r, higher ¢ generally leads to more “condensed” representation (note
that in the example in Table 2.5 the support threshold ¢ used to mine frequent sets is
proportional to €), but also to higher accepted errors. In extreme cases (e.g., a binary
database consisting of a single row), the condensed form may actually be larger than the

original one.

Note that by setting € to 0, we define a framework for lossless representations.
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Com-
ponent

Description

Example

S is a class of structures, class of original
representations.

A class of structures is for example the set
noted DBpr of all possible binary databases
over the set of items R.

Q is a class of queries for S. The value
of a query @ € Q on a structure s € S is
assumed to be a real number in [0, 1] and
is denoted Q(s).

For a given set of items R, an example class
of queries is Qp, the set of all queries re-
trieving the relative support of an itemset
(subset of R). If we denote Qx the query
in Qp asking for the relative support of the
itemset X then Qp = {Qx : X C R} and
the value of @ x on a database instance r €
DBp is defined by Qx (r) = Sup(r, X)/|r|.
Sup(r, X)/|r| effectively are in [0, 1].

The class of alternative representations.

C' is the set of all possible collections of
frequent sets and their supports, i.e., C =
{rep(r) : r € DBRr}.

rep

Permits to obtain the contents of the al-
ternate form from the original form and is
given in terms of a representation change
function rep : S — C.

We can represent a binary database for

itemset support queries using frequent sets
and their supports, i.e., A rep(r) =

FreqSup(r, e« |r|).

The query evaluation function m on the
alternative representation, i.e., on the el-
ements of C'. It is a function that for an
individual query @ and a stored value c re-
turns an approximate value of Q(s), where
c is the transformed value of s. Formally,
m : QxC — [0,1] and m(Q,rep(s)) must
not differ by more than e from Q(s) for ev-
ery s.

Using this representation, the query Qx
returns « corresponding to <X,a> if
such a pair is in C, 0 otherwise. It
is easy to prove that this is an e-
adequate representation for DBr w.r.t.

Qr since 0xeon
m(Qx,rep(r))| <e.

ANRNGES

The error bound. Described together with
the previous component.

Fixed by the user.

Table 2.5: e-adequate representation component by component.
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Chapter 3

Core of the Thesis

3.1 Original Framework of Condensed Representations

In this section, we motivate and propose a framework for condensed representations of
interesting patterns. Since this thesis is focused on frequent sets, most of examples we
give are issued from this particular research field. Further, we propose to abstract into
this framework the existing solutions that compute alternative representations of frequent
sets. It should be noticed however that the applicability of the proposed framework is not

limited to frequent sets — it may be used for collections of other interesting patterns.

3.1.1 Problem Statement

In this section, we briefly introduce a specific framework for handling the collections of
interesting patterns, namely the so-called framework of theories.

Let the following parameters be given: r a data set, £ the set of all possible sentences for
expressing the properties and ¢ a selection predicate, which for a given sentence ¢ € L
establishes if it is potentially interesting w.r.t. the data set r.

The theory 7 = Th(L,r,q) is then the set of all sentences that are judged potentially
interesting w.r.t. the data set » [Mannila 97b]. Of course, the judgment depends on the
context of the knowledge discovery task (e.g., the intended application).

In |Mannila 97b|, the reader can find many interesting results concerning theory
computation when the selection predicates are anti-monotone! w.r.t. a generaliza-

tion /specialization < relation between sentences of L.

Definition 23. (anti-monotonicity) A predicate ¢ is anti-monotone w.r.t. a general-

Y. ¢ 2 Y Aq) = q(9), ie., if and only if for every
sentence asserted by ¢ more general sentences are also asserted by g.

ization /specialization < iff

The sentences of the language L expressing the properties will be called patterns. For

'In [Mannila 97b| the term monotone is used for the same concept

66



patterns that are accepted by the selection predicate ¢, we will use the term interesting
patterns. [Mannila 97b] describes few example classes of patterns.
Now, we illustrate the use of the framework on frequent sets (Freq(r,o) and

FreqSup(r,o)).

Example 8. Let us consider the collection of all frequent sets Tr. Here, r is a single
binary relation over a set of attributes R, Lr is the collection of all itemsets (subsets of
R), and qr(r,X) = Sup(r,X) > o (qr is the predicate “X is o-frequent in r”). Tp =
Th(Lpg,r,qr) is the collection of all frequent itemsets.

The following example incorporates into a pattern the value of the evaluation function

(usually not a part of the pattern iteself).

Example 9. Deriving correctly supports and confidences of association rules requires
for each frequent set its support. The adequate patterns should take into account this
connection. Here, r is a relation over binary attributes R, Lrs is the collection of
pairs <X,Sx>, such that X is an itemset (subset of R) and Sx is an integer. Let
qrs(r, <X, Sx>) = Sup(r,X) = Sx A Sx > o, i.e., the predicate stating that X is fre-
quent and Sx is the support of X inr. Tps = Th(Lrs,r,qrs) is the collection of all

frequent sets and their corresponding supports in r.

Trs is not anti-monotone w.r.t. itemset inclusion. Indeed, grs(r, <Y,100>) and X C Y
does not necessarily implies that, for example, grs(r, <X, 99>) holds. If grs(r, <Y, 100>)
and X C Y, the consequence actually cannot hold, because the support of the subset of
Y cannot be lower than the support of Y itself.

Assuming that for each itemset we have its exact support (e.g., we count it during a scan),

we could however improperly say that the selection predicate is anti-monotone.

The difficulty of pattern mining tasks that turn out to be the hardest is due to any or a

conjunction of the following characteristics:
e target pattern collections are large or infinite,
e evaluating the selection predicate on a pattern or on a set of patterns is costly.

Large pattern collections often occur when one mines frequent sets with a very low support
threshold within a binary database r. E.g., if the support threshold is fixed at 1 row and
the longest row of the database r has 100 items, then the number of frequent sets is at
least 2% ~ 10%°, which is clearly out of the present-day ability, not even to compute or
to store, but simply to enumerate them.

Evaluating the selection predicate is costly, for example, when the data set r is huge, say
in Giga- or Terabyte orders of magnitude, and we need to scan it entirely to evaluate the

selection predicate.
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3.1.2 Proposed Remedies

Repetitive evaluating of the selection predicate ¢ for numerous (candidate) patterns is
often considered as the bottleneck of the mining task.

On one hand, some of proposed remedies aim at optimizing the evaluation of selection
predicate or the number of scans of the data set (e.g., in case of frequent set mining
algorithms, we may cite DIC, FP-Growth, both presented in Section 2.2). On the
other hand, we observe that some recent advances do not aim at improving the execution
time of the selection predicate on a pattern, but focus rather on mining different pattern
collections (e.g., Max-Miner, CLOSE, also presented in Section 2.2). According to their
authors, these collections are somehow more pertinent w.r.t. a goal.

Let us focus now on the solutions based on different pattern collections, and denote C
such a pattern collection and 7 the target collection of patterns.

A reconstruction step to infer the target patterns from C is necessary. It is implicit in
some papers (e.g., in [Bayardo, Jr. 98] for a condensed representation of frequent sets or
in [Pasquier 99a] for a condensed representation of association rules) or explicitly stated
in the others (e.g., in |[Pasquier 99¢| for a condensed representation of frequent sets). Since
no additional evaluations of the selection predicate (against the data) are necessary, this
inference is often very fast, and may be done on the fly, when C is available and 7 is

needed.

Example 10. Theorem 2 permits to derive all frequent sets (but not their supports) from

the positive border of all frequent sets.

Example 11. Algorithm 9 shows how to derive all frequent sets and their corresponding

supports from the collection of all frequent closed sets along with their supports.

It is important to know how to infer 7 from C. In some cases, the authors rely on the
intuition and do not prove the preservation of the full information (e.g., in [Pasquier 99a,
Zaki 00], both concern association rules). In extreme cases, this leads to design flaws (as
shown e.g., in [Cristofor 02|, the condensed representation of association rules proposed
in [Pasquier 99a] leads to unsound inferred answers).

In the following, we propose a simple formalisation of condensed representations of the
pattern theories in the context given in Section 3.1.1. Here, we focus only on exact
representations, i.e., collections that aim at representing correctly all interesting patterns.
We will show that we can model in a simple and unified framework some recent advances

in pattern mining that make use of inference.

3.1.3 The Proposed Framework

Let the parameters £, 7, g given for the theory 7 = Th(L,r, q) be defined as previously.

Here, we additionally consider the functions InferentialClosure and gq.. q. selects the
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sentences of C that make up a condensed representation of 7, while InferentialClosure
infers 7 from C.

Nothing forbids to use a different kind of patterns (L¢) for the condensed representation,
but the instances of the framework in this thesis use the same pattern domain for con-
densed and original theory (Lo = £). Formally, InferentialClosure is a function from
2L¢ to 2 and we are interested in correct representations, i.e., representations such that
T = InferentialClosure(C) for any instance r.

The condensed theory of 7 is then the pair <C,InferentialClosure> with C =
Th(Le,r,q.) and T = InferentialClosure(C).

3.1.4 Practical Issues about Components of Condensed Theories

Elements of the condensed theory, i.e., L¢, q., In ferentialClosure may be chosen depend-
ing on the pattern mining context, data owner’s domain knowledge, redundancy obser-
vations, model assumption, etc. One should care as well about being able to implement
efficiently ¢. and InferentialClosure, if the goal is to improve the overall efficiency of
mining the full theory. Choosing above parameters in a particular context is a multi-step
process. It may be inspired from past advances recast into this framework in Section 3.1.5
as well as from the original condensed representations presented later in this thesis (Sec-
tions 3.2.4 and 3.3.4).

Let P be a collection of patterns. Here, we are only concerned with consistent arguments
P of the function InferentialClosure, i.e., there must exist an instance r of a dataset
such that all and only patterns in P validate the selection predicate ¢.. Readers interested
in the topic of consistency of pattern collections may find in [Bykowski 02b] a method for
checking the consistency of a set of Boolean formulae together with their corresponding
supports within the context of binary databases.

An important property is the inferential monitonicity of function InferentialClosure,
stating that one infers at least the same properties given additional assumptions. It is
not required by the framework, but it may sometimes influence the implementation of the

full pattern derivation (InferentialClosure function).

3.1.5 Instanciating the Framework on the Recent Approaches

We limit the discussion to the recent approaches concerning frequent sets, already pre-
sented in Section 2.2. The re-examination of these approaches and instanciating the
framework is conducted in four steps (denoted @), @, 3@ and @).

(D corresponds to identifying what is the theory 7 that the approach aims to condense
and what are the parameters £, r, q of 7.

(@ expresses what the authors consider as redundancy within the collection of patterns

7.
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) gives L and InferentialClosure needed to reconstruct the theory 7.
@ defines g. and combines all parameters to form the condensed representation as C =
Th('cC7 r, QC)

Max-Miner [Bayardo, Jr. 98] and Pincer Search [Lin 98]

(D We consider the collection of all frequent sets (75) with its corresponding parameters:
Lp (all itemsets), r (a binary database) and gr (the selection predicate “is o-frequent in
), defined in Example 8 (Section 3.1.1).

@ The use of Theorem 2 is proposed to condense this theory. From that theorem, we
know that if X € 7 and Y C X, then Y € 7p. Therefore, outputting any proper subset
of a frequent set turns out to procuce a redundant statement?.

@ It is clear that the non-redundant frequent sets are the ones with no frequent proper
superset. Thus, only the maximal frequent sets w.r.t. itemset inclusion are non-redundant.
If these maximal frequent sets are adopted as the condensed representation, then it will
consist of a collection of itemsets, therefore Lop = LF.

The result of InferentialClosurer applied to some collection of patterns C simply pro-

duces all subsets of the itemsets in C. Formally,

InferentialClosurer(C) ={Y € Lp : X\G/C Y C X}.

@ The condensed representation selection predicate q.p is thus q.p(r, X) = Sup(r, X) >
o\ Y/D\X Sup(r,Y) < o. It is easy to prove that 7p = InferentialClosurer(Cr),
where Cr = Th(Lcp, 7, qep)-

The reconstruction algorithm to generate 7z from Cp is trivial.

CLOSE [Pasquier 99c]

(D We consider 7rg, the collection of all frequent sets along with their supports, rede-
fined in the context of pattern theories as Example 9 (Section 3.1.1). The parameters
corresponding to 7rg are: Lpg (all pairs itemset-support), r (a binary database) and gqpg
(detailed in Example 9).

@) In case of long frequent sets, very often we can observe lot of itemsets with the same
value of support. In the case where two itemsets X, Y are included one in the other, say
Y C X, the same support of both is an evidence of an association rule with confidence
equal to 1 (note that Conf(r,Y = X \Y) = Sup(r, X)/Sup(r,Y) = 1). Such rules often
hold in data.

Thus an itemset may have the support equal to the support of one of its supersets. All

itemsets with a proper superset having the same support can be considered redundant.

2Remark that in this context we search for frequent sets only (without the corresponding supports).
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(® Non-redundant patterns (w.r.t. the redundancy defined above) are the pairs itemset-
support such that no proper superset of the itemset has the same support. Thus, the pair
<X, Sx> is non-redundant if among itemsets having the same support Sx, X is maximal
w.r.t. itemset inclusion. So-defined pairs are further limited to frequent ones to represent
frequent sets only.

The resulting condensed representation will consist of a collection of pairs itemset-support,
therefore Lepg; = Lps.

The InferentialClosurers; function is defined as:

InferentialClosureps:(C) = {<Y,Sy> € Lps : Y CXASy =SxA

<X,Sx>¢€eC (

C
<Z’SZ>€CY_Z/\ZCX)}.

For each pair <X, Sx>, the function outputs every subset Y of X with Sy as support, as
long as there is no pair <7, Sz> in C with Z C X, such that Y is a subset of Z. Without
this second condition, supports of different supersets of an itemset Y would have been
propagated on Y, creating possible conflicts.

@ The condensed representation selection predicate is thus

Qepsi (1, <X, Sx>) = Sx = Sup(r,X) AN Sx > o A Y/D\X Sup(r,Y) < Sx.

All and only frequent closed sets (defined in Section 2.2 together with the algorithm
CLOSE) are selected along with their supports.

An efficient recontruction of 7rg from Cpg1, where Crs1 = Th(Lcrpsi, T, qepgy) Was also
described in Section 2.2. The corresponding algorithm (Freq-Closed-To-Freq) could be

interpreted as an implementation of InferentialClosurers;(Crsi).

3.2 Original Condensed Representation Based on Fre-
quent o-Free Sets

In this section, we consider an original condensed representation based on frequent o-free
sets. We describe it first since it has been proposed earlier [Boulicaut 00a, Boulicaut 00c,
Boulicaut 03]. In the following, we describe a small modification of this representation, in
order to make both original condensed representations of the thesis more uniform. This
representation is called strong-rule-bordered condensation.

After informal and formal parts defining this representation, we will abstract it into a
framework for representations with loss, namely e-adequate representations. e-adequate
representation based on strong-rule-bordered condensation is more condensed than the
e-adequate representation based on frequent sets (see Table 2.5).

We show that a restricted variant of this condensed represenation may be abstracted into

the original framework for exact represenations proposed in Section 3.1.
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3.2.1 Informal Introduction

The strong-rule-bordered condensation is based on itemsets called frequent J-free sets. It
offers two possibilities: a full equivalence to frequent sets or a possible small loss of the
information, corresponding respectively to 6 = 0 and 6 > 0. In the former case, frequent
closed sets and frequent J-free sets (with 6 = 0) present similar benefits. Frequent J-free
sets with 0 > 0 lead to a much smaller representation and to a more efficient extraction,

but at the cost of some uncertainty on the supports of regenerated itemsets.

The key intuition of the strong-rule-bordered condensation (SRBC for short) is illustrated
on the following example. Let A, B, C', D represent binary attributes in a relational table r
depicted in Table 3.1 and suppose that we are interested in the support of { A, B,C} inr. If
we know that the rule {A, B} = {C} nearly holds in R (i.e., when A and B are set to true
in a row then, excepted in a few cases, C'is also true) then we can approximate the support
of itemset {A, B, C'} using the support of {4, B}. In Table 3.1, the rule {4, B} = {C}
has only one exception. So, we can use the support of {A, B} as an approximated value
for the support of {A, B,C'}. Moreover, we can approximate the support of any itemset
X such that {A, B,C'} C X by the support of X \ {C'} because the rule X \ {C} = {C}
also holds with a few exceptions. For instance, the support of X = {A, B,C, D} can be
approximated by the support of {A, B, D} since the rule {A, B, D} = {C} can not have
more exceptions than {A, B} = {C}. Furthermore, the support of {A, B, D} does not
need to be known exactly, but can also be itself approximated. For example, the rule
{A,D} = {B} holds in Table 3.1 with one exception, so the support of {A, D} can be
used as an approximation of the support of {A, B, D} and then also of the support of
{A,B,C, D}.

We call §-free set an itemset Y such that the items in Y can not be used to form a nearly ex-
act rule. If we consider only rules having at most one exception, then the only 1-free sets in
Table 3.1 are {0,{A},{B},{C} {D}, {A, B}, {A,C},{A, D},{B,C},{B,D},{C, D}}.
The o-freeness of itemsets is anti-monotonic in the sense that if a set is not a J-free set
then none of its supersets can be a o-free set. The algorithm we disgned to extract the
d-free sets takes advantage of this property. It considers first itemsets of size 1 (i.e., the
itemsets containing 1 item), then in the next iteration sets of size 2, and so on. When
it determines that a set X is not J-free then it prunes the search space since there is no
need to consider any of the supersets of X. For example, if the algorithm is executed on
Table 3.1 and takes into account rules having at most one exception, then it will never
consider the set {A, B, C, D} because several sets among its subsets are not 1-free (e.g.,
{A, B,C}).

Experiments (presented in Section 3.2.6) show that frequent d-free sets can be extracted

efficiently, even on highly-correlated data sets. Frequent d-free sets are not sufficient to
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Table 3.1: A relational table over a set of four items (“x” denotes the presence of the item
in the row).

reconstruct frequent sets. The negative border of frequent J-free sets? is essential to define
the alternate representation. The SRBC is made up of itemsets that are either frequent

o-free sets or in the negative border of frequent J-free sets.

3.2.2 Formalizing SRBC

We introduce the concept of d-free set in a concise way.

Definition 24. (§-strong rule) A §-strong rule* over 7 in a binary database r is an
association rule X = Y over Z such that Sup(r, X) — Sup(r, X UY) <4, i.e., the rule is

violated in no more than ¢ rows.

In this definition, J is supposed to have a small value, so a d-strong rule is intended to be a
rule with very few exceptions. Also important is that an association rule has a nonempty
right-hand-side, so in this definition Y # ().

Definition 25. (d-free set) Let r be a binary database over R, X C R is a d-free set
w.r.t.  if and only if there is no d-strong rule over X in r. The set of all o-free sets w.r.t.
r is noted DeltaFree(r,d).

3We instantiate the notion of negative border recalled in Definition 4.
4Stemming from the notion of strong rule of [Piatetsky-Shapiro 91].
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Since ¢ is supposed to be rather small, informally, a J-free set is a set of items such that
its subsets (seen as conjunctions of properties) are not related by any very strong positive

correlation.

Lemma 6. Let r be a binary database over R, X be an itemset such that X C R, A be a
single positive item in R\ X and A its corresponding negative item.

Then the following two propositions are equivalent:

(1) Sup(r, X) — Sup(r, X U{A}) <4,

(2) IM(r, X U {A})| = Sup(r, X U {A}) <.

Proof.  Observe that M(r, X) = {t : t € M(r,X U{A}) vVt € M(r,X U{A})} and
that the multisets M(r, X U {A}) and M(r, X U {A}) are mutually exclusive. Therefore
Sup(r, X) = Sup(r, X U {A}) + Sup(r, X U {A}). Consequently, (1) is equivalent to
Sup(r, X U{A}) <. O

Lemma 7. Let r be a binary database over R, and X,Y be itemsets such thatY C X C R.
Let A €Y. If Y\ {A} = {A} is a 0-strong rule in v then X \ {A} = {A} is also a

0-strong rule in r.

Proof. Suppose that Y \ {A} = {A} is a d-strong rule in r. By Definition 24, we have
Sup(r, Y \ {A}) — Sup(r,Y) < §. By Lemma 6, Sup(r, (Y \ {A}) U{A}) < 6. Then, since
X is a superset of Y, by Lemma 2, 6 > Sup(r, (Y \{A})U{A}) > Sup(r, (X \{A})U{A}).
Using again Lemma 6, we conclude that X \ {A} = {4} is also a d-strong rule. O

Lemma 8. Giwen r a binary database over R, X 1is a O-free set w.r.t. r iff
A\, Sup(r, X\ {A4}) — Sup(r. X) > 5.

Proof. Let us prove the equivalence of negations.

First, suppose that there exists A € X such that Sup(r, X \ {A}) — Sup(r, X) < 4. By
Definition 24, we deduce that X \ {A} = {A} is a 0-strong rule, which proves that X is
not a o-free set w.r.t. .

For the equivalence, suppose that X is not d-free w.r.t. r, i.e., Y\g/X Z\C/Y 7 =
Y \ Z is a §-strong rule in 7. Let Y and Z be such itemsets as in the expression. By
Definition 24, we have Sup(r, Z) — Sup(r,Y) <.

Let us consider A € Y\ Z. ZU{A} CY implies Sup(r, Z U {A}) > Sup(r,Y’). It means
that § > Sup(r, Z) — Sup(r,Y) > Sup(r, Z) — Sup(r, ZU{A}), i.e., Z = {A} is a é-strong
rule.

By Lemma 7, X \ {A} = {A} is also a o-strong rule, because Z C X \ {A}. Thus
Sup(r, X \ {A}) — Sup(r, X) < 0. O

One of the most interesting properties of d-freeness is its anti-monotonicity w.r.t. itemset

inclusion (see Definition 23).
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The anti-monotonicity has been identified as a key property for efficient pattern min-
ing [Mannila 97b, Ng 98|, since it is the formal basis of a safe pruning criterion. Indeed,
efficient frequent set mining algorithms like APRIORI and DIC (presented in the pre-
vious chapter) make use of the (anti-monotone) property “is frequent” for pruning.

The anti-monotonicity of J-freeness follows directly from the definition of )-free sets and

is stated by the following theorem.

Theorem 3. Let X be an itemset. For allY C X if X € DeltaFree(r,d) then Y €
DeltaFree(r,0).

We show now that J-free sets can be used to answer support queries with a bounded error.
The following lemma states that the support of any itemset can be approximated using

the support of one of the d-free sets.

Lemma 9. Let r be a binary database over a set of items R, X C R and § € [0, |r|],
then there exists Y C X such that Y € DeltaFree(r,d) and Sup(r,Y) > Sup(r,X) >
Sup(r,Y) — §|.X]|.

Proof. 'We show this using a recurrence on |X|. The statement is true for | X| = 0 if we
take Y = () (the empty set is trivially d-free). Suppose the statement is true for | 7] = i.
Let X be a subset of R such that | X| =i+ 1. If X € DeltaFree(r,§) then we can simply
choose Y = X. If X & DeltaFree(r,d) then by definition of DeltaFree(r, ) there exists
a d-strong rule Z; = Z based on X. Let A be an item in Z; and Zs = X \ {A}. As
| Z3] = | X|—1 using the recurrence hypothesis we know that there exists Y C Z;3 such that
Y € DeltaFree(r,0) and Sup(r, Zs) > Sup(r,Y) — 6|Zs|. Since Z; = Z, is a d-strong
rule, then Sup(r, Z1) — Sup(r, Z1 U Zy) < §. Sup(r, Z1) — Sup(r, Z1 U Z,) is the number of
rows not matched by 7, but matched by 73, thus Sup(r, Z;) — Sup(r, Z1 U Zs) is greater
or equal to Sup(r, 7, U Z3) — Sup(r, 71 U Z5 U Z3) (i.e., the number of rows not matched
by Z> but matched by Z; and Z3). So we have Sup(r, Z, U Zs) — Sup(r, Z, UZy U Z3) < 6
which simplifies to Sup(r, Z3) — Sup(r, X) < 6. Since Sup(r,Z3) > Sup(r,Y) — 6|Z3
and |Z3] = |X| — 1 we deduce Sup(r,X) > Sup(r,Y) — 0|X|. The other inequality
Sup(r,Y) > Sup(r, X) is straightforward because Y C 73 C X. O

This lemma states that the support of an itemset X can be approximated using the
support of one of the J-free sets, but it does not determine which J-free set to use. We
now show that this can be done by simply choosing among the /-free sets included in X
any J-free set with a minimal support value. This is stated more formally by the following

theorem.

Theorem 4. Let r be a binary database over a set of items R, X C R and § € [0, |r|], then
for any Y C X such that Y € DeltaFree(r,0) and Sup(r,Y) = min({Sup(r,Z): Z C X
and Z € DeltaFree(r,d)}) we have Sup(r,Y) > Sup(r, X) > Sup(r,Y) — §| X|.
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Proof. Let Y be a subset of X such that Y € DeltaFree(r,d) and satisfying
Sup(r,Y) = min({Sup(r,Z) : Z C X and Z € DeltaFree(r,0)}). Since Y C X we
have immediately that Sup(r,Y) > Sup(r, X). By Lemma 9, there exists Z C X such
that Z € DeltaFree(r,d) and Sup(r, Z) > Sup(r, X) > Sup(r,Z) — §|X|. Since Y has
the minimal support among all subsets of X in DeltaFree(r,¢), then Sup(Z) > Sup(Y).
Thus Sup(Z) — 0|X| > Sup(Y) — 0|X|. As Sup(r,X) > Sup(r,Z) — §|X|, we have
Sup(r, X) > Sup(Y') — 0| X|. O

In practice, computing the whole collection of J-free sets is often intractable. We show
now that such an exhaustive mining can be avoided since an alternative representation
to answer support queries can be obtained if we extract only frequent o-free sets together

with a subset of the corresponding negative border.

Definition 26. (frequent j-free set) Let r be a binary database over a set of items
R, we denote FreqDeltaFree(r,o,0) = Freq(r,o) N DeltaFree(r,d) the set of o-frequent

O-free sets w.r.t. r.

With frequent J-free sets alone, we cannot directly apply Lemma 9, because we do not
know if an itemset X is not in the collection, because it is infrequent or because it is
not o-free. In order to distinquish between these situations, we consider additionally the

negative border of frequent J-free sets.

Definition 27. (negative border of frequent o-free sets) Let r be a binary
database over a set of items R, the negative border of FreqDeltaFree(r,o,d) is defined
as Bd~ (FreqDeltaFree(r,0,0))®.

Informally, the negative border Bd~ (F'reqDeltaFree(r, o, 0)) consists of the smallest item-
sets (w.r.t. set inclusion) that are not o-frequent d-free. Our approximation technique only
needs a subset of the negative border Bd~(FreqDeltaFree(r,o,6)). This subset, denoted
FregqDeltaFreeBd (r,o,0), is the set of all frequent sets in Bd ™~ (FreqDeltaFree(r, o, 0)).

Definition 28. FreqDeltaFreeBd™(r,o,6) = Bd~(FreqDeltaFree(r,o,8)) N Freq(r, o).
We can now define the SRBC representation.

Definition 29. (strong-rule-bordered condensation) The strong-rule-bordered con-
densation is the collection of itemsets (and their supports) that are either fre-
quent o-free sets or in the negative border of frequent o-free sets.  Formally,
SRBC(r,0,0) = <{<X, Sup(r, X)> : X € FreqDeltaFree(r,o,6)}, {<X, Sup(r, X)> :
X € FreqDeltaFreeBd ™ (r,0,0)}>°.

5See Definition 4 for Bd~ operator.
6Note that this is a pair of collections of itemset-support pairs.
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The next theorem states that the collection of itemsets of the strong-rule-bordered conden-
sation is a subcollection of all frequent sets. The proof is trivial, following the definitions
of FreqDeltaFree(r,o,0) and of FreqgDeltaFreelBd—(r,o,0).

Theorem 5. FreqDeltaFree(r,0,0) U FreqgDeltaFreeBd—(r,0,6) C Freq(r,o).

3.2.3 SRBC as an eadequate Representation

We can now define the e-adequate representation w.r.t. the support queries based on the
SRBC.

Let DBR be the set of all possible binary databases over the set of items R. For a given
set of items R, let Qr be the set of all queries retrieving the relative support of an itemset
(subset of R)". If we denote Qx the query in Qj asking for the relative support of the
itemset X then Qr = {Qx : X C R} and the value of @ x on a database instance r € DB
is defined by Qx(r) = Sup(r, X)/|r|-

Definition 30. (representation of binary databases based on SRBC) The rep-
resentation of S = DBy based on SRBC(r,0,d) w.r.t. a query class Qg, is defined by a
class of structures C, a representation mapping rep and a query evaluation function m,

where:

rep(r) = SRBC(r,0,0)

’

r € DBR

C ={rep(r) : r € DBR},

S)(/‘T‘ if <X, Sx>¢€eF
m(Qx, <F.B>) = { min({m(Qx\(ay. <F.B>): Ac X)) itV zcx
<Z,Sz>€B

0 otherwise

Using this representation, the support of an itemset X is approximated following the

reasoning used in the proof of Lemma 9:
e If X is a frequent J-free set we return its support directly (it is stored in the SRBC).
e Otherwise, X is a superset of an infrequent set or a superset of a non-J-free set.

e If among subsets of X there is a frequent set in the negative border, we do not

know immediately whether X has an infrequent subset, so we recursively compute

"Note that DBr and Qp are the same as defined in Table 2.5, in the example of e-adequate represen-
tation.

7



the supports of its subsets and according to Theorem 4, we choose the one with the

least support.

e In case X is not frequent o-free set and does not have any frequent subset in the
negative border, then it has an infrequent subset in the negative border, so X is

infrequent and its support is approximated by O.

We now establish that this representation is an e-adequate representation for the following

database class and query class.

Definition 31. (e-adequate representation of binary databases based on SRBC)
DBrs = {r : v € DBr A |r| > s}, i.e., the set of all binary databases having at least s
rows. Qr, = {Qx : X C RA|X| < n},ie., the set of support queries on itemsets having

no more than n items.

Theorem 6. For r € DBg,, SRBC(r,0,6) is an e-adequate representation w.r.t. Qg ,,

where € = maz(o,nd/s).

Proof. Let Qx be a query in Qg,, and r a database in DBg . Let ¢ = SRBC(r,0,0).
If X is a frequent o-free set then it is in the SRBC and we know its support exactly.
Therefore, we do not commit any error here.

If any of the recursive calls of m(Qx, ¢) terminates at the last case (returning 0), then X
has an infrequent subset and X is not o-frequent, i.e., Qx(r) < 0. Since m(Qx,c) = 0
we have |Qx(r) — m(Qx,rep(r))| < o.

If all recursive calls terminate on a frequent J-free set then this means that all itemsets
included in X are either o-frequent or not o-free. Every recursive result retains the
minimum value, therefore overall result will be the minimum of all considered support
values. Moreover, for any known support, the supports of the subsets cannot be lower (the
support is anti-monotone), thus m(Q x, rep(r)) retains the minimum value of all frequent
O-free sets included in X. Whence, m(Qx,rep(r)) = min({Sup(r,Z) : Z C X N Z €
DeltaFree(r,0)}). Thus, by Theorem 4, m(Qx,rep(r)) > Qx(r) > m(Qx,rep(r)) —
5| X1/|r|. So we have |Qx(r) — m(Qx,rep(r))| < nd/s. O

3.2.4 Abstracting SRBC into the Condensed Theories Framework

Now, we are going to instantiate the original framework for condensed theories for the
SRBC. Since the framework is foreseen to correct representations, we set ¢ to 0 in this
section.

The SRBC is a pair of collections (see Definition 29), but the patterns of condensed the-
ories are simple collections. In order to be consistent we ought to merge two components
of the SRBC.
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(D We consider a second condensed representation of 7rg (the first was considered for
CLOSE in Section 3.1.5).

(@ Same observation as in case of CLOSE. But a different class of patterns will be
considered as redundant.

An evidence of an exact rule (an association rule with confidence equal to 1) will be used
to derive supports of redundant patterns. Note that if the association rule X = Y is
an exact rule w.r.t. the binary database, then for any Z7 C R\ Y such that Z7 O X
the association rule 7 = Y is also exact. This exact rule permits also to deduce that
Sup(r, ZUY) = Sup(r, 7).

Therefore in such a case, the proper supersets of X UY along with their corresponding
supports will be considered as redundant patterns.

3 To represent all frequent sets we need all frequent O-free sets, frequent sets of the
negative border of frequent 0O-free sets and the corresponding supports. Thus, we store
exactly SRBC(r,0,0).

The resulting condensed representation will consist of a collection of pairs itemset-support,
therefore Lepgy = Lpg.

The InferentialClosurerss function is defined recursively as:

InferentialClosurepss(C) = C U {<X,Sx> € Lps (Z c XA

<Z,Sz>¢€C

A\e/Z <Z\{A},Sz> € CA<X\{A},Sx> € [nferentialClosurerg(C))}.

This recursive function may be described as following:

e all members of the condensed representation C belong to In ferentialClosurergs(C),

e if X has a proper subset 7 (and its support) in C such that there is a O-strong
rule over Z (i.e., a proper subset of Z has the same support as Z), then by
Lemma 7 we know which proper subset of X (member of In ferentialClosurerss(C))
has the same support as X, so we use it and include X and its support in

InferentialClosurepsa(C).

@ The condensed representation’s selection predicate is
Gorsalr, <X.5x>) = Sx = Sup(r, X)nSx > an N I\ Sup(r 2) # Sup(r.Y).
An efficient algorithm mining Crgo = Th(Lcrgo, T, ¢epgo) is given in the following section.

An efficient levelwise recontruction algorithm of 7rg from Crgs is given in Chapter 4.

3.2.5 Discovering SRBC

In this section, we describe an algorithm, called Min-Ex, that generates the SRBC from

a binary database. Implementation issues are presented in the following section.
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The Algorithm - an Abstract Version

Min-Ex can be seen as an instance of the levelwise search algorithm presented
in [Mannila 97b|. It explores the itemset lattice (w.r.t. set inclusion) levelwise, start-
ing from the empty set and stopping at the level of the largest frequent J-free set.

The anti-monotonicity of §-freeness w.r.t. itemset inclusion (Theorem 3) is used for prun-
ing. Actually, the combined property “frequent and J-free” is used. It is also anti-monotone

as stated by the following lemma.

Lemma 10. Let r be a binary database over R, and X be an itemset, X C R. For all
Y C X if X € FreqDeltaFree(r,0,d) then Y € FreqDeltaFree(r,o,§).

Proof. Suppose that X € FreqDeltaFree(r,c,0). Let us consider any Y C X.

Since X € FreqDeltaFree(r,0,6), X € Freq(r,o0) and X € DeltaFree(r,d). According
to the anti-monotonicity of support (stated by Corollary of Lemma 1), Y € Freq(r, o).
Similarly, the anti-monotonicity of disjunction-freeness (stated by Theorem 3) implies
that Y € DeltaFree(r,9).

Finally, Y € Freq(r,o) N DeltaFree(r,§) = FreqDeltaFree(r, o, 9). O

Algorithm 11 shows the pseudo-code of Min-Ex. The collection of candidates is initialized
with the singletons (line 1) and then the algorithm iterates on candidate evaluation and
larger candidate generation. At each iteration of this loop, it scans the database (line 3)
to find out which candidates of size ¢ are frequent. Among them, J-free sets are stored
in line 4 and non J-free sets in line 5. Then, Min-Ex generates candidates for the next
iteration, taking every set of size i + 1 such that all subsets of size ¢ are frequent o-free
sets (line 6). The algorithm finishes when there is no more candidate (line 2).

Found itemsets are reported in line 9. Note that the empty set is added without test —
it is known to be frequent, and it is J-free, because there cannot be any association rule
based on (), in particular any valid -strong rule.

Using the correctness result of the levelwise search algorithm given in [Mannila 97b| the

following theorem is straightforward.

Theorem 7 (Correctness of Min-Ex). Given r a binary database over a set of items
R, and o, 6 two absolute thresholds, the algorithm Min-Ex computes all frequent d-free

sets and all frequent sets of the negative border of frequent d-free sets.

Implementation Issues

We used techniques similar to the ones described in Section 2.2 for APRIORI. The
candidate generation is made using a join-based function, and the itemset support counters
are updated w.r.t. a row of the database using a prefix-tree data structure.

The key point that needs a new specific technique is the d-freeness test in lines 4 and 5 of

the algorithm. An efficient computation of this test can be done, based on the following
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remark: Z is not a d-free set if and only if there exist A € Z and X = Z \ {A} such that
X is not J-free or X is d-free and X = {A} is a d-strong rule. Furthermore, the step 6
of the algorithm guarantees that if / is a candidate then X must be d-free since X is a
subset of Z of size |Z| — 1. Therefore, we might compare the support value of 7 with the
support values of its subsets of size |7| — 1 and if they do not all differ from the support
value of Z by more that 0, Z is not J-free.

The test described above is quite efficient (we use only already counted support values)

and may easily be incorporated in the algorithm.

3.2.6 Experiments

The running prototype is implemented in C++-. We use a PC with 1 GB of memory and
a 1900 MHz Pentium IV processor under Linux operating system.

For an experimental evaluation, we chose the PUMSB* data set, a PUMS census data
set® preprocessed by researchers from IBM Almaden Research Center. The particularity
of PUMS data sets is that they are very dense and make the mining of all frequent
sets together with their supports intractable for low support thresholds, because of the

combinatorial explosion of the number of frequent sets [Bayardo, Jr. 98|.

SRBC vs. Frequent Sets

We compared the size of Freq(r,o), FreqClosed(r,o) and SRBC(r,0,d) for different
support thresholds and different values of §.

8http://www.almaden.ibm.com/cs/quest/data/long_patterns.bin.tar
Algorithm 11. (Min-Ex)

Input: 7 a binary database over a set of items R, o € [0,|r|] and § € [0, |r|] two thresholds.
Output: SRBC(r,0,0).

I:let CG, := {{A}: A€ R}, i:=1;
2: while CG; # () do
3. Scan r and compute supports of itemsets in CG;;
let 7G, :={X : X € CG; N X is a o-frequent 6-free set in r};

4

7} let B, :={X : X € CG; N X is a o-frequent and not o-free set in r};
6: let CGiv1 ={X: XCRA|IX|=i+1A AN Y| =i=Y € FG,};
7 leti=1+1;
8:

9

od
output < |J;_,{<X, support of X>: X € FG;}U{0,|r[},
Uj<i{<X7 Support Of X>:X € fB]} >
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The three representations (frequent sets, frequent closed sets and the SRBC) are composed
of a collection of itemsets and their associated supports. We retain two measures that

reflect the size of these representations

e total number of itemsets in the representation, and

o flat-storage space used.

The first measure is interesting in itself, but it does not correspond directly to the amount
of data to be stored. The benefit of the second measure is to characterize this aspect more
precisely.
We consider the storage in a binary file without any ad-hoc encoding or compression,
and we make the following assumptions. The information relative to an itemset can be
stored using one integer for its support and one integer per item, all used integers are
ranging from 0 to 49 046 (for the data set used in experiments). We neglect the additional
marker of the end of the sequence of items. And finally, we consider that the elementary
storage unit is simply one 32-bit long integer in a fixed format. So, let S be the collection
of itemsets in one of the three representations, the corresponding flat storage space (in
bytes) is computed as 4 * )y o(|X] + 1).
Figure 3.1 emphasizes, using logarithmically scaled axes, the observed difference of sizes of
the various representations. Lower values correspond to more condensed representations.
It should be noticed that the support thresholds are given as relative support thresholds
(i.e., 100 x absolute support threshold / total number of rows in the data set).
- Flat-storage size of different representations erqy _ Number of temsets in diferent representations
A N
1.E+08 \ Levos

e

1.E+07

—¥— frequent sets LE+05 —X¥—frequent sets
—a&— freq. closed sets : '} —&—freq. closed sets
LE+06 1 SRBC, 5=0 S8 SRBC, 5=0
——SRBC, 5=10 ——SRBC, 5=10
—— SRBC, 3=20 —— SRBC, 5=20

1.E+05
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Figure 3.1: Sizes of different representations.

We observed, as expected, that increasing 0 leads to higher condensations. Between = 0
and 0 = 20 we observed around 4-fold reduction in size, for both used measures.

An interesting comparison is between the SRBC and frequent closed sets. The represen-
tation based on frequent closed sets is comparable in size with the SRBC for 6 = 10 using
the number of itemsets as measure (the curves nearly overlap), or comparable with an
SRBC with § between 0 and 10 for the flat-storage measure.

For both measures, the condensation of the SRBC for 6 = 20 is higher than of frequent
closed sets.

The comparison with frequent sets was less challenging — according to Theorem 5 we a

priori know that the SRBC is always smaller or equal in size.
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Expectedly, we observe higher condensation of the SRBC than of frequent sets. The
difference is very important and ranges from one to more-than-five orders of magnitude.
Not represented on the figures were the sizes of the collections of frequent sets for relative
support thresholds of 10%, 15% and 20%. For these three support thresholds, we use
lower-bound estimations of both measures for frequent sets. These lower-bounds are
computed using SRBC(r,0,0) extracted by Min-Ex to find the exact size of the largest
frequent set. If this size is m then there are a least 2™ frequent sets, and 2™ integers in
the flat-storage. The observed that largest frequent sets have resp. 32 (20%), 35 (15%)
and 39 items (10%).

Notice that given these values, F'req(r, o) is so large that it is clearly impossible to provide
it on our platform, while the extraction of SRBC(r, 0, ) remains tractable.

We observe a brutal change between the size of Freg(r,0.25 % |r|) and of Freg(r,0.20 x
|r]): 1000 times more frequent sets than expected by extrapolating the trend given by
Freq(r,0.25x%|r|) and Freq(r,0.30*|r|). If we look at the trend of the number of frequent
0-free sets it seems to be unchanged. The reason for this, is that between 0.25 and 0.20 we
reach a relative support threshold where the number of strong rules increases significantly
and then leads to the explosion of the number of frequent sets, but not to the explosion

of the number of frequent J-free sets.

Extraction time for different representations
10 000

e

—¥—frequent sets
—aA—freq. closed sets
SRBC, 5=0
——SRBC, 5=10
—&—SRBC, 5=20

100 4

10 T T T T
5 10 15 20 25 30

Figure 3.2: Extraction times of different representations.

Using also logarithmically scaled axes, Figure 3.2 shows that the extraction time for
Min-Ex grows up exponentially when the support threshold is reduced. This is due
to the combinatorial explosion of the number of frequent d-free sets. APRIORI-based
algorithms have a similar exponential evolution of the extraction time, due in this case to
the combinatorial explosion of the number of frequent sets.

We observed that the extraction of frequent d-free sets outperforms in all cases the ex-

traction of both, frequent sets and frequent closed sets.

Scale-up Experiments

On Figure 3.3, we report the extraction time when changing the number of rows or the
number of items in the data set. The same data set as in the previous experiments is

used, but a fixed relative support threshold of 20% is used.
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We observe an exponential complexity w.r.t. the number of items (Figure 3.3, right) and
a linear complexity w.r.t. number of rows in the data set if the value of ¢ follows the
number of tuples (e.g., if we double the number of rows then we double the value of 9).

This is emphasized by a superimposed straight line on Figure 3.3 (left).

300 Extraction time vs. number of rows 500 Extraction time vs. number of columns
250 | —* SRBC.0%0 A o [—e—srac, oo
r | —®—SRBC, 5=2 / 400 £ ) /
200 || —&—SRBC, 5=4 / 350 +{ —®—SRBC, 5=10 /
r SRBC, 5=6 - 300 { =
150 1| —¥—SRBC, 6=8 / / - A SRBC 5=20 /
| —e—sRrac, 5=10 M‘/ 200 i
100 B 150 / )_
N 100 A A
u 50
Q== ‘ ‘ ‘ R M columns
- 0k 10k 20k 30k 40k 50k 0 1000 2000 3000 4000 5000 6000 7000

Figure 3.3: Behavior of Min-Ex w.r.t. the number of rows and the number of items of
the binary database.

3.2.7 Summary of Results Related to SRBC

In this section, we have shown how J-strong rules that are valid in a binary database
can be put into use to define condensed representations (an e-adequate representation
of the binary database and a condensed theory of frequent sets). We also presented the
algorithm Min-Ex computing the SRBC in a binary database, the component of the
condensed representations.

We showed through experiments that on highly correlated data sets the SRBC is computed
very efficiently, when compared to APRIORI (computing all frequent sets) and CLOSE
(computing frequent closed sets).

The representation based on frequent closed sets (implicitly proposed in [Pasquier 99¢|
and formalized in Section 3.1.5) is strongly related to the notion of O-free sets (d-free sets
with 6 = 0). In [Bastide 00b|, an equivalent notion to frequent O-free set, called frequent
key pattern, has been independently proposed with the goal of mining faster frequent sets.
Notice however that they have not been developped as a condensed representation. Mining
0-free sets or closed sets lead to similar gains, but mining /-free sets with o # 0 offers
additional search space reductions (at the cost of an uncertainty on supports). It should
also be noticed that by definition exact rules are very sensitive to noise. If we process
a noisy data set (a very common case in practice) a few exceptions to the exact rules
can appear easily. Then the pruning methods based on exact rules will be less effective,
while the mining of d-free sets with § # 0 can still benefit of an important search space
reduction.

The techniques mentioned in this section present important benefits on dense data sets,
but if we consider very sparse data sets, we can hardly expect to have many exact or

nearly exact rules that hold, and thus all these techniques are likely to be with little or
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without benefits. Moreover, on very sparse data sets, these techniques may be a little bit
slower than the extraction of frequent sets without additional pruning, since they cannot
take advantage of important search space reductions, but have to pay for a small overhead

due to the (unfruitful) tests performed to detect the J-strong rules.

3.3 Original Condensed Representation Based on Fre-

quent Disjunction-Free Sets

In this section, we describe frequent disjunction-free sets and define a condensed repre-
sentation based on them. This second original representation, called disjunction-bordered
condensation, contains the same amount of information as the full collection of frequent
sets.

The preliminary study about this representation has been presented in [Bykowski 01| and
a mature research paper can be found in [Bykowski 03].

Like, strong-rule-bordered condensation, disjunction-bordered condenstation (DBC for
short) consists of a subcollection of the frequent sets and can be extracted more efficiently
than frequent sets. This collection is lossless. Therefore, we abstract it only into the
framework for exact represenations proposed in Section 3.1.

The DBC can be used to greatly reduce the running time and the storage space require-

ment of the data mining processes involving frequent sets and frequent closed sets.

3.3.1 Informal Introduction

The condensation of the collection of frequent sets by the DBC is due to a property that
binds supports of some itemsets by equations. This property is based on expressions called
simple disjunctive rules. The general form of such rulesis A AAsA. . .ANA,_o = A,_1VA,,
where A; represent different items (with an exception on the last 2 items, i.e., A, _; and
A,,, which are allowed to be the same). This rule states that if A;,..., A, o are set to
true within a row, then A,_; or A, is set to true within the same row. The rule may
hold in a row or not. The latter case arises when A,_; and A, are set to false in spite
of all Ay, As, ..., A,_» being set to true.

Consider the table r’ depicted in Figure 3.4. The rule BAC = AV D holds for example
in the second and third row, but not in the first one. The size gain of the DBC is based
on rules that hold in all rows of a table, as for instance A = C V D in r’.

Observe the rows with A true in Figure 3.4. Since A = C'V D holds in all rows, there is
no row with A true and both C and D false. Thus, the support of A is simply equal to
the sum of the supports of {A, C'} and {A, D} minus the support of {A, C, D} (because
the support of {A,C, D} has been counted in the support of both {A,C} and {A, D}).
So if we know the supports of {A}, {A, C'} and {A, D}, then we can avoid the extraction
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Figure 3.4: Illustration of simple disjunctive rules.

and the support counting of { A, C, D} by simply using the equation Sup(r’,{A,C, D}) =
Sup(r',{A,C}) + Sup(r', {A, D}) — Sup(r’, {A}).

Moreover, the figure shows that we also have Sup(r’,{A, B,C, D}) = Sup(r’, {A, B,C})+
Sup(r',{A, B, D}) — Sup(r’, {A, B}) as a consequence of the previous equation. If there
is more attributes than A, B, C and D, then similar relations will hold for all supersets
of {A,C, D}. Therefore, we may skip the support counting of all proper supersets of
{A,C, D}, while still being able to compute their supports using these relations between
the itemset supports.

An itemset containing items that can be used to form a simple disjunctive rule holding in
all rows is called a non-disjunction-free set. The remaining itemsets are called disjunction-
free sets. In the previous example {A,C, D} and {A, B,C, D} are non-disjunction-free,
because of the rule A = C'V D.

The DBC is simply the collection of all frequent disjunction-free sets and of all frequent
and minimal (w.r.t. set inclusion) non-disjunction-free sets, along with the corresponding
support information.

The most interesting property of the DBC is that this collection of itemsets can be ex-

tracted very efficiently and is sufficient to compute all frequent sets and their supports.

3.3.2 Formal Definitions

The notion of disjunction-free set is based on simple disjunctive rules, so we define them
first.

Definition 32. (simple disjunctive rule) Let X be a set of (positive) items, a simple
disjunctive rule based on X is an expression of the form Y = AV B, where Y C X and
A,B € X\ Y. Notice that A and B are single items and also that a rule of the form
Y = AV A is a particular case of simple disjunctive rule. Let r be a binary database
over R, where X C R. The simple disjunctive rule Y = AV B is wvalid in r if and only if
MrY)={ter:te Mr,YU{A})Vte M(r,Y U{B})}.

Now, we state three lemmas. They are fundamentals needed for the further development

of the representation.
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Lemma 11. Let r be a binary database over R, and Y be a set of items such that Y C R.
Let A and B be single items in R, and A, B be their corresponding negative items. Then
the following three propositions are equivalent:

(1) Y = AV B is a valid simple disjunctive rule in r,

(2) M(r,Y U{A, B}) =0,

(8) Sup(r,Y U{A,B}) = 0.

Proof.  From Definition 12 (2) is trivially equivalent to (3). Now, we show that (8)
implies (1) and later that (1) implies (2).

Suppose Sup(r,Y U {A, B}) = 0. By Definition 12, there is no ¢ € r such that ¥ C ¢
and {A, B} Nt = (. Thus, terY Ct=AectVvBet So, M(r,Y)={ter:te
M(r, Y U{A})Vte M(r,Y U{B})} and finally, by Definition 32, Y = AV B is valid.

Suppose now that Y = AV B is valid. By Definition 32, M(r,Y) = {t € r : t €
M(r, Y U{A}) vVt € M(r,Y U{B})}. So, there is no row ¢ € r such that Y C ¢ and
A ¢ tand B ¢ t. Thus, the multiset {t € r : Y CtA{A,B}Nt =0} ={t €r:
Pos(Y U {A,B}) CtA Neg(Y U{A, B})Nt=0}is empty. And then, by Definition 12,
M(r,Y U{A,B}) = . O

Lemma 12. Let r be a binary database over R, and X,Y be itemsets such thatY C X C
R. Let ABeY. IfY\{A B} = AV B isvalid in r then X \ {A,B} = AV B is also

valid in r.

Proof.  Suppose that Y\ {A,B} = AV B is valid in 7. By Lemma 11, M(r, (Y \
{A, B})U{A, B}) = (. Then, since X is a superset of Y from Definition 12 and Lemma 2
we deduce that M(r, (X \ {A, B}) U {A, B}) = 0. Whence, using again Lemma 11, we
know that X \ {A, B} = AV B is valid. O

Lemma 13. Let r be a binary database over R, X C R be an itemset, and A, B be items in
X. Then there exists Y C X such that Y = AV B is a valid simple disjunctive rule based
on X, if and only if Sup(r, X) = Sup(r, X \ {A}) + Sup(r, X\ {B}) — Sup(r, X \ {A, B}).

Proof. Consider Y = AV B the valid simple disjunctive rule based on X and 7 =
X\{A, B}. By Definition 32, Y C Z and then from Lemma 12, we deduce that Z = AVB
is valid.

We can partition the multiset of rows matched by Z into three multisets M(r, Z U {A}),
M(r,Z U {A,B}) and M(r,Z U {A,B}). As Z = AV B is valid, using Lemma 11 we
have M(r, Z U {A, B}) = 0. Thus, Sup(r, Z) = Sup(r,Z U {A}) + Sup(r, Z U {A, B}).
Because M(r,Z U{A,B}) ={ter:te M(r,ZU{B}) At & M(r,ZU{A,B})} and
M(r,Z U {B}) D M(r,Z U {A, B}), we have Sup(r, Z U {A, B}) = Sup(r,Z U{B}) —
Sup(r, ZU{A, B}), and finally Sup(r, X \{A, B}) = Sup(r, X \{B}) + Sup(r, X \ {A}) —
Sup(r, X).
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Suppose now that Sup(r, X) = Sup(r, X \ {A}) + Sup(r, X \ {B}) — Sup(r, X \ {4, B}).
Let Z = X \ {A,B}. Sup(r,Z U{A, B}) = Sup(r,Z U {A}) — Sup(r,Z U {A, B}) =
(Sup(r, Z) — Sup(r, Z U{A})) — (Sup(r, Z U {B}) — Sup(r, Z U{A, B})) = Sup(r, X \
{A,B}) — Sup(r, X \ {B}) — Sup(r, X \ {A}) + Sup(r,X) = 0. Therefore, from the
Lemma 11, we deduce that 7 = AV B is valid, which proves the existence of the required
rule. O

Now, we define the notion of disjunction-free sets.

Definition 33. (disjunction-free set) Let r be a binary database over R, X C R is a
disjunction-free set w.r.t. r if and only if no simple disjunctive rule based on X is valid in

r. The set of all disjunction-free sets w.r.t. r is noted DisjFree(r).

The anti-monotonicity of disjunction-freeness follows directly from the definition of

disjunction-free sets and is stated by the following lemma.

Lemma 14. Let r be a binary database over R, and X be an itemset, X C R. For all
Y C X if X € DisjFree(r) thenY € DisjFree(r).

Definition 34. (frequent disjunction-free set) Let r be a binary database over a
set of items R, FreqDisjFree(r,0) = Freq(r,o) N DisjFree(r) denotes the set of all

o-frequent disjunction-free sets w.r.t. r.

Once more, we instantiate the concept of negative border and define it for o-frequent

disjunction-free sets.

Definition 35. (negative border of frequent disjunction-free sets) Let r be a
binary database over a set of items R, the negative border of FreqDisjFree(r,o) is
defined as Bd (F'reqDisjFree(r,o0)).

Out of all itemsets of the negative border, we need only the frequent ones. The definition

follows.

Definition 36. (frequent sets of negative border) Let r be a binary database over a
set of items R, the collection of all frequent sets of negative border of FreqDisjFree(r, o)
is defined as FreqDisjFreeBd=(r,0) = Bd~(FreqDisjFreeBd=(r,c)) N Freq(r,o).

Definition 37. (disjunction-bordered condensation) The disjunction-bordered con-
densation is the collection of frequent sets that are either disjunction-free sets or
in the negative border of frequent disjunction-free sets. Formally, DBC(r,0) =
<{<X,Sup(r,X)> : X € FreqDisjFree(r,o,0)},{<X,Sup(r,X)> : X ¢€
FreqDisjFreeBd—(r,0,0)}>.
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3.3.3 Properties of Disjunction-Bordered Condensation

The following theorem supports an earlier claim, which stated that the disjunction-
bordered condensation is a subcollection of the collection of all frequent sets. The proof is

trivial, following the definitions of FreqDisjFree(r,o) and of FreqDisjFreeBd=(r,o).
Theorem 8. FreqDisjFree(r,o) U FreqDisjFreeBd (r,o) C Freq(r,o).

We can now state the correctness of the DBC, i.e., the DBC is sufficient to determine the

support of any frequent set.

Theorem 9. Let r be a binary database over a set of items R, X be an itemset such that
X C R, and o be an absolute support threshold. Using the itemsets in FreqDisjFree(r, o)
and in FreqDisjFreeBd=(r,o), together with their supports, we can determine if X is

o-frequent, and when X is o-frequent we can also determine Sup(r, X).

Proof.  Let X be any itemset. If X is in DBC(r,0) (in FreqDisjFree(r,o) or in
FreqDisjFreeBd~(r,0)), we know its support, so we can state that X is o-frequent, and
we can also give Sup(r, X ). This situation will be referred to as trivial case in this proof.

The proof is made by induction on |X|.
First, let us consider the case where X = (). Given that o € (0, |r|] and that Sup(r,0) =

Ir|, X € Freq(r,o). Moreover, there cannot be simple disjunctive rule based on ) (see

Definition 32), so X must be frequent disjunction-free set and we have the trivial case.

In the following, we suppose that X = ().
Hypothesis. Suppose that for every itemset W C X, we can determine if W is o-frequent,

and when W is o-frequent we can also determine Sup(r, W).
If X € FreqDisjFree(r,o) then we have again the trivial case.

If X & FreqDisjFree(r,o) and Y/C\X Y & FreqDisjFreel3d—(r,o) then we show that
X is not o-frequent. First, observe that if X ¢ FreqDisjF ree(r, o) then, by Definition 4,

w ¥ x W € Bd~(FreqDisjFree(r,0)). Let W be such a set. W is not o-frequent

since Y/C\X Y & FreqDisjFreelBd—(r,o). By the anti-monotonicity of support, we
know that X is not o-frequent, because W C X.

If X & FreqDisjFree(r,o) and X € FreqDisjFreeBd (r,o) then, we have once more
the trivial case.

We consider now the case where X ¢ FreqDisjFree(r,o) and Y\C/X Y €
FreqDisjFreeBd™(r,o). Let Y be such an itemset.

Y € FreqDisjFreeBd~(r,o) implies that Y is not a disjunction-free set. In this case,
we now construct a valid simple disjunctive rule based on Y, and then we use this rule

to decide if X is o-frequent and to compute its support. By Definition 33, Y is not a
disjunction-free set implies that there exists Z7 C Y and A, B € Y\ Z such that 7 = AVB
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is a valid simple disjunctive rule in r. By Lemma 13, we have Sup(r,Z U {A, B}) =
Sup(r, Z U{B}) + Sup(r, Z U{A}) — Sup(r, Z).

Since Y is o-frequent, by Lemma 1 all its subsets are o-frequent. Because |Y| < | X| and
Y is o-frequent, by the induction hypothesis we can determine the supports of all subsets
of Y. So we can find among all subsets of Y four itemsets Z, ZU{A, B}, ZU{B}, ZU{A}
satisfying the relation Sup(r, ZU{A, B}) = Sup(r, ZU{B})+Sup(r, ZU{A}) —Sup(r, Z),
which corresponds to a valid rule Z = AV B.

By the induction hypothesis, we can determine for the itemsets X \ {A, B}, X \ {A} and
X\ {B} (the items A and B are the same as above) if they are all o-frequent and if so we
can also determine their supports. If these three sets are o-frequent, using their supports
we can determine the support of X as Sup(r, X) = Sup(r, X \ {A}) + Sup(r, X \ {B}) —
Sup(r, X \ {A, B}) (according to Lemma 13), because Z = AV B is a valid disjunctive
rule based on X. If at least one of these itemsets is not o-frequent so neither is X (by

Lemma 1), which completes the proof. O

It should be noticed that the proof of Theorem 9 is constructive and that it can be used

as a naive recursive algorithm to determine Sup(r, X).

3.3.4 Abstracting DBC into the Condensed Theories Framework

In this section, we instantiate the original framework for condensed theories on the DBC.
As in case of the SRBC, the DBC is a pair of collections, but the condensed theories
framework allows a single pattern collection. Therefore, we will refer to the DBC as a
single collection containing both frequent disjunction-free sets and frequent sets of the

negative bodrer.

(D We consider a third condensed representation of 7rg.

@ As redundant, we consider a frequent set X (and its corresponding support) such that
a disjunctive rule based on any proper subset of X is valid in r. If a valid disjunctive rule
can be based on X, but not on its proper subsets, we do not consider X as redundant (it
will be necessary to infer other patterns).

3 Therefore, the itemsets from FreqDisjFree(r,o)UFreqDisjFreeBd=(r,o) (and their
corresponding supports) are non-redundant. The condensed representation will consist of
a collection of pairs itemset-support (Lcrgs = Lrs)-

The InferentialClosurergs function is recursively defined as®:

InferentialClosure s, (C) = CU{<X,S;> € L, : (Z C XA A,B€Z <Z\

<zZ,Sz>¢€cC Sza,SzB,SzAB €N
SxaA,SxB,SxaB €N

{A},S,,> € CA<Z\{B},S,,> € CAN<Z\{A,B},S,,,> € CANS, +S,,s = Sy, + 5,5 /N
<X\ {A}, S .> € InferentialClosure . (C) N <X \ {B},S,,> € InferentialClosure, ., (C) N <X \
{A,B}, S ,p> € InferentialClosure, ,,(C) NSy =S, + Sxp —Sxas NSy >0} )}

9Note that A appearing in the formula can be the same item as B.
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This recursive function may be described as following:

e all members of the condensed representation C belong to In ferentialClosurerss(C),

e if X has a proper subset Z (and its support) in C such that there is a valid disjunctive
rule based on Z (as asserted by the relationship on supports of the subsets 7, Z\{ A},
Z\{B}, Z\{A, B}), then by Lemma 12 we know from which subsets of X (members
of InferentialClosurerss(C)) the support of X can be inferred, so we use them and
include X and its support in InferentialClosurerss(C) if the inferred support of

X satisfies the support criterion.

@ The condensed representation’s selection predicate is

Qepgs(r, <X, Sx>) = Sx = Sup(r,X) AN Sx > o A y/C\X Sup(r,Y) + Sup(r,Y \
A BeY

{A, B}) # Sup(r,Y \ {A}) + Sup(r.Y \ {B}).

The condensed representation Crss = Th(Lergs, T, Gergs) Of Trps is the disjunction-
bordered condensation.

An efficient algorithm mining the representation is given in Section 3.3.6. An efficient
levelwise recontruction algorithm of 7zg from Crgs is given in Chapter 4. Additionally in
Chapter 4, efficient representation change algorithms are also given, changing Crg3 either
into Crg1 (defined in Section 3.1.5) or into Crgy (defined in Section 3.2.4).

3.3.5 Comparing the Representation Size

In this section, we report a comparison between the sizes of the different representations.
For different data sets and support thresholds, we consider the collection of all frequent
sets, the collection of all frequent closed set!? and the DBC.

We measured the size of the three representations (frequent sets, frequent closed sets and
the DBC) in the same way as in the experiments with the SRBC (in Section 3.2.6).

We report representation sizes on three different commonly used data sets: Mushroom
(characteristics of some mushroom species), Connect-4 (collection of game-related state
information), and PUMSB (PUMS census data). All these data sets have been prepro-

cessed by researchers from IBM Almaden Research Center!!.

The particularity of the
selected data sets is that they are very dense and the combinatorial explosion of the num-
ber of frequent sets makes the mining of all frequent sets together with their supports
intractable for low support thresholds [Bayardo, Jr. 98].

The representation sizes for several support thresholds are given in Figure 3.5 (note that
some axes are logarithmically scaled). Lower values correspond to more condensed repre-
sentations. It should be noticed that the support thresholds are given as relative support

thresholds (i.e., 100 x absolute support threshold / total number of rows in the data set).

10 A5 defined in Section 3.1.5, frequent closed sets allow regenerating all frequent sets with their supports.
Hhttp://www.almaden.ibm.com/cs/quest/data/long _patterns.bin.tar
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Figure 3.5: Different representation sizes on the three data sets.

The Mushroom data set is based on 119 items only and contains 8124 rows — a relatively
small number in data mining. Nonetheless, at the thresholds used in the experiments
(Figure 3.5, upper graphics) the collection of all frequent sets was huge (more than 22
millions for a relative support threshold of 2%) and we could not extract frequent sets
completely for thresholds lower than 2%, even with a non-naive implementation of the
APRIORI algorithm.

The Connect-4 data set contains 67557 rows, but a relatively small number of items
(129). Its difficulty lies in a very high correlation. A huge number of frequent sets was
observed even for as high support thresholds as 75% (Figure 3.5, middle graphics).

The last data set, Pumsb, contains 49 046 rows and is very challenging because of the
high number of items (7117). For this reason, when decreasing the support threshold, the
sizes quickly grow for all representations (see Figure 3.5, lower graphics).

On Figure 3.5 in the left graphics, we can see that the DBC representation is smaller than
the frequent closed sets representation in all experiments when we consider their flat-
storage spaces. The same holds with few exceptions if we count the number of itemsets
required by each representation (Figure 3.5, right graphics).

For the comparison of the size of the DBC with the size of the collection of all frequent
sets, according to Theorem 8 we know that the DBC is always smaller or equal in size.

In the experiments presented in Figure 3.5, the difference is very important and ranges
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from one to four orders of magnitude.

3.3.6 Discovering DBC

In this section we describe two algorithms to mine the DBC. Two main strategies have
been proposed to explore the search space during frequent set mining: breadth-first (e.g.,
APRIORI) and depth-first (e.g., FP-Growth, Tree Projection). Each of them has its
pros and cons, and even if we consider only the extraction time criterion there is no always-
winning strategy as we will show in Section 3.3.7. So, in this section we consider both
strategies and we describe the corresponding algorithms. For each, we give an abstract
version to find FreqDisjFree(r,o) and FreqDisjFreeBd (r,o), and then we describe
the key implementation issues.

The anti-monotonicity of disjunction-freeness w.r.t. itemset inclusion is important for an
efficient mining (Lemma 14). Actually, the combined property “frequent and disjunction-

free” is used. It is also anti-monotone as stated by the following lemma.

Lemma 15. Let r be a binary database over R, and X be an itemset, X C R. For all
Y C X if X € FreqDisjFree(r,o) then Y € FreqDisjFree(r,o).

Proof. Suppose that X € FreqDisjFree(r,o). Let us consider any Y C X.

Since X € FreqDisjFree(r,0), X € Freq(r,c) and X € DisjFree(r). According to
the anti-monotonicity of support (stated by Corollary of Lemma 1), Y € Freq(r, o).
Similarly, the anti-monotonicity of disjunction-freeness (stated by Lemma 14) implies
that Y € DisjFree(r).

Finally, Y € Freq(r,o) N DisjFree(r) = FreqDisjFree(r, o). O

During the extraction of the DBC, according to the contrapositive of this property, when
an itemset is not frequent disjunction-free then there is no need to consider any of its
proper supersets. This pruning criterion will be applied in breadth-first and depth-first

strategies.

Breadth-First Extraction - Abstract Algorithm

Algorithm 12 presents the pseudo-code of HLin-Ex — an algorithm mining the DBC in a
levelwise manner. It is formulated as an instance of the generic levelwise-search algorithm
presented in [Mannila 97b]. It explores iteratively the itemset lattice (w.r.t. set inclusion)
levelwise, starting from the singleton itemsets (line 1) and stopping at the level of the
largest itemset from DBC(r, o), or, less commonly, one level further. At each iteration,
it scans the database (line 3) to find which itemsets of the current level are frequent
disjunction-free sets. Then, it generates candidates for the next iteration considering only
the itemsets of the next level for which all proper subsets are frequent disjunction-free
sets (line 6).
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Note that the empty set is added without test (line 9) — it is known to be frequent, and
it is disjunction-free, because there cannot be any disjunctive rule rule based on ) (see
Definition 32), in particular any valid disjunctive rule.

Using the anti-monotonicity of the combined property stated by Lemma 15 and the cor-
rectness result of the levelwise search algorithm of [Mannila 97b|, the following theorem

is straightforward.

Theorem 10 (Correctness of HLin-Ex). Given r a binary database over a set of items
R, and o an absolute support threshold, Algorithm 12 computes all frequent disjunction-

free sets, and all frequent sets of the negative border of frequent disjunction-free sets.

Breadth-First Extraction - Implementation Issues

Techniques similar to the ones presented in Section 2.2 for APRIORI. The candidate
generation (line 6) is made using a join-based APRIORI-Gen function, the data set is
linearly scanned to count supports of candidates (line 3) and the itemset support counters
are updated w.r.t. a row of the data set using a prefix-tree data structure.

We implemented line 6 as a call to APRIORI-Gen function. That function uses only
o-frequent disjunction-free sets of size i to generate candidates of size ¢ + 1. Therefore,
we partition FDF into FDF,; according to itemset size, and use only the portion corre-
sponding to itemsets of size i for the call.

A specific aspect is the implementation of the disjunction-freeness test (lines 4 and 5).
When we need to test this property for an itemset X, we already know the supports of
all its subsets. So we check if there exist A and B, items of X, such that Sup(r, X) =
Sup(r, X\ {A}) + Sup(r, X \{B}) — Sup(r, X \ {A, B}). By Lemma 13 and Definition 33,

Algorithm 12. (HLin-Ex)

Input: r a binary database over a set of items R, o € [0, |r|] an absolute support threshold.
Output: DBC(r,0).

I:'let C:={{A}: A€ R}, i:=1,FDF =0, FB := 0

2: while C # () do

3 Scan r and compute supports of itemsets in C;

4 FDF :=FDFU{X : X € CAX is o-frequent disjunction-free in r};

5 FB:=FBU{X :X €CAX iso-frequent and not disjunction-free in r};

6: C={X:XCRand|X|=1i+1 and YcX|Y\:i:>YE]:D.7:};

7 leti:=1+ 1;

8 od

9: output < {<X, support of X>:X € FDF}U{0,|r|},
{<X, support of X>:X € FB} >;
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X is disjunction-free if and only if no such a pair of items exists.

Algorithm 13 shows the pseudo-code of the function testing the disjunction-freeness of an
itemset Z. The function searches for any pair of items A, B such that the above support
relationship is valid (which corresponds to a valid simple disjunctive rule basen on 7).
The meaning of its result if it contains two different items A, B is that A, B € Z and
Z\{A, B} = AV B is valid. When the result contains only one item A, it means that
A€ Zand Z\{A} = AV Ais valid. Finally, when the result is empty, it corresponds to
the case where Z is a disjunction-free set. If there are more than one valid rule based on
7, the function is supposed to report any of them.

FindDisjRule uses the supports of its proper subsets of size |X| — 1 and |X]| —
2. Since all these proper subsets of X are already in FDF|x-1 and FDF|x|—2
when the test is to be performed for X in lines 4 and 5, we can simply call
FindDisjRule(X, Sup(r, X), FDF|x|-1 U FDF|x|-2).

The test described above is quite efficient (we use only already counted support values)

and may be integrated easily in an implementation of HLin-Ex.

Depth-First Extraction - Abstract Algorithm

Algorithm 14 shows the pseudo-code of the VLin-Ex, an algorithm computing the DBC
in a depth-first manner. Techniques similar to the ones presented in Section 2.2 for FP-
Growth and CLOSET are used.

The algorithm is given by means of a recursive function FindF' DF'S which explores the
itemset lattice in a depth-first manner. A call FindFFDFS(X,r, 0, Tail) finds in r the o-

frequent disjunction-free sets in a well-defined partition of the search space. The algorithm

Algorithm 13. (FindDisjRule)

Input: Itemset 7, S support of 7, collection of itemsets C including all proper subsets of
7 of size |Z| — 1 and of size |Z| — 2, the supports of itemsets in C are also supposed to be
accessible.

Output: Itemset P = {A, B} corresponding to a valid rule Z \ {A, B} = AV B (see
description in text).

1: Find any A, B € Z such that
support of 7\ {A} + support of Z\ {B} =S + support of 7\ {A, B};
2: if such A, B exist then // in this case Z \ {A, B} = AV B is valid
3 let P:={A, B},
4: else
5 let P:=(;
6: fi
7- output P;
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uses the divide-and-conquer strategy as follows. A call to the function will consider only
the partition of the search space corresponding to proper supersets of X. Moreover, this
subspace is further reduced to subsets of X U T'ail, i.e., proper supersets of X that have
not been examined earlier (see the explanation accompanying FP-Growth for details
about the search-space traversal).

To compute the DBC we call FindFDFS(0,r, o, R), which returns <FDJF, FB> and we

have:
{<X, Sup(r,X)> : X € FreqDisjFree(r,0,0)} = FDF U{<0,|r|>}
{<X,Sup(r,X)>: X € FreqDisjFreeBd(r,0,0)} C FB

As in case of HLin-Ex, in VLin-Ex the empty set can also be added without test — it is
known to be frequent, and it is disjunction-free, because there cannot be any disjunctive
rule rule based on () (see Definition 32), in particular any valid disjunctive rule.

The computation of the exact collection of frequent sets of the negative border can be
performed in a straightforward post-processing step using 7B — non-minimal itemsets
(w.r.t. set inclusion) of this collection must simply be removed to obtain the collection of
frequent sets of the negative border.

Considering only supersets of X by the call FindFDFS(X,r, o, Tail) enables an efficient
determination of support and of disjunction-freeness, because, only a restricted part of the
database is required. Moreover, this restricted part of the database is further restricted
in a recursive manner for recursive calls. Thus, in case of most calls to it, F'indF DF'S
works on a relatively small fraction of the database. Precautions should be however taken
at this stage.

To test the disjunction-freeness, we wish to call the function FindDisjRule. We cannot
use it directly however, because in depth-first approaches when X is considered we do not
necessarily have the information about all subsets of X (to check Sup(r, X) = Sup(r, X'\
{A}) + Sup(r, X \ {B}) — Sup(r, X \ {4, B})). For testing disjunction-freeness of the
itemset X, FindDisjRule needs the supports of all subsets of X with up to 2 items
missing. Therefore, for the abstract version of the algorithm, we consider the following
function, denoted Aug M (r, X), which selects the rows of a database so that the supports

of subsets of X of size at least | X| — 2 remain preserved.

Definition 38. Given r a binary database over R and an itemset X, the augmented set
of rows matching X is defined as AugM(r, X)={ter:| X\t <2}

Lemma 16 (anti-monotone AugM). Let r be a binary database over R, and X,Y be
sets of items such that Y C X C R. Then AugM(r,X) C AugM(r,Y).

Proof. Let t be any row in r that belongs to AugM(r, X). From Definition 38, a row
t belongs to M(r, X) iff | X \ ¢] < 2. Y C X implies that Y \ ¢ C X \ . It follows that
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[Y'\t| < |X\¢t| < 2and further that t € AugM(r,Y). Thus, AugM(r,X) C AugM(r,Y).
U

Using this lemma, we can apply the incremental computation of the fraction of the binary
database, when recursively calling FindF'DF'S and still have the necessary information
to test the disjunction-freeness.

The correctness of Algorithm 14 is stated by the following theorem.

Theorem 11 (Correctness of VLin-Ex). Given r a binary database over a set of
items R, and o an absolute support threshold, the call FindFDFS(0,r, 0, R) returns
<FDF,FB>, and we have {<X, Sup(r,X)> : X € FreqDisjFree(r,o,0)} = FDF U
{<0,|r|>} and {<X, Sup(r, X)>: X € FreqDisjFreeBd (r,0,0)} C FB.

Proof. First of all, we recall that the list ordered list(X) is the permutation of all items
in X that is sorted in ascending order according to the linear order < for items. XTi]

designates i" element of ordered list(X).

Let us now consider <FDF, FB> returned by FindF'DFS(0,r, o0, R).

Algorithm 14. (VLin-Ex)

Function FindFDFS(X,r, o, Tail)

Input: X the itemset considered as the current starting point in the search space, r a
binary database over a set of items R, o an absolute support threshold, and Tail a set of
items such that the itemsets X and X UTail delimit the partition of the search-space to
be considered by this call to the function.

Output: All pairs <Y, Sup(r',Y)> such that Y verifies X C Y C X UTail and it is
frequent disjunction-free set in r’.

I:let C:={X U{A}: A € Tail};

2:let FDF =0, FB:=0;

3 Scan r and compute supports of itemsets in C;

4: for all A € Tail in the ascending order given by < do

5 let Tail :=Tail \ {A};

6: letY:=XU{A};, //YecC

7. ifY is a o-frequent disjunction-free set in r then

8: let <FDF' FB>:= Find(Y, AugM(r,Y), 0, Tail);
9: let FDF .= FDF UFDF U{<Y,support of Y>};
10 let FB:= FBU FB’;

11:  elsif Y is a o-frequent in r then

12: let 7B := FBU{<Y,support of Y>};

13 fi

1/:0d

15:output <FDF,FB>;
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Below, we show that <Y, Sup(r,Y)> € FDF using an in-

Y € FreqDisjFree(r,o)\ {0}
duction on |Y|.

Let Y € FreqDisjFree(r,o) and |Y| =1 (i.e., Y is a singleton itemset). Note that every
singleton itemset is considered directly by FindFDFS((,r, o, R) (line 6) and therefore if
Y is o-frequent disjunction-free (line 7) we have Y € FDF (line 9).

Induction hypothesis. Let Z be an itemset such that |Z| > 2. Suppose that the property
holds for every itemset X C Z such that ordered_list(X) is a prefix of ordered_list(Z).

Given Y € FreqDisjFree(r,o), such that |Y| =n+ 1 > 2, let = be an n-element prefix
of ordered_list(Y') and X be the set of items occurring in z. Note that Y[n + 1] is the
item marking off the difference between Y and X.

By Lemma 15, X € FreqDisjFree(r,o), and then, by the induction hypothesis,
<X, Sup(r,X)> € FDF. Adding an itemset to FDF for the first time in line 9 is
preceded by a call to FindF'DFS (line 8) with that itemset as the first parameter. It
follows that FindF'DF'S has been called at least once using FindFDFS(X,rx, o, Taily),
where rx and T'ailx are the corresponding instances of parameters r and T'ail, at the time
FindFDFS is called.

Similarly, for every k = {1,...,n}, Find({X[1], X[2],..., X[k]}....) has been called in
line 8. At any of these events, for every item B in the corresponding instance of T'ail such
that X[k] < B, B had not yet been processed (due to the ascending order in which items
are processed in line 4). This implies that B is not yet removed from the corresponding
T'ail in line 5.

Note that for all £ = {1,...,n} the property X[k] < Y[n + 1] holds. Otherwise, the list
ordered_list(Y') would not have followed the ascending order of items, which would have
contradicted with how ordered_list(Y') is defined.

Combining the last two properties proves that Y[n + 1] is in T'ailx.

Let us focus on the call FindF'DFS(X,rx,0,Tailx). This call starts by the following
candidate generation step C := {X U{A} : A € Tailx}. We know that Y[n + 1] € Tailx.
Therefore, Y is generated as candidate (in line 1) and tested for sufficient support and
disjunction-freeness (in line 7). Since Y € FreqDisjFree(r,0), Y is collected in FDF.
The soundness of the algorithm (i.e., Y € FreqDisjFree(r,o)) is immediate
(lines 7 and 9).

Finally, we consider again the call FindFDFS(,r, o, R), which returns <FDF, FB>.
Let Y be an element of FreqDisjFreeBd=(r,o) such that |Y| = n+ 1, and x be the
n-element prefix of ordered list(Y'). Let X be the set of items occurring in z.

By Definition 36, X € FreqDisjFree(r,o), and since /\ 7 €

Z € FreqDisjFree(r,o) \ {0}
FDF, we have X € FDF unless X = (). Using the same reasoning as above we know

Y € FDF

that Y is generated as candidate in line 1, thus tested in lines 7 and 11, and stored in
line 12. Thus {<Y, Sup(r,Y)>:Y € FreqDisjFreeBd (r,0,6)} C FB. O
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Depth-First Extraction - Implementation Issues

We combined best features from state-of-the-art algorithms implementing a depth-first
strategy for frequent set mining. In particular, we use a support counting technique
similar to the one presented in [Agarwal 01|, and a compact storage of a collection of rows
(instances of the parameter r of FindFFDF'S) in a prefix-tree structure as described for
FP-Growth in Section 2.2.

We wished to adopt as many optimisations described for FP-Growth as possible. Most of
them could have been adopted directly. The use of AugM instead of M allows selecting
only a fraction of rows for the recursive calls, leading to considerably smaller binary
databases by deeper recursive calls to FindF'DF'S.

The loop of line 4 enumerates the items A € T'ail following the ascending order of supports
of the corresponding itemsets X U {A} in r. This order of exploration has been inspired
from FP-Growth to reduce the number of rows in partitions (AugM (r,Y)) with higher
number of items (long T'aily ), when calling FindF'DFS(Y, AugM(r',Y), o, Taily).

The challenging optimisation was the one preserving only the items contained
in Taily for the construction of the prefix-tree for M(r,Y), when -calling
FindFS(Y, M(r',Y),0,Taily). This can be done for FP-Growth because the pres-
ence of all items Y is already checked by computing M(r';Y) and the exploration of
the corresponding partition of the set-enumeration-tree neither contains items other than
Y U Taily nor requires supports involving them.

In case of VLin-Ex, AugM does not guarantee the presence/absence of any single item,
and thus if based only on that property the optimisation would not had been applicable
— we would had had to preserve all items of Y U T'aily .

An alternative might be found by dropping the use of FindDisjRule. An equivalent
test to the validity of the relationship Sup(r, X)) = Sup(r, X \ {A4}) + Sup(r, X \ {B}) —
Sup(r, X \ {A, B}) is to check if Sup(r, (Y U{A, B})\ {4, B}) is zero (see Lemma 11).
The presence/absence status of all items of Y in the collection of rows matching (Y U
{A,B}) \ {A, B} is known (A and B are absent in all rows, others are present also in all
rows). Therefore, we may split the collection of rows AugM (r’,Y) into such collections
for combinations of present/absent items of Y. Note that the rows in AugM(r',Y) are
those and only those matching at most two negative items of Y. This observation not
only permits to limit the numbmer of collections to be considered for an itemset Y, but
also suggests the way to compute recursively AugM (r',Y") as follows.

Suppose that X is the parent of Y = X U {D} in the set-enumeration-tree corresponding
to the search-space explored by VLin-Ex. Consider the collection of rows M(r,Gx)
matching a full clause G'x over X (see Definition 10) and preserving only the items from
Tailx. When calling recursively Find'DEFS(Y, AugM(r,Y), o, Taily), we should incre-
mentally select the rows of AugM(r,Y), i.e., (among others) AugM(M(r,Gx),{D}). If

(G x contains 0 or 1 negative item, we preserve all rows, because they all match Y with at
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Figure 3.6: Illustration of the construction of AugM(r,{A,C, F'}) the node {A,C} and
its child {A, C, F'}. Previous constructions are also shown. The call-stack is represented
by arcs. r’ parameter is omitted for M.

most two items missing. If G'x contains 2 negative items, we select only the rows matching
D (since the rows missing two items of X and not containing D would miss 3 items of
Y’). We partition the resulting collection of rows according to the missing items, in order
to detect empty collection of rows M (r, (Y U{A, B})\ {A, B}), where A, B represent two
items in Y (detection of non-disjunction-free sets).

Figure 3.6 represents schematically the construction of AugM (r,{A,C, F'}) in an imagi-

nary context. Recursive steps for the parents of {A, C, '} are also represented.

3.3.7 Extracting DBC in Practice

In this section, we consider the extraction times of the DBC and the condensed represen-
tation based on frequent closed sets.

To mine efficiently the frequent closed sets we use the algorithms CLOSE and CLOSET,
both described in Section 2.2. Additionally, we report the extraction times of the APRI-
ORI algorithm, which extracts all frequent sets. For more details on the used implemen-
tations, see Section 2.2.9.

We have run the following experiments on a PC with 256 MB of memory and an 800 MHz
Pentium III processor under Linux operating system.

We compared the extraction times of frequent closed sets and of the DBC on the data sets
that have been described in Section 3.3.5. We varied data sets and support thresholds
in order to get a meaningful overview. The running times, in seconds, are given in
Figure 3.7 (note that some axes are logarithmically scaled and that we use relative support
thresholds, as in Section 3.3.5). The results are given for HLin-Ex, VLin-Ex, for the
implementations of CLOSE and CLOSET, and additionally for the implementation of
APRIORIL
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Figure 3.7: Experiments on the three data sets with breadth-first (left) and depth-first
(right) algorithms.

On the Mushroom data set, we observed that extracting the DBC is advantageous (see
Figure 3.7, upper graphics) especially using HLin-Ex. Observed speed-up was up to 5
times for breadth-first extractors and up to 8.5 times for depth-first extractors. With the
extraction time above 1 hour, the curve corresponding to APRIORI is exceptionally not
reported on the figure for this data set. Thus, we could magnify the difference between
extraction times for frequent closed sets and the DBC.

The Connect-4 data set is very difficult for mining frequent sets (see Figure 3.7, middle
graphics), and mining directly frequent closed sets using CLOSE and CLOSET allows a
significant improvement (compare the results for CLOSE with the ones for APRIORI).
Further significant improvements (over CLOSE and CLOSET) can be achieved by us-
ing HLin-Ex and VLin-Ex. At lowest support thresholds for which we were able to
extract frequent closed sets, we observed over 150 times faster extractions for HLin-Ex
vs. CLOSE and up to 260 times faster extractions for VLin-Ex vs. CLOSET.

In the case of the last data set, i.e., of PUMSB, extracting frequent patterns was very dif-
ficult for all extractors, and CLOSE was not significantly advantageous over APRIORI.
However, HLin-Ex and VLin-Ex offer an evident benefit at lower support thresholds
(see Figure 3.7, lower graphics).

In nearly all experiments on the three data sets, the extraction of the DBC is significantly
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more efficient than the extraction of the frequent closed sets. For the very difficult cases,

the DBC can be extracted at lower support thresholds, using the same resources.

3.3.8 Summary of Results Related to DBC

In this section, we showed how disjunctive rules that are valid in a binary database can be
put into use to define a condensed representation of frequent sets. We also presented two
algorithms, HLin-Ex and VLin-Ex, computing the DBC. Experimental study of these
algorithms and of the proposed representation showed that mining highly correlated data
sets using the DBC outperforms APRIORI (computing all frequent sets) and CLOSE
(computing frequent closed sets) in terms of condensation and extraction time.

As in case of the SRBC, the DBC may present very little or no benefits if we consider

very sparse data sets. Their extraction could be actually a little slower.
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Chapter 4
Applications

Obtaining frequent sets from the SRBC and the DBC (the representations described in
Chapter 3) is the most basic application for these condensed representations. Since these
condensed representations often represent intractably large collections of frequent sets
(see Section 3.2.6 and 3.3.5), obtaining all frequent sets is not always possible. In that
case, it does not mean we cannot proceed with mining tasks. Frequent set mining is
often followed by some data mining tasks making use of frequent sets, and it is a common
practice to use some well-defined subcollections of frequent sets and to discard remaining
ones. In such cases, the results described in Section 4.1 could be refined to regenerate
such subcollections, circumventing often voluminous collections of all frequent sets. For
example, the regeneration procedures of all frequent sets (Regen-Freq, Regen- Approx-
Freq) can be easily modified to extract frequent sets under constraints (extraction of
frequent sets under constraints has been widely investigated, see e.g., [Srikant 97, Ng 98,
Boulicaut 00d]).

Downstream applications include all applications of frequent sets, such as association
rule derivation (with the equivalent tractability prerequisite as for frequent sets), deriva-
tion of association rules under constraints [Srikant 97, Ng 98, Boulicaut 00d|, computing
association rule covers (discussed shortly in Section 4.4), extracting association rules
with negations or their covers (Section 4.5), generalized formulae support derivation
(see [Bykowski 02b]), clustering techniques [Das 98, Han 98| and so on.

We do not discuss them all. We focus on providing the fundamentals that may benefit
them.

Computing all association rules from the proposed condensed representations is straight-
forward by regenerating all frequent sets and then using Algorithm 1, unless we make use
of lossy representations. For this particular choice, we need pay attention to errors on
the evaluation functions (e.g., support, confidence) propagated from overestimates of the
frequent set supports provided by an SRBC with 6 > 0. We discuss and experiment this
aspect for support and confidence measures in Section 4.2.

Another issue is that computing association rule covers can be done without computing
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all frequent sets. In [Bastide 00a] and in [Zaki 00] resp. Bastide et al. and Zaki have
described methods to compute association rule covers'. Both require frequent closed sets
and frequent 0-free sets for actual computation of the cover (the use of frequent closed
sets is explicitely stated in both papers, the need of frequent O-free sets is derived from the
properties on other itemsets involved in the process of generating covers). Consequently,
we give a special importance to show how to convert the lossless disjunction-bordered
condensation into frequent closed sets and frequent O-free sets. This can be done even
when the collection of all frequent sets is intractably large; the procedure and experiments
are detailed in Section 4.3. In order to circumvent regenerating all frequent sets this
procedure uses quite dense theoretical contents.

The lossless variant of strong-rule-bordered condensation already contains 0-free sets and
sole regeneration of frequent closed sets need to be addressed in order to derive rule covers.
This procedure is enclosed in the procedure converting the disjunction-bordered conden-
sation into frequent closed sets and frequent O-free sets, and therefore is not specifically
detailed nor experimented.

Section 4.4 briefly recalls the results from the literature related to the association rule
covers and shows the relevance of the results of Section 4.3 w.r.t. this goal.

Specific applications, taking better advantage of smaller size of the one of the condensed
representations have been carried out or are still under development (see [Bykowski 02a,
Bykowski 00, Bykowski 02b]).

4.1 Frequent Set Regeneration from Condensed Repre-

sentations

In Chapter 3, we showed that regeneration of all frequent sets along with the value of the
evaluation function of these patterns (i.e., support) from the condensed representations
developed in this thesis is possible. We can regenerate that information without accessing
the data set. It could lead to an extremely fast regeneration process.

In this section, we devise an efficient regeneration process. We provide theoretical prop-
erties, algorithms and experimental studies. The quasi-constant time complexity per
regenerated frequent sets can be achieved.

The regeneration from the DBC has been described in [Bykowski 03|, while the regener-
ation from the SRBC has partly been reported in [Boulicaut 03].

We start with lossless representations, because of a lesser number of issues to be addressed.

!By cover we mean here a non-redundant subcollection of all association rules permitting regenerate
all association rules if necessary. For a further discussion see Section 4.4.
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4.1.1 Regeneration from DBC

In this section, we present a levelwise algorithm, called Regen-Freq, that regenerates
all frequent sets from the DBC. Here, we assume that we regenerate Freq(r,o) and
the corresponding supports given DBC/(r, o). Nonetheless, the support thresholds may
be different — we might regenerate Freq(r,o’), where o' > o, by skipping from the
DBC/(r,o) the itemsets whose supports are below ¢’ and applying the same algorithm to
the reduced input (and the increased support threshold). It is quite important, because
it means that we do not regenerate unnecessary frequent sets only to discard them when
the regeneration finishes — we eliminate them at the early stage and regenerate only the
required ones.

We give Regen-Freq in a detailed form. The actual implementation integrates few
straightforward optimizations. Most important hints will be mentioned throughout this

section.

The data structure corresponding to one frequent set will be called a node. Here is its

structure:
itemset : set of items
support : integer
prunedby  : set of items

Let FS; denote the collection of nodes corresponding to itemsets of size i. A collection of
such nodes is stored in an itemset-prefix-tree, a structure allowing efficient access to the
node given the value of itemset (see [Agrawal 94|, or Section 2.2.1).

For a node N, the access to these three fields is denoted respectively N.itemset, N.support
and N.prunedby. N.itemset corresponds to a frequent set? and N.support is its support.
N.prunedby is a set of at most two items. Its meaning if it contains two different items
A, Bisthat A, B € N.itemset and N.itemset\{A, B} = AV Bisvalid. When N.prunedby
contains only one item A, it means that A € N.prunedby and N.itemset \ {A} = AV A
is a valid disjunctive rule. Finally, when N.prunedby is empty, it corresponds to the case
where N.itemset is a disjunction-free set. If there are more than one valid rule based on
N.itemset, N.prunedby is supposed to report any of them.

Note the similarity of the above specification to the specification of the function Find-
DisjRule presented as Algorithm 13 in Section 3.3.6. When necessary, we will call that
function to fill the field N.prunedby?.

Now, we can give the algorithm Regen-Freq, which regenerates all frequent sets and
their supports from the DBC. It is detailed as Algorithm 15.

2The field itemset is represented in the algorithm for clarity, but using an itemset-based prefix-tree
structure provides a much more compact storage of the items in this itemset.

30ur implemented extractors store in the materialization of the DBC the values of prunedby corre-
sponding to the frequent sets of the negative border.

105



Algorithm 15. (Regen-Freq)

Input: o, DBC(r,0) of the form <F,B>.
Output: F'req(r,o) and their supports.

I: for all <X, Sx> € F do // Disjunction-free input sets

2:  Create new node Nx in FS|x| with Nx.support := Sx,
Nx.itemset := X, Nx.prunedby := ();

3 od

4: for all <X, Sx> € B do // Non-disjunction-free input sets

5: Create new node Ny in FS|x| with Nx.support := Sx,
Nx.itemset := X;

6: if | X| =1 then let Nx.prunedby := X;

7 else let Nx.prunedby := FindDisjRule(X, Sx, FS|x|-1 U FS|x|-2);
A i

9. od

10:1et i :=1;

11:while FS; # () do
12 let C;y1 := APRIORI — Gen(FS;);
1% for all X €(C;,, do

14: Find node Ny in FS; such that Ny .itemset C X and
Ny .prunedby # 0;
15: if such Ny exists then
16: case |Ny.prunedby| of :
17 2:
18 let A, B be items such that Ny .prunedby = {A, B};
19 let Ns, Np be the nodes in FS; and Nap be the node in FS; 1

such that Ny.itemset = X \ {A} and Np.itemset = X \ {B}
and Nup.itemset = X \ {A, B};

20 let S := Ny.support + Ng.support — N sp.support;

21: 1:

22 Find node N in FS; such that N.itemset = X \ Ny .prunedby;

23 let S := N.support;

24 end case

25: if S > o then

26: Create new node Nx in FS|x| with Nx.support :== S,
Nx.itemsetl := X, Nx.prunedby := Ny .prunedby;

27 fi

28: fi

29: od

30. leti:=i+1;

31:0d ;

g2:.output {<N.itemset, N.support>: N € U,_; FS;};
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In lines 1-9, Algorithm Regen-Freq loads the input and converts it to a collection of
nodes, one node per frequent set. The nodes corresponding to frequent sets of the negative
border are marked by a nonempty content of the field prunedby.

In line 11, the algorithm enters a loop corresponding to increasing sizes of regenerated
frequent sets. Within the i iteration of the loop, the algorithm uses FS; and FS,_;
(the collections of the nodes corresponding to frequent sets of size ¢ and ¢ — 1) to produce
FSii1 (i-e., frequent sets of size i + 1). Candidate itemsets, i.e., itemsets of size i + 1
having all their proper subsets frequent, are computed in line 12 and stored in C;;;. An
additional pruning is performed in lines 14-15. The condition ensures that at least one
proper subset of the current candidate itemset is not disjunction-free. Otherwise (i.e.,
when all proper subsets are disjunction-free), the candidate should be skipped. Two cases
fit skipped candidates: the candidate is not frequent, then we do not want to regenerate
it anyway, or the candidate itemset is frequent. A frequent sets of size ¢ + 1, for which all
subsets of size ¢ are frequent and disjunction-free, is either in FreqDisjFree(r,o) (when
it is disjunction-free) or in FreqDisjFreeBd (r,o) (non-disjunction-free set). In both
cases, it is in the DBC, and thus the corresponding node has already been created in
lines 1-9.

In lines 16-24, for each retained candidate itemset X, Regen-Freq searches the informa-
tion necessary to restore its support. According to Lemma 14, X is not disjunction-free,
because it is a proper superset of an itemset that is not disjunction-free. According to
Lemmas 12 and 13, Regen-Freq finds a valid simple disjunctive rule leading to an equa-
tion that can be used to derive the support of X from the support of some of its subsets.
Then, if Sup(r, X) > 0, Regen-Freq creates a node Nx and fills it with the correspond-
ing information (line 26). As previously, the value stored in Nx.prunedby corresponds to

any of the valid rules based on X, if there are more than one such rule.

Theorem 12 (Correctness of Regen-Freq). The algorithm Regen-Freq outputs all

and only o-frequent sets along with their supports.

Proof. By Lemma 1, if X is o-frequent all its subsets are o-frequent. Therefore, the
proof is made by induction on |X|.

Hypothesis. Suppose that for every frequent set X # (), the algorithm Regen-Freq
correctly constructs the nodes corresponding to all proper subsets of X, notably that
they are all present in their respective collections FS;, and that their fields itemset,
support and prunedby are correctly filled.

First, we consider a frequent set X. We are going to show that it is in the output.

Let us consider the case where X belongs to DBC(r, o). Then, X is o-frequent and it is

in the input. Therefore the corresponding node Ny is created in line 2 or in lines 5-8 and

4Since APRIORI-Gen already accesses all nearest proper subsets of each candidate, then in the
implementation of the algorithm the condition used in lines 14-15 is checked within the modified
APRIORI-Gen.
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is never removed. Therefore, it will be output in line 32.

Suppose now that X is frequent, but does not belong to the DBC (is neither in
FreqDisjFree(r,o) nor in FreqDisjFreeBd (r,o0)). Therefore X is not disjunction-
free. Moreover, since X is o-frequent, but not in FreqDisjFreeBd~(r,c), there exists
Y C X, such that |Y| = |X| — 1 and Y is not disjunction-free. The empty itemset is
disjunction-free, thus |Y'| > 1 and | X| > 2. Since the nodes corresponding to all subsets
of X are correctly created (by Hypothesis), there exists a node Ny corresponding to Y
(line 15), and it has a nonempty, correct value of Ny .prunedby.

By the same hypothesis, the nodes corresponding to all proper subsets of X are present
in their respective collections FS;. Since | X| > 2, X is produced as candidate itemset by
APRIORI-Gen in line 12 and it is considered in lines 16-27. The corresponding node
is actually created in line 26, because X is o-frequent. It will be in the output, because

a created node is never removed.

For the equivalence, suppose that the output contains X along with its support. We are
going to show that X is o-frequent.

Observe that nodes are created in lines 2, 5-8 and 26. If the node Nx with Nx.itemset =
X is created in line 2 or in lines 5-8, then X belongs to the DBC, and thus is o-frequent.
If the node Ny is created in line 26, X is o-frequent, because the corresponding value S is
checked against o in line 25. S is the correct support of X according to the fact that X is
not disjunction-free, to the valid simple disjunctive rule Y'\{A, B} = AV B corresponding
to the value of Ny .prunedby, to Lemma 13 and to Hypothesis (Ny.prunedby is correct
and the support inference equation is applied on correct values of subset supports).

Therefore, if the itemset X is in the output, it is o-frequent. O

4.1.2 Regeneration from SRBC

As shown in Section 3.2.3, we can regenerate all frequent sets from the SRBC with a
bounded error on their supports. If that error remains relatively low, we could devise a
functional approximate frequent set derivation procedure from the SRBC.

So, first we study the error in practice and show that it remains very low as compared to
the theoretical bounds given previously. Later, we propose an efficient method to derive

frequent sets in an approximate way, according to the previous theoretical results.

Approximation Error in Practice

In this section we report the practical error made on frequent set supports when using
the e-adequate representation based on the SRBC. The experiments are made on the
PUMSB* data set used in the experiments on the extraction of the SRBC (Section 3.2.6).
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itemset size 1 2 3 4 5 6 7 8
average abs. sup. erfor 0 036 | 1.17 | 214 | 324 | 433 | 531 | 6.12
average rel. sup. er 0 ]0.002%|0.007%|0.012%]0.019%|0.026%|0.032%|0.038%
maximal abs. sup. erfor 0 18 20 37 37 39 39 45
maximal rel. sup. errf 0 0.11%0.13% | 0.18% | 0.22%] 0.24% | 0.24% | 0.29%

itemset size 9 10 11 12 13 14 15 16
average abs. sup. erfo6.80 | 7.40 | 792 | 839 | 882 | 9.22 | 9.58 | 9.86
average rel. sup. er |0.042%]0.046%0.050%|0.054%/0.057%|0.060%|0.062%|0.064%
maximal abs. sup. er| 45 45 45 44 38 31 24 15
maximal rel. sup. err] 0.29%| 0.29% | 0.29% | 0.28% | 0.26% | 0.19% | 0.15% | 0.10%

Table 4.1: Error observed on frequent set supports by itemset size (PUMSB¥).

itemset support (%), [30,40] | (40,50] | (50,60] | (60,70] | (70,80] | (80,90] | (90,100]
average abs. sup. erfor 6.20 3.29 0.07 0 0 0 0
average rel. sup. error0.039% | 0.016% | 2.8x10° 0 0 0 0
maximal abs. sup. erfor 45 38 9 0 0 0 0
maximal rel. sup. err| 0.29% | 0.19% | 0.03% 0 0 0 0

Table 4.2: Error observed on frequent set supports by interval of support (PUMSB*).

Additionally, we report the results of experiments on a PUMS data set of Kansas in a
less favorable context.

In the PUMSB?* data set (denoted r; in this section), for the support threshold o =
0.3 % ||, there are 432699 frequent sets and the largest has n = 16 items. We computed
the condensed representation SRBC(ry,0.3 * |r1], 20), which contains 11579 elements.
Theoretical error bounds for the frequent set support approximation can be determined
using Theorem 4 as follows. In this experiment, the maximal absolute support error is
d0xn = 20%16 = 320 rows. The maximal relative support error can be obtained assuming
that the maximal theoretical absolute error occurs on the frequent set of minimal support
(i.e., o). The PUMSB* data set contains |r1| = 49 046 rows. So, the maximal relative
support error is § * n/o ~ 2.17%.

The support of each of the 432699 frequent sets is approximated using the collection
SRBC(r1,0.3 % |ry|,20) and Theorem 4 and then compared to the exact support. We
observed the following errors. The maximal absolute support error is 45 rows, and the
maximal relative support error is 0.29%. The average absolute support error is 6.01 rows
and the average relative support error is 0.037%. Tables 4.1 and 4.2 show that these errors

remain very low even for for low supports and largest frequent sets.

In the above experiment the value of ¢ is small w.r.t. the minimal support required. The
ratio is 20/(0.3%49 046) =~ 0.136%. We now report another experiment where the value of
0 represents more than 1% of the minimal support required, and thus is likely to greatly

increase the value of the error.
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itemset size 1 2 3 4 5 6 7 8
average abs. sup. erfor 0 024 | 065 | 1.10 | 153 | 1.92 | 231 | 2.75
average rel. sup. erl 0 0.03%| 0.07%| 0.13% | 0.18% | 0.24% | 0.31% | 0.38%
maximal abs. sup. erfor 0 6 10 12 14 18 18 18
maximal rel. sup. errn| 0 1.1% | 1.3% | 2.1% | 2.7% | 3.1% | 3.1% | 3.1%

itemset size 9 10 11 12 13
average abs. sup. erfor3.28 | 3.90 | 458 | 5.20 | 5.50
average rel. sup. en | 0.47%| 0.58%| 0.71% | 0.83% | 0.88%
maximal abs. sup. er| 18 18 18 15 11
maximal rel. sup. err| 3.1% | 2.9% | 2.9% | 2.9% | 2.0%

Table 4.3: Error observed on frequent set supports by itemset size (PUMS of Kansas).

itemset support (%)| [5,10] | (10,20 | (20,30 | (30,40 | (40,50 | (50,60 | (60,70 | (70,80 | (80,90 |(90,100
average abs. sup. erfor2.16 2.03 2.22 2.03 1.25 1.70 0.66 0 0 0
average rel. sup. err90.337%) 0.159%) 0.089%j 0.063% 0.027% 0.0319%9 0.010% O 0 0
maximal abs. sup. er| 18 14 10 10 5 6 6 0 0 0
maximal rel. sup. err| 3.11%| 1.17%| 0.47%| 0.33% | 0.12%| 0.10%| 0.10% 0 0 0

Table 4.4: Error observed on frequent set supports by interval of support (PUMS of
Kansas).

The data set used in this experiment is a PUMS data set of Kansas state® (denoted ry
in the following). We use a version of this data set that has been preprocessed at the
University of Clermont-Ferrand (France) in Prof. L. Lakhal’s research group. We have
reduced this data set to 10000 rows and 317 items to be able to extract all o-frequent
itemsets at a low support threshold. For o = 0.05 (500 rows), there are 90 755 frequent
sets and the largest has n = 13 items. We computed SRBC(rs,0.05 % |r3|,6), which
contains 4771 elements.

In this experiment, the maximal absolute support error is 6 * n = 6 % 13 = 78 rows. The
maximal relative support error is 0 * n/o = 15.6% (|ro] = 10000 rows in the experiment).
The supports of the frequent sets are approximated using SRBC(r3,0.05 * |ry|,6) and
compared to the exact supports. We observed the following errors. The maximal absolute
support error is 18 rows, and the maximal relative support error is 3.1%. The average
absolute support error is 2.12 rows and the average relative support error is 0.28%. A
more detailed distribution of the errors is given in Tables 4.3 and 4.4. These results show
that the errors remain low in practice even when the value of ¢ is high w.r.t. the minimal

support.

Regeneration Algorithm from SRBC

Above, we have seen that the SRBC is an interesting representation of frequent sets,

even if we authorize it to be lossy (i.e., § > 0). In this section, we present a levelwise

Sftp:/ /ftp2.cc.ukans.edu/pub /ippbr/census/pums/pums90ks.zip
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algorithm, called Regen-Approx-Freq, that regenerates approximately frequent sets
from the SRBC. It should be made clear that unless 6 = 0 given the overestimated nature
of regenerated supports, some infrequent sets with supports very close to the threshold
o may also be output by the algorithm. Involved itemsets are the ones for which the
support approximation procedure described in Section 3.2.3 gives the answer greater or
equal than o.

Regen-Approx-Freq is similar to the algorithm Regen-Freq presented in Section 4.1.1.
As in the latter, it is possible to regenerate frequent sets with a different (higher) support
threshold o’ by skipping from the input collection SRBC(r, 0, ) the itemsets (and their
supports) that turned to infrequent due to the new support threshold. In that case, the
regeneration of the unnecessary frequent sets is eliminated very early.

The data structure corresponding to one frequent set will be called a node. Its structure

is the following:

itemset : set of items
support : integer
deltafree : Boolean

The signification of first two fields is the same as for Regen-Freq. The third field,
N.deltafree, states if the itemset represented by the node is J-free.

Now, we can give the algorithm Regen-Approx-Freq, which regenerates approximately
frequent sets and their supports from the SRBC. It is detailed as Algorithm 16.

In lines 1-6, Algorithm Regen-Approx-Freq loads the input and converts it to a col-
lection of nodes, one node per frequent set. The nodes corresponding to frequent sets of
the negative border are marked by the field deltafree set to false.

In line 8, the algorithm enters a loop corresponding to increasing sizes of regenerated
frequent sets. Within the " iteration of the loop, the algorithm uses FS; (the collections
of the nodes corresponding to frequent sets of size i) to produce FS;; (i-e., frequent sets
of size i+ 1). Candidate itemsets, i.e., itemsets of size i+ 1 having all their proper subsets
frequent, are computed in line 9 and stored in C;; ;. An additional pruning is performed in
lines 11-12. The condition ensures that at least one proper subset of the current candidate
itemset is not d-free®. Otherwise (i.e., when all proper subsets are d-free), the candidate
should be skipped. Two cases fit skipped candidates: the candidate is not frequent,
then we do not want to regenerate it anyway, or the candidate itemset is frequent. A
frequent sets of size ¢ + 1, for which all subsets of size ¢ are frequent and J-free, is either
in FreqDeltaFree(r,0,9) (when it is 6-free) or in FreqDeltaFreeBd~(r,o,0) (non-d-free
set). In both cases, it is in the SRBC, and thus the corresponding node has already been

created in lines 1-6.

6Since APRIORI-Gen already accesses all nearest proper subsets of each candidate, in the imple-
mentation of the algorithm the pruning of lines 11-12 as well as the computation shown as line 13 are
performed within the modified APRIORI-Gen.

111



In line 13, for each retained candidate itemset X, Regen-Approx-Freq searches the
information necessary to restore its support. According to Definition 30, to produce an
overestimate of the support of X, we should consider only frequent o-free subsets of X
at this step. If we compute the minimum of supports over a larger collection of subsets
of X, we will still produce an overestimate (due to anti-monotonicity of support), but it
might be smaller than using frequent J-free sets only. A smaller overestimate is simply
a more precise estimate, so by deriving the supports from both, frequent J-free sets and
their negative border, we improve the result.

The regenerated itemsets obviously are not d-free, so the field deltafree is set to false in
line 14.

Algorithm 16. (Regen-Approx-Freq)

Input: o, § and SRBC(r,0,0) of the form <F,B>.
Output: Freq(r,o) and their supports.

I: for all <X, Sx> € F do // 0-free input sets

2:  Create new node Nx in FS|x| with Nx.support :== Sx, Nx.itemset := X,
Nx.deltafree := true ;

3 od

4: for all <X, Sx> € B do // Non-0-free input sets

5: Create new node Nx in FS|x| with Nx.support := Sx, Nx.itemset := X,

Nx.deltafree := false ;
6: od

7 let 1 :=1;

8: while FS; # 0 do

9:  let C;y1 := APRIORI — Gen(FS,);
10:  for all X € C;,; do

11: Find node Ny in FS; such that Ny.itemset C X and
Ny .deltafree = false ;

12 if such Ny exists then

13: let S := minyers, ({N.support : N.itemset C X});

14: Create new node Nx in FS|x| with Nx.support := S,
Nx.itemset := X, Nx.deltafree := false ;

15: fi

16: od

17 leti:=i+1;

18:0d ;

19:output {<N.itemset, N.support>: N € Uj<i FS;};
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4.2 Deriving Association Rules from SRBC

A popular application of the extraction of frequent sets is the discovery of association
rules. The notion of association rules has been recalled in Section 2.1.1. Computing
all association rules from the proposed condensed representations is straightforward by
regenerating all frequent sets and then using Algorithm 1, unless we make use of lossy
representations.

In this section, we study the impact of approximation of frequent set supports on associa-
tion rule supports and confidences when these rules are derived from the SRBC instead of
frequent sets. We give bounds for the error made on support and confidence of association

rules.

The error on support of association rules is the same as the error on support of itemsets.
For a frequent rule X = Y, if we use SRBC(r, 0,) to determine its support, by Theo-
rem 4 we always have an overestimate of its support with an error of at most 6| X UY|.

In practice, we have the same approximation errors as those presented in Section 4.1.2.

The error bounds for confidence is less trivial to obtain from the previous results. Let
X =Y be a frequent rule in r. Suppose we use the SRBC to approximate Sup(r, X UY)
and Sup(r, X). These approximations are denoted respectively by Sup(r, X UY) and
Sup(r, X). Now, we can approximate Conf(r,X = Y) by Conf(r,X = Y) = Sup(r, XU
Y)/Sup(r, X). By Theorem 4, and since we have overestimated the supports, Sup(r, X U
Y)/(Sup(r, X)+ 6| X|) < Conf(r,X =Y) < (Sup(r, X UY) +6|X UY|)/Sup(r, X).
Thus a bound for the absolute error made on the confidence when we use C’o—nf(r, X=Y)
instead of Conf(r,X = Y) is maz(Sup(r, X UY)/(Sup(r, X) + §|X|) — Conf(r,X =
Y), (Sup(r, X UY) + 6| X UY]|)/Sup(r, X) — Conf(r,X =Y)).

Now, we derive values of this bound in practice, using the experiments reported in Sec-
tion 4.1.2. We consider the PUMS data set of Kansas state, which is less favorable than

the other data set (PUMSB?*) since the error on the support was larger.

Let ar(s, c¢) be the set of all association rules in this data set with support s and confidence
c. For a given pair <s, ¢>, we bound the error made on confidence for all rules in ar(s, c)
as follows. The support of the left hand side of any of these rules is s’ = s/c. Using the
experimental results of Section 4.1.2, we can find the maximal observed relative support
error made on s and s’, denoted respectively by rse and rse’. Then we bound the absolute
error made on the confidence by maz(s/(s' + s *rse’) — ¢, (s + s*rse)/s' — c).

We consider support s € {0.05,0.1,0.2,0.3,0.4,0.5,0.6} and confidence ¢ €
{0.99,0.95,0.9,0.85}. For each pair <s,c>, we used the maximal observed relative error
on support (given in Table 4.4) to bound the error made on confidence for the set of
rules ar(s,c). The corresponding values are presented in Table 4.5. For example, if we
consider rules with confidence 0.99 and support 0.05, the maximal absolute error made

on confidence is 0.0308. For higher rule supports the error decreases. This variation cor-
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support

confidence | 0.05 0.1 0.2 0.3 0.4 0.5 0.6
0.99 0.0308 | 0.0116 | 0.0047 | 0.0033 | 0.0012 | 0.0010 | 0.0010
0.95 0.0295 | 0.0111 | 0.0045 | 0.0031 | 0.0011 | 0.0010 | 0.0010
0.9 0.0280 | 0.0105 | 0.0042 | 0.0030 | 0.0011 | 0.0009 | 0.0009
0.85 0.0264 | 0.0099 | 0.0040 | 0.0028 | 0.0010 | 0.0008 | 0.0009

Table 4.5: Bounds for absolute error on rule confidence.

responds to the reduction of the maximal observed relative error for higher supports (see
Table 4.4). For lower confidence values the error decreases, too. This is due to the fact
that a lower confidence implies a higher support for the left hand side of the rule and thus

a lower error on the left hand side support.

4.3 Regeneration of Frequent Closed Sets from Lossless

Representations

The DBC is a condensed representation of frequent sets. The experiments presented in
Sections 3.3.5 and 3.3.7 have shown that the DBC is much smaller than the collection
of frequent sets and that it can be extracted efficiently, even in difficult cases. Thus, in
practice, the DBC can be advantageously extracted and stored instead of frequent sets to
derive important data mining patterns (most commonly association rules).

We show now that the DBC is also an interesting condensed representation of the frequent
closed sets and thus also offers the same practical benefits as the closed sets themselves.
Among them we can mention the ability to generate directly rule covers such as of the
class described in [Bastide 00a] (see Section 4.4 for details) in order to present to the
expert a compact summary of (typically) huge collections of associations rules.

In Section 3.3.5, we have already described the interest of the DBC w.r.t. closed sets in
terms of representation size. In this section, we give an algorithm to convert the DBC
into the collection of frequent closed sets. Then, we present experiments showing that
in the most difficult cases it is more efficient to extract the DBC and to convert it into
closed sets than to extract the closed sets directly.

See Section 2.2.6 for basic properties concerning closed sets. In Section 4.3.1, we give

some additional preliminaries.

4.3.1 Concepts Used in the Conversion Algorithm

In this section, we give some preliminary properties needed in Section 4.3.2 to present the
conversion algorithm. In particular, we reuse the concept of 0-free set, introduced in the

context of strong-rule-bordered condensation in Section 3.2.

114



The following lemmas are needed in Section 4.3.2 to demonstrate the correctness of the

conversion algorithm.

Lemma 17. Let r be a binary database over R, X be an itemset such that X C R, A be
a single positive item in R\ X and A its corresponding negative item.

Then the following three propositions are equivalent:

(1) Sup(r, X U{A}) = Sup(r, X),

(2) X = {A} is a 0-strong rule in r,

(3) M(r, X U{A}) = 0.

Proof.  Observe that M(r, X) = {t : t € M(r, X U{A}) vVt € M(r,X U{A})} and
that the multisets M(r, X U {A}) and M(r, X U {A}) are mutually exclusive. Therefore
Sup(r, X) = Sup(r, X U {A}) + Sup(r, X U {A}). Consequently, (1) is equivalent to
Sup(r, X U {A}) = 0, and the latter to (). Finally, Sup(r, X) — Sup(r, X U {A}) < 0,
which satisfies the definition of X = {A} being a 0O-strong rule in r (see Definition 24),
ie., (2). O

Lemma 18. Given r a binary database over R, X is a 0-free set w.r.t. v iff

v Sup(r,Y) > Sup(r, X).

Proof. 'This lemma is a special case of Lemma 8, proved earlier. O

The computation of closures of frequent 0-free sets in the conversion algorithm will be

based on the following theorem.

Theorem 13. Let r be a binary database over a set of items R, o be a support threshold
and Z be a o-frequent O-free set. Then, ToM(r,Z) = Z1UZyUZ3UZy, where Z, ..., Z4

are.

Zy={A € R: ZU{A} € FreqDeltaFreeBd(r,o,0) A Sup(r, Z) = Sup(r, Z U {A})}

Zy={AeR: X € FregDellaFree(r.o.0) | X| < |Z|ASup(r, X) = Sup(r, Z) NZU{A} C
ZoM(r,X)}
Zy={AeR:AecZV X\C/Z AeToM(r, X))}

X € FreqDeltaFree(r,o,0)

Zy ={A € R:A&ZNA Y, (Z U{A}) \ {B} € FreqDeltaFreeBd (r,0,0) A

Sup(r,(Z U{A}) \ {B}) = Sup(r, Z) A BeZoM(r,X)}

X c(zu{Ah\{B}
This theorem states that an item A is an element of the closure of a o-frequent 0-free set

7 if and only if it satisfies at least one of the following properties:
e A issuch that the rule Z = {A} is a O-strong rule,

e ZU{A} isincluded in the closure of a frequent 0-free set X having the same support

as Z but a size strictly smaller than the size of 7,
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e Aisin Z or in the closure of a proper subset of 7,

e Aisnotin Z, but is in a 0-free set W such that firstly Z and W have the same size
and support, secondly they contain the same items except one, and finally 7 \ W is

included in the closure of a proper subset of .
The proof of this theorem requires the following two lemmas.

Lemma 19. Let r be a binary database over a set of items R, o be a support threshold, Z be

a frequent 0-free set and A € ToM(r, Z). If A & Z; then yc2uia By Y\{B} €
FregDeltaFree(r,0,0) A B€ZoM(r,Y \ {B}).
Proof. Let A € T oM(r,Z)\ Z,. A ¢ Z; implies that Z U {A} ¢

FreqDeltaFreeBd(r,0,0) V Sup(r,Z) # Sup(r,Z U{A}). But A € T o M(r,Z) im-
plies that Sup(r,”Z) = Sup(r,Z U {A}) (Lemma 4). Thus, the disjunct 7 U {A} &
FreqDeltaFree3Bd—(r,o,0) must be true.

Because Z = {A} is a O-strong rule, Z U {A} is a frequent set, but not a 0-free set.
There must exist Y C Z U {A} such that Y € Bd~(FreqDeltaFree(r,0,0)). Y is
o-frequent (Lemma 1), and thus Y ¢ DeltaFree(r,0,0). Therefore, there must ex-
ist B € Y such that X = {B} is a 0O-strong rule and that X C Y \ {B}. Since
Y € FreqDeltaFreeBd—(r,0,0), all its subsets are O-free and thus X must be equal
to Y\ {B} (otherwise, X U{B} C Y would not be a 0-free set).

Finally, the fact that Y\ { B} = {B} is a 0-strong rule implies that B € ZoM(r,Y \ {B})
(Lemmas 17 and 5). O

Lemma 20. Let r be a binary database over a set of items R, o be a support threshold, 7
be a frequent 0-free set and A € To M(r,Z). If A& Z5 then |X| < |Z] =
Sup(r, X) > Sup(r, Z).

X cZU{A}

Proof. We prove the contrapositive.

Suppose that A € Zo M(r, Z) and xcuia | X| < |Z| A Sup(r, X) < Sup(r, Z). Let
X be an itemset as in the above expression. If there are more than one such itemsets, let
X be any minimal of them (minimal w.r.t. set inclusion).

A € T o M(r,Z) implies Sup(r,Z) = Sup(r,Z U {A}) (Lemma 4) and further that
Sup(r, X) < Sup(r,Z U {A}). By Lemma 1, Sup(r,X) > Sup(r,Z U {A}), thus
Sup(r, X) = Sup(r,Z) = Sup(r, Z U {A}). By Lemma 5, X C Z U {A} A Sup(r, X) =
Sup(r, Z U {A}) implies that Z U {A} CZ o M(r, X).

By definition of X, none X’ C X satisfies | X’'| < |Z| A Sup(r, X') < Sup(r, 7). Since
every X', subset of X, has necessarily a smaller size than X and thus smaller than Z, the
property must not hold due to the second conjunct, i.e., Sup(r, X") > Sup(r,Z). Here
Sup(r, Z) is equal to Sup(r, X). Since the inequality holds for every proper subset X' of

X, from Lemma 18, we know that X is O-free.
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We have X C ZU{A}N|X| < |Z|ANX € FreqDeltaFree(r,o,0)ASup(r, X) = Sup(r, Z)A
ZU{A} CZToM(r,X),ie., Ac Zs. O

Using these two lemmas, we finally can prove Theorem 13.

Proof. |of Theorem 13| We prove that every A € Z o M(r, Z) that does not belong either
to Z; or to Zs, belongs to Z3 or to Z4.

Let A EIOM(T,Z)\(ZlLJZQ).

By Lemma 19, A ¢ Z; implies that y e 20 B\E/Y Y \ {B} €
FreqDeltaFree(r,0,0) N B € T o M(r,Y \ {B}). Let Y be such an itemset and B
be such a member of V.

By Lemma 20, A ¢ Z, implies that | X| < |Z] = Sup(r,X) > Sup(r, Z),

X cZU{A}
Sup(r, X) > Sup(r, Z).

in particular X c(ZU{AD\ {B}

Three cases are possible.

The first is when A # BAA & Z. Then B € ZoM(r, Y \ {B}) implies (by Lemma 4) that
Sup(r,Y \ {B}) = Sup(r,Y) and then (by Lemma 17) that M(r, (Y \ {B}) U {B}) = 0.
Since Y\ {B} C (ZU{A})\ {B}, Lemma 2 implies that M (r, ((ZU{A})\{B})U{B}) C
M(r, (Y\{B})U{B}) (= 0). Therefore, no rows belong to the multiset M (r, ((ZU{A})\
{B})U{B}). Thus, by Lemma 17, Sup(r, (ZU{A})\{B}) = Sup(r, ZU{A}) = Sup(r, Z).
By L v e 2Py sy S X) > Suplr Z) = Suptr, (20 {4\ {BY)
implies that (Z U {A}) \ {B} is a O-free set. Therefore, A belongs to Z,.

The second case is A = BA A ¢ Z. In this case, B € Z o M(r,Y \ {B}) is equivalent to
AeToM(r,Y\{A}), where (Y \ {A}) C (ZU{A})\ {A}, ie., Y \{A} C Z. This case
turns out to be a case, where A € Z3.

The last case is when A € Z. Also here, by definition of Z35, A € Zs. O

By Lemma 18,

4.3.2 Condensed Representation Conversion Algorithm

In this section, we describe the algorithm Regen-FreqCl that changes the DBC into
the condensed representation based on frequent closed sets. Although a more abstract
presentation is possible, we give a detailed version to ease the implementation of an
efficient converter.

As previously, using only <X, Sx> pairs from DBC(r, o) verifying Sxo’ > o may be
used to eliminate unnecessary computations and obtain directly FreqClosed(r,d’).
Regen-FreqCl computes the set of all frequent 0-free sets and their corresponding clo-
sures. These closures are computed in 5 steps. The first is the initialization of the closure
of Z to the value of Z, followed by computing the parts 71, ..., Z; of the closure following
Theorem 13.
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Even though we give Regen-FreqCl in a detailed form, the actual implementation inte-
grates additional straightforward optimizations. Most important hints will be mentioned
throughout this section.

The data structure corresponding to one itemset is called a node. A collection of such
nodes is stored in an itemset-prefix-tree, as in Section 4.1.1, to allow an efficient access.

The structure of node is the following:

itemset : set of items

support : integer

prunedby  : set of items

closure : array 1..4 of set of items

For a node N corresponding to an itemset 7, N.itemset is the set of items in Z and
N.support is the support of Z.

N.prunedby is a set of at most two items. If it contains two different items A, B it
corresponds to a set Z that is 0-free but not disjunction-free and means that A, B € Z
and Z \ {4, B} = AV B is valid. If N.prunedby contains a single item A it means that
Z is not O-free and that Z \ {A} = {A} is a O-strong rule. And when N.prunedby = 0,
the node corresponds to an itemset Z that is disjunction-free (and thus also 0-free).

The frequent sets are grouped in different collections according to their size and to the
fact whether they are O-free sets or not (in this latter case they are frequent sets of the
negative border of the O-free sets, defined in Section 3.2.2 as Definition 28).

For the frequent sets of size i, we call ZFreeF'r; the collection of the 0-free sets and
FreqNegZBd; the collection of the others. All these collections are stored in separate
itemset-prefix-trees.

The four elements of the array closure denoted closurey, ..., closures correspond respec-
tively to the sets Zi,..., Z; specified in Theorem 13. The four procedures depicted as
Algorithms 17-20 are used by the conversion algorithm to compute these four elements
accordingly to the definitions of 71, ..., Z,.

The decomposition of the closure of a 0-free set into an array of 4 elements
closurey, ..., closure, helps in understanding how the Theorem 13 is applied. Observe
however that the only position where we need to access items from one specific element
of that array is the line 2 of the algorithm UPDATE CLOSURE_ 4.

We implemented the storage of closures without any use of array — we add items
to the collection corresponding to the combined closure and when we add items that
would belong to closures but not to itemset (the items enumerated in line 2 of UP-
DATE CLOSURE_4), we run the lines 3-8 of UPDATE CLOSURE 4.

The only position, where we add items that would belong to closures but not to itemset
is line 4 of UPDATE CLOSURE _ 3.

Due to this optimisation, the resulting procedures must not merge the items each time a

complete closure is needed, unlike suggested in algorithms UPDATE CLOSURE_ 2 (lines 2

118



and 3), UPDATE _CLOSURE 3 (line 4) and in the forthcoming algorithm Regen-FreqCl1
(line 39).

The conversion algorithm uses the procedure FindDisjRule described in Section 3.3.6
to compute prunedby for itemsets that are O-free but not disjunction-free and also the
procedure FindStrongRule to determine prunedby for non-0-free sets. FindStron-
gRule (shown as Algorithm 21) proposes how to determine N.prunedby of a non-0-free
set N.itemset when the nodes corresponding to all its subsets of size | N.itemset| — 1 are

available.

Now, we give the conversion algorithm itself. Its pseudo-code is depicted as Algorithm 22.

In lines 1-11, Algorithm Regen-FreqCl loads the input and converts it to a collection
of nodes, one node per itemset. For an itemset X, if the call to FindStrongRule
gives a nonempty result (in line 5), then X is not O-free, but it is an element of the set
FreqDeltaFreeBd(r,0,0) (frequent sets of the negative border of frequent 0-free sets).
Thus, it is stored in FreqN'egZBd|x| and has a field prunedby filled with a single item.
The nodes corresponding to frequent O-free sets of F'reqDisjFreelBd—(r,o) (the negative
border of frequent disjunction-free sets) are marked distinct when loaded in line 7 by the
content of the field prunedby, which contains two items.

Reading the input is followed by the computation of the closure of () in lines 12 and 13,
according to Theorem 13 applied to this particular itemset. All other frequent closed sets
are obtained by computing the closures of nonempty frequent 0-free sets. This leads to
two interleaved processes. The first is the creation of nodes corresponding to frequent

0-free sets or to frequent sets from the negative border of frequent O-free sets. And the

Algorithm 17. (UPDATE_CLOSURE_ 1)

Input: ZFreeFr; (fields itemset and support) nodes corresponding to all itemsets of
size i from FreqDeltaFree(r,o,0). FregNegZBd; 1 (fields itemset and support) nodes
corresponding to all frequent sets of size i + 1 from FreqDeltaFreeBd™(r,o,0).
Prerequisite: closure; initialized in ZFreel'r; to (.

Output: Updated closure, of all nodes from ZFreeF'r;.

1: for all N € FreqNegZBd;,, do
2. for all A € N.itemset do
3 let N4y be the node in ZFreel'r; such that
N y.itemset = N.itemset \ {A};
if Nj.support = N.support then
let Ny.closure; :== Nj.closure; U {A};
fi
od
od
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Algorithm 18. (UPDATE _CLOSURE_ 2)

Input: ZFreeFr; (fields itemset and support) nodes corresponding to all itemsets of
size i from FreqDeltaFree(r,o,0). Uj<i ZFreelFr; (all fields) nodes corresponding to all
itemsets of sizes strictly lower than i from FreqDeltaFree(r,o,0).

Prerequisite: closurey initialized in ZFreeF'r; to (.

Output: Updated closurey of all nodes from ZFreeF'r;.

1: for all N¢ € U;_; ZFreel'r; do
2. for all N € ZFreeFr; such that N.itemset C |J,_, , Nc.closurey,
3. and Ng.support = N.support do
let N.closure; := N.closure; U|J,_; , No.closurey;
4:  od
5: od

Algorithm 19. (UPDATE _CLOSURE_ 3)

Input: ZFreeFr; (fields itemset and support) nodes corresponding to all itemsets of
size i from FreqDeltaFree(r,0,0). ZFreeFr; 1 (all fields) nodes corresponding to all
itemsets of size i — 1 from FreqDeltaFree(r,o,0).

Prerequisite: closures of each node N in ZFreeF'r; initialized to N.itemset.

Output: Updated closures of all nodes from ZFreekF'r;.

1: for all N € ZFreeFr; do

2. for all A € N.itemset do

3 let N4 be the node in ZFreeF'r;_; such that
Ny.itemset = N.itemset \ {A};

4 let N.closures := N.closures UJ,_, 4, Na.closurey;

5 od

6: od
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Algorithm 20. (UPDATE CLOSURE_4)

Input: ZFreeF'r; (fields itemset, closures and support) nodes corresponding to all item-
sets of size i from FregqDeltaFree(r,o,0).

Prerequisite: closurey initialized in ZFreeF'r; to (.

Output: Updated closurey of all nodes from ZFreeF'r;.

1: for all Ny, € ZFreeF'r; do

2 for all B € Ny .closures \ Ny .itemset do

3 for all A € Ny .itemset do // here A # B

4 let N; be the node in ZFreeFr; such that
Ny.itemset = (Ny.itemset U{B}) \ {A};

i} if Nz.support = Ny .support then

o: let Ny.closurey :== Ny.closurey, U {A};
7 fi

8: od

9 od

10:0d

Algorithm 21. (FindStrongRule)

Input: Itemset Z, S support of Z, collection of nodes C including nodes corresponding to
all subsets of Z of size |Z] — 1.

Output: Itemset P containing 1 item corresponding to the right-hand-side of a 0-strong
rule 7 \ {A} = {A} if it exists, 0 otherwise.

1: Find any A € Z and N4 a node in C such that
Ny.itemset = Z \ {A} and S = Na.support;
2: if such A exists then // in this case Z \ {A} = {A} is a 0-strong rule
3 let P:={A};
4: else
5 let P =
6: fi
7. output P;
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Algorithm 22. (Regen-FreqCl)

Input: o, DBC(r,0) of the form <F,B>.
Prerequisite: F U B not empty.
Output: FreqClosed(r, o) and their supports.

I: for all <X, Sx> € F do // Disjunction-free input sets
2: Create new node Nx in ZFreeFr|x| with Nx.support := Sx,
Nx.itemset := X, N.closure := [0, 0, X, 0], Nx.prunedby := 0;
od
for all <X, Sx> € B do // Non-disjunction-free input sets
let P := FindStrongRule(X, Sx, ZFreel'r|x|—1);
if P =0 then
Create new node Nx in ZFreeFr x| with Nx.support := Sx,
Nx.itemset :== X, Nx.closure := [, (), X, ],
Nx.prunedby := FindDisjRule(X, Sx, ZFreel'r x|—1 U ZFreeFr x|_2);
8 else
9: Create new node Nx in ]—"req/\/'egZBd‘m with Nx.support := Sx,
Nx.itemset :== X, Nx.closure := [(,(,(, 0], Nx.prunedby := P;

100 £
11:0d

12:1et Ng be the node in ZFreeFry such that Ng.itemset = ();
13:let Ng.closure; := {Ny.itemset : Ny € FreqNegZBd,};
14:1et ¢ :=1;

15:while ZFreeFr; 1 # () do

16:  let Ciy1 := APRIORI — Gen(ZFreel'r;);

17 for all X € C;41 do

18: Find node Ny in ZFreeFr; such that Ny.itemset C X and |Ny.prunedby| = 2;
19 if such Ny exists then

20: let A, B be items such that Ny.prunedby = {A, B};

21: let N4, Np be nodes from ZFreeF'r; and Nap be a node from

ZFreeFr;_; such that Ny.itemset = X \ {A} and
Np.itemset = X \ {B} and Nyp.itemset = X \ {A, B};

22: let S := Na.support + Ng.support — N ap.support;

23 if S > o then

24 let P := FindStrongRule(X, S, ZFreeFr;);

25: if P = then

26: Create new node Nx in ZFreel'r|x| with Nx.support := 5,

Nx.itemset :== X, Nx.closure := [0,0, X, (], Nx.prunedby := {A, B};
27 else
28: Create new node Nx in FreqgNegZBd| x| with Nx.support := S,
Nx.itemset :== X, Nx.closure := [(,(,(,0], Nx.prunedby := P;

29: fi

30: fi

31 fi

32:  od

33:  UPDATE_CLOSURE 1 (ZFreeFr;, FreqgNegZBd; 1);
i<i ZFreelr;);

35 UPDATE CLOSURE_3 (ZFreel'r;, ZFreeFr;_1);
36: UPDATE_ CLOSURE_4 (ZFreeF'r;);

97 leti:=i+1;

38:0d

3% output {<J;_, 4 N.closurey, N.support>: N €

(

34: UPDATE_CLOSURE_2 (ZFreel'r;,J
(
(

i< ZFreekr;};
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second is the construction of the frequent closed sets by computing the closures of frequent
O-free sets.

These two processes are performed within the loop starting at line 15. The 5** iteration
first generates the itemsets of size ¢ + 1 that are either frequent 0-free sets (stored in
ZFreeFry1, line 26) or frequent sets from the negative border of frequent O-free sets
(stored in FreqNegZBd, 1, line 28). Then it determines the closures of the O-free sets of
size ¢ using the characterization of the closed sets stated in Theorem 13.

It should be noticed that during this it iteration the algorithm cannot compute the
closures of the newly generated O-free sets of size i + 1 since the use of Theorem 13
requires in this case the frequent sets from the negative border of O-free sets of size i + 2
(i.e., FreqNegZBd;s).

In lines 16-19, the algorithm selects candidate sets that are potentially frequent and
0-free, but are not in the input because they are proper supersets of non-disjunction-
free sets. Next, in lines 20-22, for each candidate set X, the algorithm searches the
necessary information to restore the support of X. It takes Y, any non-disjunction-free
proper subset of X, and considers A, B the items in the corresponding Ny .prunedby.
Since Y \ {A, B} = AV B is a valid simple disjunctive rule then, using Lemma 13, the
algorithm infers the support S of X.

If X is frequent (line 23) then the corresponding node Nx is created in lines 24-29. If the
call to FindStrongRule on X returns an empty set then X is a 0-free set, therefore Nx
is created in ZFreeF'r; 1 and the value of pruneby for Y propagates to X. If not, the
set X is not a O-free set, but all its subsets are O-free sets and thus X is in the negative
border of O-free sets. In this case Ny is created in FreqNegZBd;,., and Nx.pruneby is
filled with the result of FindStrongRule.

The computation of the closures of the 0-free sets of size i (stored in ZFreeF'r;) is then
performed in lines 33-36.

The algorithm exits the main loop when the closures of frequent 0-free sets of the maximal

size are computed.

Theorem 14. The algorithm Regen-FreqCl regenerates all and only frequent 0-free sets
m Uj<k ZFreel'r;, where k is the value of the variable i at the end of the execution of
Regen-FreqCl.

Proof. Similar to the proof of Theorem 12. O

Lemma 21. Given r a binary database over R, o a support threshold and X a frequent

closed set w.r.t. r, Y& X X=ZoM(rY).
Y € FreqDeltaFree(r,o,0)

Proof. Let r, 0 and X be same as in the lemma. Let ¥ C X be the smallest itemset
w.r.t. itemset inclusion having the same support as the support of X. Below, we show
that Y is o-frequent O-free set and that X =7 o M(r,Y).
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By Lemma 5, Sup(r, X) = Sup(r,Y’) implies X CZ o M(r,Y). Since X =7 o M(r, X)
(X is closed), Zo M(r,X) CZ o M(r,Y). By Lemma 3, Z o M(r,X) D Z o M(r,Y).
Therefore, X =Z o M(r, X) =7 o M(r,Y).

Since Y is the smallest itemset having the same support, Z/C\Y Sup(r, Z) # Sup(r,Y).
Additionally, by the anti-monotonicity of support, we can refine that property into
Sup(r, Z) > Sup(r,Y), which according to Lemma 18, implies that Y is 0-free

ZCY
set. Sup(r, X) = Sup(r,Y) and X o-frequent implies that Y is o-frequent. O

Theorem 15 (Correctness of Regen-FreqCl). The algorithm Regen-FreqCl outputs

all and only frequent closed sets along with their supports.

Proof. Immediate from Theorem 14 and Lemma 21. O

Note on Converting DBC into SRBC and SRBC into Frequent Closed Sets

The SRBC with 6 = 0 is a lossless representation. That representation and two other
exact condensed representations investigated in this thesis (the DBC and frequent closed
sets) should be possible to obtain from each other.

As a matter of fact, a spin-off of the DBC-to-frequent closed sets conversion algorithm
presented above is that we can without difficulty obtain the DBC-to-SRBC and SRBC-
to-frequent closed sets conversion algorithms by trimming Algorithm 22. The resulting
conversion times will be certainly lower than the combined conversion DBC-to-frequent
closed sets. In the next section we report only the hardest of the three, the DBC-to-

frequent closed sets conversion.

4.3.3 Results of Experiments

We have presented the advantage of the DBC w.r.t. frequent closed sets in terms of
representation size in Section 3.3.5. In this section, we report experiments showing that
the frequent closed sets can be derived very efficiently from the DBC representation using
the algorithm Regen-FreqCl. These additional experiments lead to the conclusion that
in practice the DBC turns out to be also an interesting condensed representation of the
frequent closed sets.

These experiments are run in the same conditions as in Sections 3.3.5 and 3.3.7 (same
platform and data sets, and same implementations of CLOSE and CLOSET). We com-
pare the extraction times of direct computation of frequent closed sets using CLOSE
and CLOSET with the extraction of the DBC (by means of HLin-Ex and VLin-Ex)
followed by its conversion into frequent closed sets using an implementation of Regen-
FreqCl. The extraction times of the DBC alone (without running Regen-FreqCl) have
been given in Section 3.3.7. The running times (in seconds) for several support thresholds

are given in Figure 4.1 (note that some axes are logarithmically scaled).
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Figure 4.1: Experiments on the three data sets with breadth-first (left) and depth-first
(right) algorithms, reporting the extraction time in seconds vs the relative support thresh-
old in %.

The results on the Mushroom data set are the most ambiguous. All resulting times
are very close, and for both strategies the curves related to the extraction of the DBC
followed by Regen-FreqCl intersect the ones of the corresponding reference algorithms
(see Figure 4.1, upper graphics). On the Connect-4 data set, the extraction of the DBC
followed by its conversion into closed sets is always faster (up to 15 times with depth-first
extractors and up to 100 times with breadth-first ones). For the last data set, PUMSB,
mining frequent closed sets was difficult for all techniques and has been stopped at a
relative support threshold of 60%. In the most difficult cases (low support thresholds),
the experiments show a real gain, up to fivefold speed-up, when using the DBC and its
conversion versus the direct extraction of the closed sets.

In most of experiments, the extraction of the DBC followed by Regen-FreqCl produces
the frequent closed sets much more efficiently than the direct extraction of the frequent
closed sets. In the cases where the direct extraction is still faster, it should be noticed
that the performances of both approaches are very close.

In the following series of experiments, we investigate the practical complexity of the
frequent closed set computation using Regen-FreqCl. We report the average time spent

by the methods to produce 1 byte of the result (using frequent closed set representation
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Figure 4.2: Experiments on the three data sets with breadth-first (left) and depth-first
(right) algorithms, reporting the average computation time in seconds per flat-storage
unit vs the flat-storage size.

flat-storage size, see Section 3.2.6). We provide results for the direct extraction (using
CLOSE or CLOSET) and for extraction of the DBC followed by computation of frequent
closed sets using Regen-FreqCl. We also measure the time per output byte for the
regeneration alone, to focus on the practical complexity of the regeneration itself.
Figure 4.2 shows the total time for the computation of the frequent closed sets divided
by the frequent closed sets size. The size of the representations varies over several orders
of magnitude (note that all axes are logarithmically scaled). In spite of that, the running
time of all investigated methods vary very little when divided by the output size, except for
smaller representation sizes, below 100 000 bytes (PUMSB and Connect-4, the leftmost
points of the curves), where size-independent initialisation time of programs cannot be
distributed over otherwise large size of the result.

We noted that the computation time for representation sizes over 100 000 bytes vary very
little for a single method, but the averages corresponding to different methods reside in
different orders of magnitude. We also can observe that CLOSET shows a systematic
growth (for all data sets) of the average time per output byte when output collection size
increases.

However, the time of regeneration of frequent closed sets alone amounts to few useconds
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per output byte in all cases and does not show systematic growth of the average time. We
conclude from above experiments that in practice the regeneration of the frequent closed
sets from the DBC using Regen-FreqCl is quasi-linear w.r.t. Regen-FreqCl output

size.

4.4 Computing Rule Covers from Condensed Represen-

tations of Frequent Sets

The idea of association rule covers is to provide an equivalent information about the data
set as the full collection of rules, but in a compact, easier to interpret form.

This basic idea has been interpreted in several ways (see, e.g., [Toivonen 95, Aggarwal 98,
Pasquier 99a, Bastide 00a, Zaki 00]). Some covers are not designed to infer values of
support and confidence measures. Some may even not infer all association rules. But in
some contexts, such covers may achieve high density of “worthy” rules.

In [Bastide 00a] and in [Zaki 00] resp.  Bastide et al. and Zaki claim that
a well-defined sub-collection of RulesSuppConf(r,o,p, R) is sufficient to derive
RulesSuppConf(r,o, p, R)". In that sense, that subcollection is a cover of all associa-
tion rules.

Below we briefly introduce only one of them, notably the cover presented in [Bastide 00a],
although both covers are very similar. We adapt the vocabulary to the terms used in the

thesis.

Definition 39. (Generic basis for exact association rules) Let r be a binary
database over the set of items R. Let o € (0,|r|| be a support threshold, p € [0,1] a
confidence threshold. Generic basis for exact association rules is the collection {X =
Y\ X [Sup(r,Y), 1] : X € FreqDeltaFree(r,0,0) N X CY ANY =Z o M(r,X)}.

Definition 40. (Transitive reduction of the informative basis for approximate
association rules) Let r be a binary database over the set of items R. Let o €
(0,]r|] be a support threshold, p € [0,1] a confidence threshold. Transitive reduction
of the informative basis for approximate association rules is the collection {X = Y \
X [Sup(r,Y),Conf(r,X =Y\ X)| : X € FreqDeltaFree(r,0,0) \Y € FreqClosed(r,o) A

Conf(r. X = Y\ X) 2 pATo M X) eV A=( 0 VT o M) ©

Z C Y) }.
The association rule cover is composed of both above bases.

The following examples illustrate this cover on an example data set. We reuse the binary

database depicted as Table 2.1 (Section 2.1.1) and subsequent examples.

"RulesSuppConf(r,o, p, R) is the collection of all and only o-frequent p-confident association rules
along with their supports and confidences, see Definition 9.
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Example 12. If we consider the baskets represented in Table 2.1 and a support threshold
value of 2/8, then the collection of all frequent sets for the support threshold of 2/8 has

been given as Example 1. All frequent 0-free sets and their corresponding supports are:

0 [s/sl,  {A} [a/8], {A B} [2/8], {C} [5/8],
{A, D} [2/8], B} [4/8], {A,C} [2/8], {D} [4/8].

All frequent closed sets and their corresponding supports are:

0 /8, {A} [sl,  {C} [5,  {AD} [,
[B.C} [a/8, {D} 4], {A.B.C} [2/s).

Example 13. With the same example data set, we presented the collection of all associa-
tion rules for the support and confidence thresholds respectively of 2/8 and 1/2 (17 rules)
as Example 2.

The generic basis for exact association rules is the following collection of association rules

and their scores:
{B, A} = {C} [2/8,2/2], {C,A}={B} [2/8,2/2, {B}={C} [4/8,4/4].

The transitive reduction of the informative basis for approximate association rules is the

collection:

0= {A} [4/8,4/8], {D} = {A} [2/8,2/4], {A}={B,C} [2/8,2/4],
{B} = {A,C} [2/8,2/4], {C}={B} [4/8,4/5], 0= {C} [5/8,5/8],
{A}y = {D} [2/8,2/4], 0= {D} [4/8,4/8].

Clearly, the both bases of this cover may be efficiently computed from frequent 0-free
sets and their respective closures directly from the above definitions. Therefore, the
frequent closed set regeneration procedure detailed in Section 4.3.2 is very useful, because
it outputs for each 0-free set X the closure and the support of X. By adding X itself to
the already-output pairs closure-support, we may get directly all necessary components
to compute easily the cover.

If we wished to apply an algorithm directly issued from the definitions of both bases
when having either frequent closed sets or frequent 0-free sets alone, we would have to
first produce the other component before computing the cover. Another option would
be to use the frequent closed sets mining algorithms that output all frequent 0-free sets
corresponding to a frequent closed set. However, this sharply narrows the choice of the
extractor, because, e.g., CLOSET and the formal concept lattice methods (not reported
in this thesis) are not designed to output all frequent 0-free sets along with frequent closed

sets.
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4.5 Towards Discovery of Association Rules with Nega-

tions

In this section, we consider association rules between generalized itemsets (see Def-
inition 11 in Section 2.1.3). Some ideas presented here have been published
in [Boulicaut 00b].

We want to find associations between positive items and negative ones. In the following,
we use the term generalized rules for such rules. Mining generalized frequent rules turns
to be intractable in practical cases, i.e., for support thresholds that enable the discovery of
“standard” association rules. When mining association rules, the expensive step concerns
the computation of the frequent sets from which the rules are derived. Therefore, we focus
on this step.

We would like to identify possibilities for a tractable approach to the computation of
generalized frequent sets (see Definition 12 to recall the notion of support for a generalized
itemset) and their post-processing into generalized association rules.

First, we explain why a naive approach (i.e., the straightforward encoding of both pos-
itive and negative items and the use of standard algorithms like APRIORI) cannot be
used. Then we consider how it is possible to derive some generalized rules using only the
information about “positive” itemsets.

Then, we consider mining generalized frequent sets (from which rules with negations
can be derived) in the classical framework of frequent sets considering negative items as
additional items in the binary database schema. Resulting explosion of the search-space
size and (above all) tremendous increase in the number of frequent sets must be somehow

counterbalanced. For that, we consider three approaches:

e constraining the search-space by asking the user to guide additionally the process
towards the promising pattern classes. The user might, e.g., specify which items

should, or should not appear in the extracted rules,
e using the condensed representations.

Roughly speaking, first, we identify constraints that can be “pushed” efficiently into the
discovery algorithm. We consider relevant constraints for mining association rules with
negations.

Then, we suggest making use of the condensed representations to alleviate heavy frequent

set mining step. Finally, we propose a combination of both.

Notations We make use of notations introduced in Section 2.1.3. Additionally, we will
make use of the complemented binary database v’ that has been constructed by material-
izing negative items. Assuming the original binary database r over R, it means that for

each item A € R, one adds an item A’ to the database schema (the resulting schema is
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denoted R'). Respecting the semantics of negative items that have been given through
Definition 12, for a given row, the value of A’ is the Boolean negation of the value for
A. Conforming to that, the results of M and Sup functions remain the same for item-
sets based on materialized negative items or on non-materialized ones (see Definition 11).
Nonetheless, unlike A, the item A’ is materialized, so we keep the notations different for

formal reasons.

4.5.1 Problems with Negations... and Potential Solutions
A Naive Tactic

Let us consider the use of APRIORI or other classical frequent set mining algorithms
on the complemented binary database ' over R'.

The problem with this tactic is that for reasonable support thresholds, the number of
frequent sets is intractable. For instance, assume you have 100 positive items with a
maximum single-item relative support of 0.1 and a support threshold v = 0.05 * |r'|. It

turns out that every set of negative items up to size 9 is frequent. In that case, it leads to

100
9

a high correlation in the data set: many association rules with high confidence hold in

more than ( ) > 10" frequent sets [Mannila 96b|. In fact, this encoding also introduces
it. In practice, it means that we have to take higher support thresholds, possibly leading
to uninteresting mining phases. Furthermore, even if the extraction of the frequent sets
remains tractable, most of them will involve only negative items and, most of the derived
rules (with high confidence) will concern only negative items as well. This is unfortunate
for many application domains. Notice also that the positive part of the data can be already
highly-correlated so that APRIORI and other classical frequent set mining algorithms
can even not tackle the computation of Freq(r, ), i.e., subsets of R that are frequent in
the original binary database.

This tactic is not viable for practical data sets.

“Approximation” of Generalized Itemset Support Using Inclusion-Exclusion

Formula

Assume in this part that we compute Freq(r,~), i.e., the collection of y-frequent sets for
the original binary database (positive items only). We already know that this problem is
easier to solve. Using only that (positive) information, it remains possible to mine some
association rules with negations using the well-known inclusion-exclusion formula adapted

to our notation as following.

Lemma 22. The support of a generalized itemset T' can be computed exactly using the

collection FreqSup(r,~) if Pos(T)U Neg(T) € Freq(r,v) and is equal to:
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Sup(r,T) = Z (= )Nes®lSyp(r, Pos(X) U Neg(X)) .
Pos(I)CXCT
Example 14. Let us consider the data set depicted as Figure 2.1 (Section 2.1.1).
FreqSup(r,2) is given in Example 1.
Since Pos({A,B}) U Neg({A,B}) = {A,B} € Freq(r,2), Sup(r,{A, B}) =
Sup(r, {A})—Sup(r, {A, B}) is known ezactly (= 2). Pos({A, B, D})UNeg({A, B, D}) =
{A,B,D} & Freq(r,2), so Sup(r,{A, B, D}) = Sup(r,{A, D}) — Sup(r,{A, B, D}) can

not be evaluated exactly.

The number of terms of the sum is growing exponentially with the number of negative
items in the generalized itemset. However, for generalized itemsets for which it can be
computed exactly following Lemma 22, it can not be higher than the number of frequent
sets (|F'req(r,v)|), which is the number of all possible known terms of the sum. There-
fore, the computation of the support of a generalized itemset remains tractable when the

computation of FreqSup(r,) is tractable.

In a separate study [Bykowski 02b| with a wider problem context (which is outside of the
scope of this thesis) we described an alternative solution to the problem of approximating
the support of a generalized itemset based only on the support information of positive

frequent sets. The solution is based on linear programming.

Theorem 16. The support of all subsets of a generalized itemset T can be derived from
the collection FreqSup(r,v) if Pos(T) U Neg(T') € Freq(r,).

Proof. Let S C T. Then Pos(S) U Neg(S) C Pos(T) U Neg(T). If Pos(T')U Neg(T') €
Freq(r,~), all subsets of Pos(T")UNeg(T) belong to F'req(r,y) (by the anti-monotonicity
of the support, Lemma 1) including Pos(S) U Neg(S). From Lemma 22, the support of
S may therefore be computed from the collection FreqSup(r,~).

“Approximation” of Association Rules with Negations

Consider now the generation of rules from a frequent set X € Freq(r,v). Let 1T be a
full clause over X (see Definition 10). There are 2/X| such full clauses from which the
generalized association rule derivation can be performed. For that, we can use the same
approach as the one presented as Algorithm 1, but with generalized itemsets as input.
Following Theorem 16, the supports of subsets of 1', which are required by Algorithm 1,
can be evaluated exactly.

This way, we can generate a lot of generalized rules, but the collection is not complete
w.r.t. the support and confidence criteria: there is no guarantee that it computes all the

frequent and confident generalized rules. The rules missed by this approach are the ones
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derived from every frequent full clause 7" over X such that X is not frequent. Short
assessment may show that typically the result of this approach will be far from complete.
A special case of this method can be performed for free during the standard association
rule discovery (i.e., when applying Algorithm 1 on frequent sets in the original data set).
It concerns a restricted form of generalized rule: rules with only positive items at the
left-hand side and a generalized item (positive or negative) at the right-hand side.

After the computation of FreqSup(r,~), for each frequent set-support pair <X, Sx> €
FreqSup(r,v) and for each A € X, it is possible to test two following rules if they are
y-frequent and p-confident. These rules are X \ {A} = {A} and X \ {4} = {A},
the second is a generalized rule. Testing the confidence of the second rule needs for the
evaluation of 1 —(Sup(r, X)/Sup(r, X \{A})) > p, i.e., Sup(r, X)/Sup(r, X\{A}) < 1—p.
The term Sup(r, X)/Sup(r, X \ {A}) is actually the confidence of X \ {A} = {A} and
is evaluated anyway (for the first rule). The support of X \ {A} = {A} is simply
Sup(r, X \ {A}) — Sup(r, X), and can easily be evaluated and compared to 7.

However, even limited to this form, some frequent and confident rules might be missed
by the method. To be complete, we need to derive rules from all generalized frequent
sets with at most 1 negative item, which is not the case in the setting. Such generalized
itemsets can be extracted, but generally not from “positive” frequent sets only. We will
come back to the question and experiment the computation of all generalized frequent

sets with at most 1 negative item in Section 4.5.2.

We have seen above that mining a complete collection of y-frequent p-confident generalized
rules is generally not possible with “positive” frequent sets only. However, it is possible
to trade precision (soundness) against completeness.

Consider now the possibility to compute imprecise interestingness measures for generalized
rules by using only positive information. The idea is to substitute to the unknown terms
an interval that bounds the possible values for the support and the confidence. Thus,
it gives rise to an incertitude to the values of these measures. Let us consider a second
dataset in Fig. 4.3.

Example 15. Consider the rule {A,E} = {B}. Sup(r,{A,E} = {B}) =
Sup(r,{A, B}) — Sup(r,{A, B,E}) and Conf(r,{A,E} = {B}) = Sup(r,{A, E} =
{B})/(Sup(r,{A}) — Sup(r,{A,E})). Sup(r,{A,B,E}) is not available (because
{A, B, E} is not in Freq(r,4) neither in Bd (Freq(r,4))) but it can be estimated within
the interval [0,3] (because it is infrequent). Thus, Sup(r,{A, E} = {B}) € [1,4] and
Conf(r,{A,E} = {B}) € [1,1].

This method has been proposed in [Mannila 96b]. It gives rise to several problems. First,
a rule can be interesting (w.r.t. interestingness criteria), uninteresting or unresolved. The
last case arises when intervals for support and/or confidence cross the minimum support

and/or confidence thresholds. It happens in Example 15 for ¢ = 4 and p = 0.9 (for
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Figure 4.3: A binary database r and the support for each itemset from Freg(r,4) U
Bd~(Freq(r,4)).

example). By substituting an interval of possible values to unknown terms in the support
formula of a generalized itemset (as in Lemma 22), some itemsets can not be classified
as frequent or infrequent. Hence, for a complete association rule generation in the worst
case, one has to enumerate every generalized itemset that is known not to be infrequent
(i.e., that is frequent or unresolved).

We already adressed the question of approximation of rule confidences based on approxi-
mate supports of frequent sets in Section 4.2, but here, we face “large” intervals of possible
values, giving rise to a huge amount of unresolved sets. Lot of them might be infrequent,

but it is not possible to identify which ones, unless we use an alternative method.

Example 16. Continuing Example 15, from Freq(r,4)UBd~(Freq(r,4)), we infer using
the inclusion-exclusion formula 12 generalized frequent sets, 24 unresolved ones, and 207

8. On this toy example the number of unresolved generalized itemsets is

infrequent ones
above the number of generalized frequent sets. This would be worse if we had Freq(r,4)

only, because these numbers become respectively 10, 53 and 180.

Problems related to incertitude on itemset support amplify with the computation of the
confidence or other interestingness measures (observe the experiments presented in Sec-
tion 4.2, where small error bounds on supports have been amplified when computing the
confidence). If we had a small amount of unsound answers beside a complete collection, or
their evaluation function values were close to thresholds, the trade-off could be acceptable.
But in case of confidence measure, most of candidate rules cannot be firmly accepted or

rejected.

#In the implementation of the experiment, we required all intermediate results (e.g., Sup(r,{A, B, E})
when computing the support of {A, B, E'}) to be in the [0, |r|] range, which enhances the precision of the
resulting intervals.
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Using Constraints

A third direction of research is the effective use of various constraints during the item-
set mining, which has been already subject of several studies, e.g., [Srikant 97, Ng 98,
Boulicaut 00d|.

For that, we suppose we work on the “complemented” binary database, on which we
use frequent sets mining algorithms. These algorithms are moreover enhanced to mine
frequent sets under constraints (see [Srikant 97, Ng 98, Boulicaut 00d] for details).

Let 7’ be a binary database over R'. We say that a generalized itemset 7" C R’ satisfies a
constraint predicate C if C(r’,T) evaluates to true. In the framework of pattern theories
(Section 3.1.1), a combination of constraint predicates ¢ is a selection predicate. We recall
that the pattern theory associated with such a selection predicate is 7 = Th(L,r',q).
Notice that we need the support of every generalized itemset since our goal is to derive
rules. Therefore, formally we should have £ = {<T,Sy> : T C R A Sr € N}. To
alleviate the reasoning, we consider that the support of 7" is can be correctly obtained (in
any manner, some have been shown for various algorithms in this thesis), and so we set
L={T:T CR'}.

Most of the tractable constraints involve Cp: given the support threshold v, Cr(r',T) =
Sup(r',T) = .

The effective use of constraints concerns the computation of 7 using ¢. ¢ typically is a
conjunction of atomic constraints that specify the interesting itemsets from which “in-
teresting” rules are to be derived. We saw that APRIORI uses the constraint Cr to
prune the search space. Deriving all o-frequent p-confident association rules requires all
itemsets whose support exceeds o. Therefore, we may clearily restrict the problem to
selection predicates being a conjunction of Cr and another (possibly complex) constraint.
In theory, it is possible to have a “generate and test” approach for that selection predicate,
which consists in computing all generalized frequent sets and then test other constraints
on them, but this is clearly intractable in many cases. In the following, we are going to

look for viable alternatives.

4.5.2 Constraint-Based Approach

In this section, we identify the simple promissing constraints that can be used during the
generalized frequent set mining. We are interested in constraints that do not compromise
the outcome of the task, i.e., preserving as much potentially interesting patterns as pos-
sible. We show the practical efficiency of some of them and propose how to overcome the
efficiency problems, thus leading to tractable, serviceable generalized rule mining tasks.
We focus on finding promissing constraints, not on the contraint theory. Therefore, theo-
retical aspects will consequently be succinct. A systematic studies of different constraints
on itemset include [Srikant 97, Ng 98, Boulicaut 00d].
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Relevant Constraints

A simple observation is that the APRIORI trick is not only applicable to the support
constraint, but also to all anti-monotone constraint predicates (Definition 23 recalls what
an anti-monotone predicate is). In case of generalized itemsets, when we say that a
constraint is anti-monotone, we mean that it is anti-monotone w.r.t. generalized itemset

inclusion.

Example 17. T" C {A,B.C,D} and T N {A",B',C} = 0 are anti-monotone con-
straints. Indeed, Cr is anti-monotone (see Lemma 2). Another anti-monotone constraint
18 Commn (", T) = |T'\ R| < n, which states that the generalized itemset should contain at

most n negative items.

All above anti-monotone constraints are of interest for the rule extraction process, because
the user is often interested in associations involving only items from a pre-defined set of
items (first case) or not at all interested in rules involving items from another pre-defined
set (second case). Cr is of interest for managing the tractability of the extraction and for
focusing only on statistically significant patterns.

Interesting to notice is that some constraints require the binary database instance to be
evaluated (e.g., Cr), while the others examine only the pattern itself. The latter, we call
syntactic constraints.

Now, we consider the restricted, but quite often wide enough class of constraints which

are monotone constraints.

Definition 41. (monotone constraint) A monotone constraint C,, is the negation of

an anti-monotone constraint. If C,, is monotone, = C,, is anti-monotone: C,,(r'.,T) =

A\, a9

Example 18. Continuing our running ezample, T 2 {A, B,C, D} and TN{ A", B',C} # ()
are monotone constraints. An interesting case of a monotone constraint, denoted as Calnp,
is |T'N R| > n. This constraint states that the generalized itemset T should contain at

least n positive items.

The above mentioned monotone constraints are useful in the following, potentially practi-
cal situations. The user may be interested only in rules with the left-hand-side involving:
all items from a pre-defined set of items (first case) or any item from a pre-defined set
of items (second case). E.g., it is quite justifiable not to consider rules involving only
negative terms. There is a huge amount of them satisfying the support and confidence
criteria, but they probably will not let any significant insight in the data. The third
example contraint formalizes this idea. A nuance is that the user may require more than
1 positive item, leading to rules involving at least n positive items. n = 1 or n = 2 are
the quite unconstraining, n = 3 or above is already quite a restrictive requirement (to be

avoided, if other constraints are efficient enough).
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Experiments

Now, we propose a small experimental study showing the efficiency of selected constraints.
We selected a benchmark data set, Mushroom whose exigency level in frequent set
mining is well-known. The second criterion was a rather-low number of positive items
(119). When “complemented”, the binary database reached a typical number of items in
the schema (238).

We materialized that “complemented” binary database. At that stage, we observed the
following possible source of useless of computations. The binarization of an attribute
taking only two distinct values will typically produce 2 binary items. They are logical
complements of each other, and we do not need to duplicate them when considering neg-
ative items. Clearly, the outcome of mining process is preserved. We observed that in
Mushroom there are 6 such attributes, and the thus we could reduce the number of gen-
eralized items involved in the process by 12, greately reducing the required computational
effort. Removed items were the ones considered “negative”.

Above, we proposed some constraints that promise tractable mining generalized rules.
Now, we evaluate their potential. First, we experiment the combination of the well-studied
Cr constraint with syntactic (monotone and anti-monotone) constraints. In order to avoid
the inefficient “generate and test” approach mentioned earlier, we push the constraints into
the levelwise algorithm based on APRIORI, as described in [Boulicaut 01b].

In order to reduce the number of extracted rules without loosing potentially interesting
rules, we chose to sacrifice only rules with many and/or sole negative items. In the first
series of runs, we mine only positive itemsets, which will serve as a reference and could be
a base for approximating generalized rule evaluation functions as described in the previous
section. In the second series of runs, we allow 1 negative item per generalized itemset,
i.e., we use Cunin, leading to rules with at most one negative item per rule. Thus, we
allow a relatively insignificant entrance into the generalized itemset space. However, this
example does not fulfil the objectives of the study. Thus, we decided to make a bigger
step and not to constrain the number of negative items. To counterbalance the absence of
contraints on negative items, in the third series of runs we constrained positive items —
we required at least 3 positive items per generalized itemset (Cy3,). As said previously,
Casp 1s still quite constraining, and we wish to have even weaker constraints, e.g., “at least
2 positive items”.

The results presented as Figure 4.4 (platform: Pentium IV, 1900 MHz, 1 GB RAM, Linux
operating system).

We observed a roughly-exponential increase when reducing the support threshold, typical
for frequent pattern mining (note the logarithmically scaled axes). However, the effect
of the entrance into the generalized itemset space was severe — allowing at most one
negative item (additional to “positive itemsets”) resulted in a consequent, about-26-fold

increase in execution time due to a similar increase in the number of extracted patterns.
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Figure 4.4: Effect of simple syntactic constraints on generalized itemset mining (extraction
time in seconds vs relative support threshold).

This experiment shows the practical “weight” of negative items.

The third series of runs finished at an unexpectedly high support threshold of 96% facing a
very steep explosion of running times. On Figure 4.4, the graphic with the relevant domain
of relative supports is added on the right-hand-side. Thus, we gave up the experiment

with weaker constraints, such as the constraint C,o, (at least 2 positive items).

Then, we compared to the computation of the DBC without syntactic constraints on the
complemented binary database. In order to make a fair comparison with the levelwise
algorithm mining itemsets under constraints, we used the levelwise extractor of the DBC,

i.e., HLin-Ex. We observed the running times reported on Figure 4.5.
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Figure 4.5: Effect of mining the condensed representation of all generalized frequent sets
(extraction time in seconds vs relative support threshold).

We can observe relatively good performances, better even than for “positive” frequent
sets (base of the approximated computation of generalized rules) at the lowest support
thresholds. Indeed, the frequent sets with lower support theshold could not be extracted
on out platform, unlike the DBC.

We emphasize that the DBC has been extracted on the complemented binary database
without constraints. This experiment leads to the following possible approach for mining
generalized itemsets.

The DBC is a lossless representation of frequent sets, thus we can reconstruct all of

them without accessing the data set and procede with association rule derivation. In
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the previous discussions, we however proved that the number of generalized frequent
sets is tremendous. So, the complete reconstruction is not viable. Neither it is useful,
because the user cannot be provided with excessive number of potentially interesting
rules. Supposing that the user can guide the process with more precise constraints, either
syntactic, or based on the itemset supports, we could regenerate generalized frequent sets
from the DBC under these constraints.

Interesting constraints based on the itemset supports in the context of rule discovery are
constraints stating that extracted itemsets should be 0-free or closed. Judicious combi-
nation of these constraints with syntactic constraints can lead to covers of generalized
association rules under constraints (similar to the one presented in Section 4.4), which

alleviates the interpretation of extracted rules.

The combination of fast computation of the condensed representation and of direct re-
generation of any collection of frequent sets (without accessing the data set), should be
advantageous over mining same frequent sets from data. Moreother, the condensed rep-
resentation may be extracted off-line before the rule mining session (with users).
Therefore, we could consider the DBC as a generic input collection for generalized asso-
ciation rule generation under constraints. As emphasized for Regen-Freq and Regen-
FreqCl, considering a regeneration procedure with a diffrent ¢/ > ¢ amounts to selecting
from DBC(r,o0) the o’-frequent elements, and applying the procedure on the reduced
collection. Therefore, it is reasonable to compute off-line the collection DBC(r, o) for a
lowest o possible and use it for extraction of generalized rules under various constraints
and support thresholds.

In our experiment, we could extract the DBC for as low support threshold as 1 row (Fig-
ure 4.5, the lowest reported support threshold). In other cases, we could mine the DBC
for a very low threshold and use the representation if the rule support theshold applied by
the user is the same or above. Otherwise, previously studied methods or a combination
of evaluation against the data and regeneration from condensed representations could be
implemented.

It is also possible to conceive condensed representations of collections of itemsets under
constraints (see [Jeudy 02| for a depth-in study).

A hypothetical system providing such functionalities will be mentioned in perspectives of
the thesis.
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Chapter 5

Conclusion, Future works and

Perspectives

5.1 Conclusion

Descriptive pattern discovery is an important KDD technique, when we have a large data
set and we want to improve our understanding of the system mirrored in the data set.
Mining frequent sets, a basic kind of descriptive patterns, has succesfully been carried out
on some data set. Despite a relative potential of frequent sets for understanding other
data sets, several data sets lead to too heavy or untractable frequent set computations.
Among other reasons, the failure is due to the high correlation of data and the resulting
explosion of the number of frequent sets.

In Chapter 3, we proposed to avoid some of the load related to frequent set computation,
based on the observed redundancy in the collections of frequent sets. First, we observed
that some past approaches can be shown to follow the idea (in Section 3.1.5).

Then, we studied in depth two kinds of redundancies and based on them we proposed
two major condensed representations. As shown in Sections 3.2 and 3.3, they are much
smaller than the collections of frequent sets that they represent and more efficient to mine.
They are also competitive when compared to frequent closed sets, probably the only
structure proposed in the past that we could be alligned to.

We provided detailed theoretical fundamentals, algorithms and experimental proofs that
some typical, highly correlated data sets can benefit from the findings. The resulting
methods allow in general to widen the applicability of frequent set-based knowledge dis-
covery, either to lower thresholds given the same resources, or to more challanging data
sets.

We also proposed a framework for a uniform description of condensed representations.
In Chapter 4, we provided tools for taking advantage of condensed representations when
putting in standard techniques based on frequent sets, frequent O-free sets or frequent

closed sets. Indeed, we provide methods, algorithms and experimental proofs that show
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that the techniques mentioned above can still be provided with the patterns they need
(frequent sets, frequent 0-free sets or frequent closed sets) and that with a considerable
speed-up.

Finally, we consider a mining task proposed in the past, but which cannot be tack-
led in general (extracting association rules with negations). We provide the discussion
concluding with a potentially very advantageous use of one of the original condensed

representations proposed in the thesis.

The results of the work are centered on improving the ground for other already known
techniques based on computing frequent sets. These results have already been starting
points of further studies carried out independently, e.g., [Calders 02].

Moreover, the concrete prototypes developed in relation to the thesis have been used to
validate the viability of a new research direction and to explore real data sets.

A new research direction, namely the automatic generation of propagation rules (logical
rules used in contraint programming to solve groups of contraints), has been pre-studied
for viability using the Min-Ex extractor. Further, very successful developement is de-
scribed in [Abdennadher 00].

Publications showing the practical use of tools developed in this thesis to explore real
data sets include medical data analysis [Boulicaut 0la, Robardet 02| et Web usage min-
ing [Bykowski 00].

5.2 Future Works

The fundamental advances caused by the use of condensed representations will be com-
plemented by their instances dedicated to more specific uses of frequent sets.

One application seems however to be essential in the immediate future. It is about the
effective use of constraints. It has been studied previously, e.g., in [Srikant 97, Ng 98,
Boulicaut 00d|. Guiding the KDD system to important patterns using constraints on
patterns allows to explore the data in contexts when the total number of patterns in a
pattern discovery task is intractable either to compute or to post-process.

Combining these ideas with the use of condensed representations seems very promiss-
ing. We observed that the combination is indeed very efficient (see |Bykowski 02a] for

extracting an association rule summary) and we are going to formalize the ideas.

Finally, we point that other patterns (e.g., sequential) could directly benefit from con-
densed representation framework. Perhaps, we could apply it also to association rules.
Could we thus filter out additional or different redundant rules than other methods, mak-

ing the results easier to analyse or extract? We will also investigate this in the future.
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5.3 Long-term Perspectives

At the horizon, we can imagine database managment systems that allow among others
discovery of different classes of patterns using various, user specified evaluation functions.
Such systems are called inductive database management systems (see e.g., [Mannila 97al).
They could benefit from materializing some redundant information (in a similar way as
relational database systems benefit from indexes). Such redundant information would
be gathered off-line before the mining process, to improve the on-line behavior of most
mining processes.

Given that the patterns are usually quite complex from various points of view and require
a high computational effort to get them, the speed-up might be worth a good investment.
Typically, one would be interested in sufficient statistics as redundant information, i.e.,
summaries that can be substituted for the whole extensional data to avoid repetitive
probing of the selection predicate for all candidate patterns. On the other hand, sufficient
statistics for some queries might be too highly processed to benefit other classes of queries.
Therefore, a good compromise between the generality (flexibility) of summaries and their
contribution to the efficiency must be found.

The condensed representations proposed in this thesis are sufficienlty flexible to fulfill the
task when frequent sets and their downstream uses are considered (we showed how to
regenerate every frequent set). At the same time, the proposed condensed representations
are efficient to obtain and the collections of frequent sets can be regenerated efficiently
from them (even if in some cases we can circumvent the regeneration all frequent sets and
take better advantage of condensed representations).

We believe that the condensed representations proposed in the thesis will be constituents

of the inductive database management systems.
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Annex A

Résumé étendu en francais

Ce chapitre présente en francais une version synthétisée de la thése exposée dans les

chapitres précédents.
Résumé court

L’extraction des connaissances dans les données (ECD) est un domaine relativement nou-
veau qui vise & mieux exploiter I'information contenue dans de grandes collections de
données stockées et disponibles. L’extraction de motifs intéressants est un sous-domaine
de 'ECD.

Ce sous-domaine a connu récemment un développement impressionnant di d’une part
4 une pression accrue des propriétaires de données sous-exploitées et d’autre part a la
réponse des chercheurs par de nombreux résultats théoriques et pratiques. A l'origine du
développement de ces méthodes la plupart des données analysées provenaient du domaine
de la vente et les motifs intéressants se présentaient sous forme de régles d’association.
Des solutions performantes & ce probléme pratique ont été élaborées, la premiére étant
I’algorithme APRIORI.

Puis, les propriétaires d’autres types de données se sont interrogés sur 1'utilité de ces
premiéres solutions pour analyser leurs données. En effet, ces données, et/ou la forme de
motifs sous laquelle les propriétaires voulaient voir les connaissances exprimées, étaient
malheureusement différentes. Souvent, dans ces cas-la, APRIORI était inefficace voire
intractable. Par la suite, la recherche a pris le défi d’élargir le champ d’application
d’extraction de motifs aux domaines ou APRIORI ne pouvait pas étre utilisé directe-
ment.

Mes collégues et moi avons étudié les problémes liés a 'extraction de motifs intéressants
dans des collections de données d’origine différentes, en particulier les problémes liés au
grand nombre de motifs fréquents valides dans les données non similaires aux données de
ventes.

Nous avons obtenu des améliorations significatives des performances et ceci essentiellement
grace a l'utilisation de représentations condensées originales de motifs fréquents. Ceci est

complémentaire a certaines techniques d’optimisation du calcul de fonction d’évaluation
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de motifs, c’est-a-dire a des approches étudiées par la plupart des prolongements majeurs
d’APRIORI proposées antérieurement aux travaux de cette thése.

Nos méthodes extraient une collection de motifs qui peut étre trés différente de la collection
cible de motifs, en estimant qu’elle sera beaucoup plus efficace a calculer dans certains
types de données. De plus, cette collection, différente de la collection cible de motifs,
doit permettre une régénération efficace de la collection cible, sans pour autant nécessiter
d’accéder aux données analysées. Comme la représentation intermédiaire est souvent
beaucoup plus petite que la collection cible, nous la désignons sous le terme représentation
condensée.

L’utilisation de représentations condensées est relativement novatrice dans le domaine.
Toutefois, comme nous avons démontré dans la thése, quelques solutions existantes ont
été construites implicitement sur des représentations condensées.

La contribution principale de cette thése est la proposition de nouvelles représentations
condensées pour des motifs élémentaires, ainsi que des algorithmes pour extraire ces
représentations condensées et régénérer, a partir d’elles, les collections de motifs cibles.
Nous montrons les avantages de ces représentations condensées par rapport aux méthodes

existantes.

Mot-clés : extraction de connaissances, motifs descriptifs, régles d’association, représen-

tations condensées
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Introduction

L’extraction de connaissances dans les données (ECD), ou "Data Mining", est un pro-
cessus interactif et itératif d’induction et de synthése des faits présents dans de grands
volumes de données. Il s’agit de faits nouveaux, intéressants, pourtant non explicites.

Les régles d’association sont une forme possible de représentation de connaissances (par
ex. ANB = C A D dit que lorsque les événements A et B sont observés, ils sont souvent

accompagnés par les événements C' et D).

Reégles d’association. Les régles d’association s’avérent trés intéressantes dans de mul-

tiples domaines. Ces régles sont de type :

X=Y [support, confiance]

ou X et Y sont des conjonctions de propriétés qu’une transaction peut valider ou non. Le
support mesure le nombre d’objets concérnés par la régle, la confiance mesure la validité
de la régle (toutes les deux seront définies formelement plus tard).

Bien que difficile, I’extraction de telles régles est a présent possible dans plusieurs jeux de
données réels dits peu denses. Dans des jeux de données dits irés denses, ’extraction est

trop cotiteuse, voire intractable, si nous utilisons les approches actuellement disponibles.

Un projet d’extraction des connaissances demande la participation d’un expert en ECD,
parce que des aspects techniques (combinatoires etc.) des outils d’extraction de connais-
sances souvent ne sont pas bien compris par les utilisateurs.

Par exemple, une croyance naive par les utilisateurs potentiels des motifs extraits consiste
a penser que ’énumération et I’évaluation de tous les motifs possibles est la bonne maniére
de trouver ceux qui sont intéressants.

Prenons I'exemple des régles d’association. Supposons qu’il y a seulement 200 produits
dans un supermarché. Dans ce cas, le nombre de régles d’association possibles (en ignorant
le support et la confiance pour 'instant) est 32 — 220 ¢’est-a-dire autour de 10%°. C’est
plus que le nombre d’atomes dans I'univers, ce qui fait que c’est vraiment dur d’imaginer
que les ordinateurs, méme dans un futur lointain, pourraient les énumeérer individuellement

ou stocker exhaustivement.

Afin d’extraire des régles d’association, le processus typique commence par extraire des
ensembles fréquents (nous allons définir formellement cette notion plus loin). Un traite-
ment simple, décrit dans [Agrawal 96|, permet de trouver toutes les régles d’association a
partir d’ensembles fréquents.

C’est I’étape d’extraction d’ensembles fréquents qui pose probléme dans les données

denses. Le résultat de ’extraction est souvent de grande taille et la tractabilité n’est
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pas toujours possible dans les conditions d’extraction que les utilisateurs veulent couvrir
(par ex. seuils de support et de confiance trop bas).

Voici quelques exemples d’autres motifs liés aux ensembles fréquents.

Reégles généralisées. Les régles généralisées sont une extension du concept de régles
d’association. Une régle généralisée différe par rapport & une régle d’association par le
fait que I’antécédent et le conséquent de celle-ci peuvent étre des expressions booléennes
comprenant différents opérateurs : négation, disjonction et conjonction (dans le cas des
régles d’association 1'unique opérateur possible est la conjonction). Les régles généralisées
ont été introduites parce qu’elles ont un potentiel beaucoup plus large que les premiéres
— elles ont un potentiel de description de phénoménes plus riche, mais elles sont plus

nombreuses que les régles d’association.

Reégles d’épisode. Les regles d’épisode sont des expressions qui définissent une corréla-
tion entre des événements étalés dans le temps (par ex. événements A, B et C séparés de
moins de 4 secondes et apparaissant dans n’importe quel ordre sont souvent accompagnés
d’un événement D qui suit le dernier des trois précédents en 3 secondes).

Un pré-traitement et post-traitement peuvent ramener le cas de recherche de régles
d’épisode a celle de recherche de régles d’association (bien que cette méthode peut ne pas
étre la plus efficace). Ainsi, nous obtenons une autre application du concept d’ensembles

fréquents.

Phrases-clés. Une sélection appropriée d’ensembles fréquents peut servir in fine a
décrire sommairement des données. Par exemple, la collection d’ensembles fréquents
maximaux (c’est & dire les ensembles fréquents dont tous les sur-ensembles ne sont pas
fréquents) peut étre considérée comme des phrases-clés d’un document texte dans le cas

du “text mining”.

Désormais, nous nous concentrerons sur les ensembles fréquents et nous mentionnerons
seulement de temps en temps d’autres motifs. Le choix des ensembles fréquents a été

dicté par les faits :

e les ensembles fréquents ont un simple et précise signification, ils sont une classe de
motifs éducative — relativement facile & comprendre et observer la disparité entre
la simplicité de la définition de tache et les difficultés pratiques liées & leur calcul ;
la simplicité rend également des résultats de la recherche facilement assimilables par

d’autres chercheurs,

e ils sont génériques, c’est-a-dire, certains concepts et techniques définies pour les

ensembles fréquents peuvent étre adaptés a d’autres motifs,
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e ils partagent plusieurs propriétés avec d’autres motifs, mais semblent étre les plus

fondamentaux,

e il est intéressant de noter que les ensembles fréquents ont été utilisés a d’autres fins
que l'extraction de régles d’association. Par exemple, des régles de corrélation, des
régles d’association généralisées et certaines mesures de similarité sont basés sur des
ensembles fréquents. Egalement, certains autres types de motifs sont des exten-
sions claires d’ensembles fréquents et régles d’association, par exemple les épisodes
fréquents et les régles d’épisodes. Ainsi, les ensembles fréquents apparaissent comme

un concept générique ayant des usages multiples,

e les ensembles fréquents sont utilisés pour effectuer une analyse exploratoire dans des

domaines d’applications variés.

Les raisons similaires doivent avoir incité d’autres chercheurs a étudier cette classe des mo-
tifs, parce que la plupart de publications récentes au sein de la communauté d’extraction
de motifs porte sur les ensembles fréquents et régles d’associations (qui sont dérivées des
ensembles fréquents).

Ceci donne une idée claire des motivations pour étendre I'utilisation des ensembles
fréquents aux données denses. Pour cela il fallait chercher des méthodes d’extraction
d’ensembles fréquents qui fonctionnent méme face & des données denses.

Cette thése vise a trouver des voies d’extraction des ensembles fréquents et des régles

descriptives (d’association) dans ces cas.

Approche utilisée

L’approche étudiée dans le cadre de cette thése pour aborder ce probléme utilise des
représentations condensées. Les représentations condensées permettent de réduire la
charge de calcul d’extraction de connaissances, en évitant une (grosse) partie des calculs
faits directement a partir des données (trés coiiteux) pour évaluer de motifs candidats.

Or réduit la charge de calcul liée a l'extraction de motifs en ne traitant pas ceux qui,
aprés examen, s’avérent redondants. Pour compenser, nous fournissons des méthodes
pour régénérer les motifs redondants, s’ils ont une valeur dans un processus particulier
(parfois ils n’en ont aucune et nous pouvons nous en passer sans aucune perte au niveau

du résultat final).

Etat de ’art

Notions du domaine

Pour bien comprendre la suite du résumé, nous introduissons formellement les termes

utilisés.
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AB|C|D|E
1|IX|X|X|X]|X
2| X X
3| X|X|X|X
4 X | X
5| x|x|x
6 X

Figure 5.1: Une relation binaire.

Les travaux décrits dans cette thése sont dédiés a la recherche de régles descriptives dans
des jeux de données représentés sous la forme d’une relation binaire. Les jeux de données
peuvent généralement étre transformés en une telle relation binaire par un pré-traitement,
spécifique a chaque jeu de données. Ainsi, les méthodes d’extraction de motifs peuvent
s’appliquer & des problémes trés divers, et ce de fagon simple et uniforme.

Figure 5.1 montre un exemple de relation binaire entre un ensemble d’objets
{1,2,3,4,5,6} et un ensemble d’attributs (ou de propriétés) {A, B,C, D, E}, ou les “x”
indiquent les éléments de la relation.

Dans cette figure, nous pouvons lire que I'objet 2 est en relation avec ’attribut C', mais
ne l'est pas avec ’attribut D. Plus couramment, nous dirons que ’objet 2 a la propriété
C, mais n’a pas la propriété D.

Dans une application particuliére, I’analyse du panier, les objets peuvent étre des trans-
actions, et les attributs — les produits qui peuvent étre achetés lors d’une transaction.
L’extraction de régles d’association est fortement basée sur l’extraction d’ensembles
fréquents [Agrawal 96] que nous définissons ci-dessous. Le support d’un ensemble de
propriétés X est le ratio d’objets ayant toutes les propriétés de X. Par exemple, les pro-
priétés de I’ensemble {A, B, C'} apparaissent simultanément dans les objets 1, 3 et 5, ce
qui implique que le support de X vaut 3/6. Un ensemble de propriétés est fréquent dans
une relation binaire si toutes ses propriétés apparaissent simultanément dans un nombre
suffisant d’objets. Un seuil o, fixé par 'utilisateur, permet de trancher : si le support de
X est supérieur ou égal & o, 'ensemble X est dit fréquent. Dans la suite, nous utiliserons
le terme tuple pour designer une ligne de la relation binaire (qui décrit un objet).

Les régles d’association dans ce contexte sont des expressions de type :

X=Y [support, confiance]

ou X et Y sont des ensembles d’attributs. Le support de la régle est définit comme le
support de I’ensemble X UY, et la confiance comme le ratio d’objets ayant les propriétés
Y parmi tous les objets ayant les propriétés X.

Une propriété intéressante dit que tous les sous-ensembles d’un ensemble fréquent sont

fréquents |[Agrawal 96]. Cette propriété est utilisée dans I’algorithme appelé APRIORI
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(voir ci-dessous), qui extrait une collection de tous les ensembles fréquents en temps
proportionnel a la taille de cette collection, ce qui est considéré comme efficace dans les
applications réelles visées a 'origine de cet algorithme (notamment 1’analyse du panier,
mentionnée ci-dessus).

Un traitement simple, décrit dans [Agrawal 96], permet de trouver toutes les régles
d’association dont les supports dépassent le seuil o et la confiance dépassent le seuil
p (o et p sont définis par l'utilisateur) a partir d’ensembles fréquents dont le seuil de

fréquence est o.

Algorithmes existants

Maintenant regardons les algorithmes récents qui calculent les ensembles fréquents.
Nous avons constaté que tous ces algorithmes sont assez sensibles a la qualité de
I'implementation et aux structures de données employées. Notamment, l'utilisation
d’arbres de prefixes pour représenter des collections d’ensembles ou de tuples s’avérent

trés efficace.

APRIORI

Le premier algorithme réalisant efficacement (dans des données transactionnelles) la
tache d’extraction de tous les ensembles fréquents s’appelle APRIORI [Agrawal 94,
Mannila 94].

Cet algorithme emploie une stratégie d’élagage qui est a la fois simple, siire et trés effi-
cace : les sur-ensembles d’un ensemble qui n’est pas fréquent ne peuvent pas étre fréquents.
APRIORI parcourt le treillis des ensembles (d’attributs) a partir des singletons et iden-
tifie, niveau par niveau, de plus grands ensembles fréquents jusqu’a ce que les plus grands
ensembles fréquents soient trouvés. Un procédé basé sur une auto-jointure a été proposé
dans [Agrawal 94| pour produire efficacement les candidats (ensembles dont tous les sous-
ensembles sont fréquents). Une lecture linéaire du jeu de données (appelée ensuite une
passe) est effectuée pour calculer les supports de tous les candidats d’une méme taille et
vérifier quels sont ceux qui sont fréquents. APRIORI traite un tuple & la fois pendant
la passe.

En integrant dans cet algorithme la structure d’arbre de prefixe (inspirée de [Mueller 95|)

pour stocker et accéder les candidats, I'efficacité ’APRIORI augmente nettement.

SAMPLING

L’algorithme sampling vise a réduire jusqu’a 1 le nombre de passes (concluant éventuelle-
ment avec une deuxiéme passe dans le pire des cas). D’abord, il essaye d’anticiper
des ensembles qui sont fréquents dans le jeu de données, et puis réalise un passe com-

pléte pour vérifier si ces ensembles sont en effet fréquents. La vérification d’un item-
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set consiste a calculer le support et a le comparer au seuil ¢ de support défini par
I'utilisateur. L’anticipation se fait en calculant avec APRIORI la vraie collection
d’ensembles fréquents, mais sur un échantillon de données, ce qui devrait permettre de
I’accomplir plus vite que sur le jeu de données complet.

Il y a 2 types d’erreurs dues a I’échantillonnage :

(D un ensemble anticipé fréquent qui s’avére infréquent (ce cas ne provoque pas un ac-
croissement lourd de la charge de calcul),

2 un ensemble anticipé infréquent qui s’avére fréquent (ce cas peut provoquer accroisse-
ment lourd de la charge de calcul). En cas d’'une mauvaise conjoncture, une deux-
iéme passe est nécessaire. La procédure de comptage de support est similaire a celle
d’APRIORI.

DIC

L’essence de cette approche est de considérer une collection de candidats qui change
dynamiquement pendant une passe. Observez qu’APRIORI considére un ensemble en
tant que candidat quand tous ses sous-ensembles sont connus comme étant fréquents. DIC
considére un ensemble fréquent si son compteur de support montre une valeur plus grande
ou égale & o, mais contrairement &4 APRIORI, DIC ne vérifie pas si cette condition est
satisfaite seulement apés une passe entiére, mais aussi pendant la passe, plus exactement
aux quelques points prédéfinis du jeu de données.

Si un nouveau candidat est détecté (tous ses sous-ensembles immédiats se sont avérés
fréquents), il sera considéré a partir de ce point de la passe par la procédure de comptage
de support. Ceci peut mener a compter simultanément son support et les supports de ses
sous-ensembles (4 ce moment-la ces derniers sont connus comme d’étant fréquents). La

procédure de comptage de support est similaire & celle ’APRIORI.

Max-Miner

Max-Miner |Bayardo, Jr. 98| est développé en se basant sur ’observation suivante. Si
X est fréquent et Y C X, alors Y est fréquent, aussi. Par conséquent, Bayardo propose
dans [Bayardo, Jr. 98| d’extraire seulement les ensembles fréquents maximaux, c’est-a-
dire, les ensembles fréquents n’ayant aucun ensemble fréquent comme sur-ensemble stricte

pour un ¢ donné.

FP-growth

FP-Growth considére un ensemble comme candidat seulement si son parent est
fréquent. Le parent est déterminé comme le parent dans un arbre complet d’énumération

d’ensembles. Ceci permet une approche de parcours en profondeur de ’espace de motifs.
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Trés importants sont les optimisations qui permettent de calculer les supports de candi-
dats de maniére trés efficace en accord avec le parcours en profondeur. Le comptage de
supports d’un grand nombre de candidats ne se combine pas avec ’approche de parcours
en profondeur de I’espace de motifs, donc les optimisations trouvées sont trés distinctes
des autres approches. FP-Growth agrége différents tuples dans un seul, et peut incré-
menter ainsi des compteurs de support par plus de 1 dans une opération simple. Plusieurs
autres optimisations accompagnant cette idée la rendent tout a fait profitable en général.
Notamment, la relation binaire est chargée en mémoire, sans quoi la charge
d’entrées/sorties serait excessive. Egalement, les tuples de la relation sont agrégés, pour
des mémes tuples voire pour des mémes parties de tuples (quand s’est possible).

Tree-Projection réalise difféeremment ’extraction d’ensembles fréquent en parcourant
I’espace de recherche en profondeur, mais contrairement 4 FP-Growth Tree-Projection

ne charge pas le jeu de données entier en mémoire.

CLOSE

Une idée différente est la quintessence de 'algorithme CLOSE. Cet algorithme incré-
mente les compteurs de support 1 par 1, mais il considére beaucoup moins de candidats
qu’APRIORI, DIC, l'algorithme sampling et le FP-Growth!. CLOSE sait consid-
érer moins de candidats sans perdre de I'information en détectant et en excluant la forme
la plus évidente de redondance. L’algorithme en question extrait des ensembles fréquents
dits fermés. Ce résultat est cependant complet dans le sens qu’il permet d’aboutir a la
méme connaissance que le résultat I’ APRIORI, donc 'avantage est ici incontestable.
La différence par rapport a des ensembles fréquents (simples) est importante au niveau
théorique (la définition est plus bas). Puisque I’algorithme extrait directement les ensem-
bles précisement choisis (c’est-a-dire les ensembles fermés fréquents), il considére typique-
ment beaucoup moins de candidats qu’APRIORI, ce qui économise des ressources : le
temps du processeur et la mémoire.

Dans le contexte d’un jeu de données r, un ensemble X est fermé si et seulement si X
comprend chaque attribut qui est présent dans tous les objets de r ayant tous les attributs
de X. En d’autres termes, pour chaque attribut A du schéma de la base de données qui
n’est pas dans un ensemble fermé X, il y a un tuple ¢ dans la base de données qui contient
tous les attributs de X (X C t), et qui ne comprend pas 'attribut A.

L’extraction des ensembles fermés fréquents au lieu de tous les ensembles fréquents est
un grand pas vers des techniques plus efficaces pour les données fortement corrélées.
CLOSE extrait du jeu de données seulement des ensembles fréquent diiment choisis et

leurs supports. Les ensembles fréquents restants et leurs supports peuvent étre dérivés

'Max-Miner considére également beaucoup moins de candidats que ces algorithmes, mais il extrait
seulement les ensembles fréquents maximaux, ce qui peut étre vu comme perte importante d’informations
sur tous les ensembles fréquents. Afin de calculer les supports de tous les ensembles fréquents, Max-
Miner recule et les considére tous dans la procédure de comptage des supports.
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des autres d’une facon correcte et compléte. D’ailleurs, cette dérivation peut s’effectuer

sans accés au jeu de données original (donc trés efficacement), contrairement a I’approche
de Max-Miner.

Compositions des idées

Une remarque intéressante sur les algorithmes présentés ci-dessus est que parmi les idées
présentées certaines sont complémentaires et pourraient étre combinées. La combinai-
son la plus prometteur est de considérer le parcours en profondeur de I’espace de motifs
(agrégeant des tuples ce qui permet les opérations d’incrémentation de compteurs de
supports) combiné avec 'extraction d’ensembles fréquents fermés, ce qui pourraient plus
efficace que ces idées considérées séparément. Cette combinaison a été récemment con-
sidérée par Pei et al. dans [Pei 00], et 1’algorithme résultant s’appelle CLOSET.

CLOSET

CLOSET [Pei 00] calcule les ensembles fermés fréquents et leurs supports correspondants
en utilisant une technique similaire & FP-Growth. CLOSET parcourt I’espace de motifs
en profondeur conformément a un arbre complet d’énumeération d’ensembles. Un ensemble
est considéré comme candidat si son parent est fréquent, mais la condition supplémentaire
est que le support de 'enfant est différent (c’est-a-dire, strictement plus petit) de celui
du parent.

En plus, 'algorithme calcule les fermetures des ensembles candidats.

Des optimisations analogues a celles utilisées par FP-Growth sont intégrées dans
CLOSET, notamment celles visant a agréger beaucoup de tuples de la relation binaire
quand ¢a peut se faire sans perdre de I'information pertinente (voir FP-Growth).

En résumé, CLOSET est une technique mariant deux idées les plus prometteuses des out-
ils existants en extraction d’ensembles fréquents. Dans cette thése, I’algorithme CLOSET

est une référence pour les approches de parcours en profondeur.

Voie de recherche engagée

Nous avons observé que certaines des solutions présentées ci-dessus extraient moins de
motifs que d’autres, néanmoins I'utilisateur peut dans certains cas étre aussi satisfait du
résultat qu’avant. Ceci vient du fait que 1'utilisateur a un objectif et pour 'accomplir on
peut lui fournir une collection de motifs équivalente, mais par exemple plus petite, et plus
facile a extraire, & stocker ou a accéder. La collection équivalente va souvent étre plus
petite, de ce fait nous nous y référons par le terme représentation condensée.

L’utilisation des représentations condensées dans ’extraction de connaissances a été sug-

gérée dans [Mannila 97a] comme une direction prometteuse de recherche. De telles
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représentations condensées peuvent étre calculées avant la session interactive (avec utilisa-
teur) du processus d’extraction. Dans ce cas, le but est d’améliorer la session interactive

impliquant les humains.

Principaux Résultats de la Thése

Nous avons étudié des représentations condensées décrites dans la littérature. Cer-
tains résultats présentés ci-dessus peuvent étre assimilés a cette vision — l'extraction
d’ensembles maximaux fréquents [Bayardo, Jr. 98] ou 'extraction d’ensembles fréquent
fermés [Pasquier 99¢].

Nous avons également proposé un cadre théorique pour décrire uniformément des représen-
tations condensées.

Egalement, nous avons proposé des représentations condensées originales, ce que nous
allons présenter en détails. La premiére s’appelle la condensation bornée par des régles
fortes, désignée par SRBC? dans la suite, la deuxiéme — la condensation bornée par des

régles disjonctives, désignée par DBC? dans la suite.

Représentation Condensée Bornée par des Régles Fortes

Dans cette section, nous considérons une représentation condensée originale basée sur les
ensembles fréquents J-libres (définition sera donnée plus loin). Nous la décrivons d’abord
puisqu’elle a été proposée en premier [Boulicaut 00a, Boulicaut 00c, Boulicaut 03]. Néan-
moins, nous décrivons une petite modification de cette représentation, afin de rendre les
deux représentations condensées originales de cette thése plus uniformes. Cette premiére
représentation c’est SRBC.

L’intuition principale de la condensation bornée par des régles fortes est illustrée sur
I’exemple suivant. Soient A, B, C, D des attributs binaires et soit r la relation binaire
représentée comme Table 5.1. Supposons que nous sommes intéressés par le support de
I’ensemble { A, B, C'} dans r. Sinous savons que la régle {A, B} = {C'} tient presque dans
r (c’est-a-dire, quand A et B sont présents dans un tuple alors, excepté dans quelques
cas dans r, C est également présents dans ce tuple) alors nous pouvons approximer le
support de l’ensemble {A, B,C'} par le support de {A, B}. Dans Table 5.1, la régle
{A, B} = {C} a seulement une exception. Ainsi, nous pouvons utiliser le support de
{A, B} comme une valeur approchée pour le support de {A, B,C}. D’ailleurs, nous
pouvons rapprocher le support de n’importe quel ensemble X tel que {A, B,C} C X par
le support de X \ {C} parce que la régle X \ {C} = {C} tient également avec au plus
le méme nombre d’exceptions (c’est-a-dire, jamais plus grand). Par exemple, le support

de X = {A, B,C, D} peut étre rapproché par le support de {A, B, D} puisque la régle

2Ang. strong-rule-bordered condensation
3Ang. disjunction-bordered condensation
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{A,B,D} = {C} ne peut pas avoir plus d’exceptions que {A, B} = {C}. D’ailleurs, le
support de {A, B, D} n’a pas besoin d’étre connu exactement, mais peut également étre
rapproché. Par exemple, la régle {A, D} = { B} tient dans Table 5.1 avec une exception,
ainsi le support de { A, D} peut étre utilisé comme approximation du support de {A, B, D}
et puis également du support de {A, D, C, D}.

(A B[ C]| D]

X X

X

™
Mo

R R R
>
>

»

SRR R R

SRR AR R
SRR
SRR

Table 5.1: Une table relationnelle basée sur quatre attributs binaires (“x” dénote que
lattribut décrit 'objet).

Un ensemble X est 0-libre si et seulement si aucune régle construite avec les attributs de

X ne tient pas dans la relation binaire avec au plus § exceptions.

Comme 9 est censé étre plutot petit, intuitivement, un ensemble J-libre est un ensemble
d’attributs tel que ses sous-ensembles (vus comme des conjonctions des propriétés) ne
sont reliés par aucune corrélation positive trés forte.

Une des propriétés les plus intéressantes des ensembles d-libres est ’anti-monotonicité par
rapport & I'inclusion ensembliste.

L’anti-monotonicité a été identifiée comme une propriété principale pour ’extraction effi-
cace de motifs [Mannila 97b, Ng 98], puisque c¢’est la base formelle d’un critére d’élagage
siir. En effet, les algorithmes efficaces d’extraction d’ensembles fréquents, comme APRI-
ORI et DIC (présentés précédemment), se servent de la propriété (anti-monotone)
“I’ensemble est fréquent” pour 1’élagage de ’espace de recherche.

Les ensembles d-libres (et leurs supports) peuvent étre employés pour répondre & des

requétes de support de n’import quel ensemble d’attributs, répondant avec une erreur
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bornée, et cette borne reste proportionnelle & la valeur de 6 employée. De méme, les
ensembles d-libres fréquents et les ensembles fréquents minimauz qui ne sont pas d-libres
(et les supports associés) peuvent étre employés pour répondre a des requétes de support
de n’import quel ensemble d’attributs, en répondant presque aussi bien que la collection
d’ensembles fréquents. La borne de I'erreur reste la méme pour les ensembles fréquents
(ceci en général est ce que nous cherchons) que dans le cas d’approximation en utilisant
tous les ensembles d-libres.

Dans la pratique, le calcul de la collection entiére des ensembles d-libres (et leurs supports)
est souvent intractable, mais les ensembles d-libres fréquents peuvent étre extraits pour
des seuils de supports méme plus bas que pour les ensembles fréquents. Ceci apparait
claire si nous remarquons que la collection d’ensembles de la condensation bornée par des

régles fortes est une sous-collection de tous les ensembles fréquents.

SRBC est composé simplement de la collection de tous les ensembles ¢-libres fréquents
et des ensembles fréquents minimaux qui ne sont pas d-libres. A chaque ensemble nous

ajoutons 'information correspondante a son support.

Figure 5.2 met en évidence, a I'aide des axes a échelle logarithmique, la différence ob-
servée des tailles des différents représentations. A gauche, nous avons affiché la taille des
représentations en octets (supposant que la représentation est sauvegardée en explicitant
tous les ensembles et leurs supports, 4 octets par élément d’un ensemble et 4 octets par
support). A droite, nous avons affiché seulement le nombre d’ensembles de la représenta-
tion.

Des valeurs plus petites correspondent aux représentations plus condensées.

Flat-storage size of different representations Number of itemsets in different representations
\ \

1.E+09 1.E+07

1.E+08 -

R 1.E+06 \x
1.E+07

—¥— frequent sets —¥—frequent sets
—&—freq. closed sets 1.E+05 A —aA—freq. closed sets
LE+06 ¢ SRBC, 5=0 ] SRBC, 5=0
——SRBC, 5=10 ——SRBC, 5=10
—&— SRBC, 5=20 —&— SRBC, 5=20
1.E+05 T T T T T 1.E+04 T T T T
5 10 15 20 25 30 5 10 15 20 25 30

Figure 5.2: Tailles de différentes représentations.

Nous avons observé, comme prévu, qu’en augmentant o le niveau de condensation est plus
élévé. Entre 0 = 0 et 0 = 20 nous avons observé une réduction de taille d’environ 4 fois,
pour les deux mesures utilisées.

Une comparaison exprérimentale intéressante est entre SRBC et les ensembles fermés
fréquents. La taille de la représentation basée sur les ensembles fermés fréquents est
comparable & SRBC pour 6 = 10 en utilisant comme mesure le nombre d’ensembles, ou
comparable & SRBC avec un ¢ entre 0 et 10 pour la taille en octets.

Pour les deux mesures, la condensation de SRBC pour ¢ = 20 est plus élévé que celle des
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ensembles fermés fréquents.

La comparaison exprérimentale avec les ensembles fréquents était moins aventureuse —
nous savions a prior: que SRBC n’est jamais plus grand.

Comme attendu, nous observons une condensation plus élevée du SRBC que des ensem-
bles fréquents. La différence est trés marquée et s’étend d’une a plus de cing ordres de

grandeur.

L’algorithme Min-Ex proposé dans cette thése pour extraire SRBC peut étre vu comme
instance de l'algorithme de recherche par niveau présenté dans [Mannila 97b]. Il parcourt
le treillis d’ensembles niveau par niveau, a partir de ’ensemble vide et s’arréte au niveau
des ensembles d-libres fréquents de taille maximale.

L’anti-monotonicité de d-liberté par rapport a l'inclusion ensembliste est employée pour
I’élagage. En fait, la propriété combinée “fréquent et d-libre” est employée. Elle est aussi
anti-monotone.

Nous avons mené des expériences qui montrent que sur les données fortement corrélées la
condensation bornée par des régles fortes est calculée trés efficacement, une fois comparée
a lextraction d’ensembles fréquents ou méme comparée a I'extraction d’ensembles fermés
fréquents.

Les techniques mentionnées ci-dessus présentent les avantages importants sur les données
fortement corrélées, mais si nous considérons les données peu corrélées, nous ne pouvons
espérer avoir beaucoup de régles exactes ou presque exactes qui tiennent, et ainsi toutes les
techniques sont susceptibles d’étre peu avantageuses. Nous pouvons méme nous attendre
a ce que, sur des données peu corrélées, ces techniques soient un peu plus lentes que
I’extraction des ensembles fréquents sans élagage additionnel, puisqu’elles ne peuvent pas
tirer profit des réductions importantes de ’espace de recherche. Ceci est di au calcul

supplémentaire nécessaire pour détecter (improductivement) des régles J-fortes.

Représentation Condensée Bornée par des Régles Disjonctives

Dans cette section, nous décrivons une représentation condensée originale basée sur les
ensembles appelés disjonction-libres (la définition suit). Cette deuxiéme représentation
originale, appelée représentation condensée bornée par des régles disjonctives, contient la
méme quantité d’information que la collection de tous les ensembles fréquents.

Une étude préliminaire au sujet de cette représentation est parue comme [Bykowski 01|
et la recherche compléte a ce sujet est décrite dans [Bykowski 03].

Comme la condensation bornée par des régles fortes (SRBC), la condensation bornée par
des régles disjonctives (DBC) se compose d’une sous-collection des ensembles fréquents et
peut étre extraite plus efficacement que tous les ensembles fréquents. Cette collection est
sans perte d’information. DBC peut donc étre employé pour réduire considérablement le

temps de d’extraction et 1’espace mémoire utilisé tout en garantissant au moins la méme
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XXX | X

Figure 5.3: Jeu de données pour illustrer les définitions.

qualité du résultat extrait que dans des processus d’extraction impliquant des ensembles
fréquents voire ensembles fermés fréquents.

La réduction de taille de DBC (par rapport a la collection de tous les ensembles fréquents)
est due & une propriété qui lie des supports de quelques ensembles par des équations. Cette
propriété est basée sur des expressions appelées les régles disjonctives simples. La forme
générale de une telle régle est Ay A Ay A ... ANA,_ o = A,_1V A, ol les A; représentent
des différents attributs (& I’exception des 2 derniers attributs, c’est-a-dire, A, _; et A,,
que nous autorisons a étre le méme attribut). Cette régle déclare que si Ay, ..., A, o sont
en relation avec un tuple, alors A,,_; ou A, sont aussi en relation avec le méme tuple.
La régle peut tenir ou peut ne pas tenir dans un tuple. Le dernier cas se présente quand
ni A,_1 ni A, n’est en relation avec le tuple bien que tous les A;, As,..., A,_s soient en
relation avec ce méme tuple.

Considérons la table 7’ représentée dans Figure 5.3. La régle BA C' = AV D tient par
exemple dans le deuxiéme tuple (les deux, I'antécédent et le conséquent sont vrais) et
dans le troisiéme tuple (I’antécédent est faux), mais ne tient pas dans ’avant dernier. La
réduction de taille de DBC est basée sur les régles qui tiennent dans tous les tuples de la

table, comme par exemple A = C'V D dans r’.

Un ensemble contenant les attributs qui peuvent étre utilisés pour former une régle
disjonctive simple tenant dans toutes les tuples de la relation s’appelle un ensemble
non-disjonction-libre. Les autres ensembles s’appellent disjonction-libres. Par exemple
{A,C,D} et {A, B,C, D} ne sont pas disjonction-libres, a cause de la régle A = C'V D.

DBC est composé simplement de la collection de tous les ensembles disjonction-libres
fréquents et des ensembles fréquents minimaux qui ne sont pas disjonction-libres. A

chaque ensemble nous ajoutons 'information correspondante & son support.

Les tailles de différentes représentations pour plusieurs seuils de support sont indiquées
sur la Figure 5.4 (certaines axes sont & échelle logarithmique). Nous avons utilisé les
mémes mesures que dans le cas d’expériences avec la taille de SRBC (voir plus haut).

Les valeurs plus petites correspondent aux représentations plus condensées.
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Figure 5.4: Tailles de différentes représentations sur trois jeux de données.

Sur Figure 5.4 & gauche, nous pouvons voir que la représentation DBC est plus petite que
la représentation a base d’ensembles fermés fréquents dans toutes les expériences quand
nous considérons leurs volumes en octets. Le méme tient & peu d’exceptions prés si nous
comptons le nombre d’ensembles composant chaque représentation (Figure 5.4, a droite).
Pour la comparaison de la taille de DBC avec celle de la collection de tous les ensembles
fréquents, nous savions a priori que le DBC est toujours plus petit ou égal dans la taille.
Dans les expériences présentées dans la Figure 5.4, la différence est trés importante et

s’étend d’une a quatre ordres de grandeur.

La propriété la plus intéressante de DBC est que cette collection peut étre extraite trés
efficacement et elle est suffisante pour calculer tous les ensembles fréquents et leurs sup-
ports.

La propriété “est disjonction-libre” est anti-monotone, ce qui permet (comme dans le cas
des ensembles d-libres) d’utiliser un algorithme dérivé de ’algorithme générique par niveau
présenté dans [Mannila 97b]. En fait, la propriété combinée “fréquent et disjonction-libre”
est employée. Elle est également anti-monotone. [’algorithme résultant s’appelle HLin-
Ex.

Nous avons également proposé un algorithme réalisant I’extraction de cette représentation

en parcourant en profondeur I’espace de motifs. Il marie des avantages de Max-Miner,
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de FP-Growth et de Tree-Projection. L’algorithme résultant, VLin-Ex, agrége égale-
ment différents tuples en un seul, et peut incrémenter ainsi des compteurs de support par
plus de 1 en une opération simple. Dans le cas de VLin-Ex, la relation binaire est chargée
en mémoire et compactée en début d’exécution.

Dans presque toutes les expériences sur trois jeux de données différents choisis aveugle-
ment parmi des jeux de donnés de référence fortement corrélés, I’extraction de DBC est
sensiblement plus efficace que 'extraction des ensembles fermés fréquents correspondants
et que l'extraction des ensembles fréquents. Pour les cas trés difficiles, DBC peut étre
extrait aux seuils de support inférieurs que les deux autres collections en utilisant les
mémes ressources.

Comme en cas de SRBC, DBC présente trés peu ou pas d’avantages si nous considérons

les jeux de données trés peu corrélés. L’extraction peut méme étre un peu plus lente.

Principales Applications

La dérivation des ensembles fréquents a partir de SRBC ou de DBC (les représenta-
tions décrites ci-dessus) est l'application la plus fondamentale de ces représentations
condensées. Puisque ces représentations condensées représentent souvent des collec-
tions d’ensembles fréquents “intractablement” grandes, la dérivation de tous les ensem-
bles fréquents n’est pas toujours possible. Dans ce cas, ceci ne signifie pas que nous ne
pouvons pas procéder aux taches d’extraction. L’extraction des ensembles fréquents est
souvent suivie d’autres taches d’extraction de connaissances qui se servent des ensem-
bles fréquents. Il est courant d’employer une sous-collection bien définie des ensembles
fréquents et d’abandonner les autres. Dans ces cas-ci, la dérivation d’ensembles fréquents
peut étre raffinée pour régénérer de telles sous-collections, en court-circuitant des collec-
tions, souvent volumineuses, de tous les ensembles fréquents. Par exemple, les procédures
de régénération de tous les ensembles fréquents (Regen-Freq, Regen-Approx-Freq,
décrite plus loin) peuvent étre facilement modifiées pour extraire les ensembles fréquents
sous des contraintes (I’extraction des ensembles fréquents sous des contraintes a été large-
ment étudiée, voir, par exemple, [Srikant 97, Ng 98, Boulicaut 00d|).

Les applications finales incluent toutes les applications des ensembles fréquents, telles
que la dérivation de régles d’association (avec une réserve sur la tractabilité équiva-
lente & celle sur les ensembles fréquents), dérivation de régles d’association sous con-
traintes [Srikant 97, Ng 98, Boulicaut 00d], calcul des couvertures de régles d’association,
extraction des régles d’association avec des négations ou leurs couvertures, la dérivation
des supports des formules généralisées arbitraires (voir [Bykowski 02b]), les techniques de
classification [Das 98, Han 98| et ainsi de suite.

Nous ne discutons pas toutes les applications. Nous nous concentrons sur les principes

fondamentaux qui peuvent apporter des bénéfices a ces applications.
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Le calcul de toutes les régles d’association & partir des représentations condensées pro-
posées est simple si 'on régénére tous les ensembles fréquents puis que nous appliquons
les algorithmes classiques de dérivation de ces régles a partir des ensembles fréquents. Le
résultat mérite quand-méme une évaluation de qualité si nous nous servions des représen-
tations avec perte d’information (et donc, potentiellement, perte de qualité). Pour ce choix
particulier, nous avons besoin de faire attention aux erreurs sur les fonctions d’évaluation
(par exemple, le support et la confiance) propagées a partir des surestimations des sup-
ports des ensembles fréquents dues & SRBC avec un ¢ > 0.

Un avantage éprouvé est celui lié au calcul des couvertures de régles d’association. Ce
calcul peut se faire sans extraire tous les ensembles fréquents (afin de court-circuiter
des collections volumineuses d’ensembles fréquents). Dans [Bastide 00a] et dans [Zaki 00|
respectivement Bastide et al. et Zaki ont décrit des méthodes pour calculer des couvertures
de régles d’association. Ces deux méthodes se servent des ensembles fréquents fermés pour
calculer ces couvertures. En réalité, les deux se servent aussi des ensembles fréquents
O-libres ('utilisation des ensembles fréquents fermés est explicitement énoncée dans les
deux articles, mais le besoin des ensembles fréquents 0-libres n’est énoncé qu’a travers des
propriétés qui peuvent se réduire a la définition des ensembles 0-libres).

En conséquence, nous nous sommes pariculiérement attachés 4 montrer comment convertir
DBC en deux collections : les ensembles fréquents fermés et les ensembles fréquents 0-
libres (pour éventuellement en dériver une couverture de régles d’association). Ceci peut
étre fait méme lorsque la collection de tous les ensembles fréquents est “intractablement”
grande. En ce qui concerne 'utilisation de SRBC pour générer des couvertures de régles,
la variante sans perte de SRBC est déja constituée des ensembles fréquents 0-libres, donc
seule la régénération des ensembles fréquents fermés est & envisager. Ce procédé peut
facilement se déduire du procédé convertissant DBC en ensembles fréquents fermés et
ensembles fréquents 0-libres, et n’est donc pas spécifiquement détaillé ni expérimenteé.
Des applications trés spécifiques, profitant mieux des tailles plus petites des représen-
tations condensées ont été déja proposées ou sont en cours de développement
(voir [Bykowski 02a, Bykowski 00, Bykowski 02b).

Régénération des ensembles fréquents & partir de DBC

L’algorithme de régénération des ensembles fréquents a partir de DBC s’appelle Regen-
Freq. Comme énoncé précédemment, il n’a besoin que de DBC (en particulier, il n’a
pas besoin du jeu de données, dont la lecture combinée avec un comptage de supports
est normalement trés cotiteuse). Ceci est di au fait que DBC est une représentation des
ensembles fréquents sans perte d’information.

Comme DBC est une collection “anti-monotone” (c’est-a-dire, le critére d’appartenance
d’un ensemble & DBC est anti-monotone) et composée d’une sous-collection d’ensembles

fréquents, un certain nombre d’ensembles fréquents & régénérer y est déja. Les autres
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ensembles fréquents peuvent étre dérivés a partir de DBC. Nous avons proposé d’effectuer
cette dérivation niveau par niveau, en commencant par les ensembles fréquents les plus
petits et en passant aux ensembles fréquents de taille 7 4+ 1 une fois que tous les ensembles
de taille 7 ont été calculés.

A Tinitialisation, nous considérons tous les ensembles faisant partie de DBC comme une
collection d’ensembles fréquents de départ. Ensuite, les ensembles qui ne sont pas dans
DBC sont dérivés a partir des ensembles fréquents déja connus en utilisant une relation
entre les supports des ensembles dérivée des régles disjonctives qui tiennent dans tous
les tuples (voir la définition des ensembles disjonction-libres plus haut). Le processus
s’effectue itérativement pour tous les ensembles (qui sont & dériver) de méme taille, jusqu’a
ce qu’il n’y aie plus d’ensembles fréquents sur un niveau. A ce moment, le programme

termine.

Régénération des ensembles fréquents a partir de SRBC

La régénération des ensembles fréquents a partir de SRBC nécessite une attention partic-
uliére due au fait que SRBC n’est pas une représentation sans perte d’information (quand
0 est difféerent de 0). Nous avons déterminé (en fonction du paramétre §) une limite
théorique d’erreur du support lors de dérivation utilisant les ensembles d-libres. Cette
limite d’erreur croit linéairement avec la valeur de 9. Mais nous sommes allés plus loin
et nous avons mené des expériences spécifiques pour évaluer cette perte d’information en
pratique et la comparer a la limite théorique. Ainsi, nous avons observé que pour les don-
nées réelles et un J petit (de I'ordre de quelques tuples), non seulement 'erreur pratique
est petite (ce qui soutient le résultat théorique disant que l’erreur est linéaire avec 0),
mais elle est d'un ordre de grandeur plus petit que la limite théorique correspondante.
Par conséquent, la représentation peut étre utilisée méme pour matérialiser tous les en-
sembles fréquents (et leur supports), sans craindre une imprécision majeure. L’algorithme
réalisant cette dérivation s’appelle Regen- Approx-Freq. Il fonctionne de facon similaire
a Regen-Freq (algorithme par niveau, utilisant les ensembles fréquents, jusqu’a une cer-
taine taille tous déja connus, pour dériver des ensembles fréquents de taille supérieure).
Cet algorithme calcule les supports de tous les ensembles fréquents en utilisant tous les en-
sembles contenus dans SRBC, ce qui en général améliore la précision du résultat, comparé
a celui déduit seulement des ensembles d-libres.

Regen-Approx-Freq n’a pas besoin du jeu de données de départ, dont la lecture com-

binée avec un comptage de supports est normalement trés cotiteuse.

Régénération des régles d’association & partir de SRBC

Le calcul de toutes les régles d’association & partir des représentations condensées pro-

posées dans cette thése est direct en régénérant tous les ensembles fréquents, puis

169



en employant l’algorithme standard de dérivation de régles a partir des ensembles
fréquents [Agrawal 94|, & moins que nous nous servons des représentations avec perte
d’information, notamment de SRBC.

C’est dans ce cas que nous avons cherché & quantifier I'impact de I’approximation les sup-
ports des ensembles fréquents quand les supports et les confiances des régles d’association
sont dérivés de SRBC. Nous avons donné des limites pour ’erreur faite sur ces mesures
des régles d’association et comme les erreurs sur supports des ensembles fréquents étaient

trés petites en pratique, de petites erreurs de supports et de confiances des régles suivent.

Régénération des ensembles fréquents fermés a partir de DBC

Un résultat important d’étude des ensembles disjonction-libres est la comparaison de dif-
férentes qualités de ces ensembles avec les qualités d’ensembles fermés. A travers des
expériences multiples, nous avons montré que ’extraction de DBC est quasiment toujours
plus rapide que celle des ensembles fréquents fermés correspondants et que les tailles de
ces représentations respectives sont quasiment toujours a ’avantage de DBC. Mais, la
notion des ensembles fermés est issue d’'un domaine avec des bases théoriques développées
pendant des décennies (cf. [Ore 44, Wille 82|). Ainsi, nous avons étudié DBC comme
une représentation condensée intéressante des ensembles fermés fréquents. Pour cela, nous
avons proposé un cadre d’utilisation de DBC qui permet de réaliser des avantages impor-
tants par rapport a I'utilisation directe des ensembles fermés fréquents. Parmi eux, nous
pouvons mentionner la capacité de dériver les ensembles fermés fréquents partir de DBC
dont la durée ajoutée a celle d’extraction de DBC reste inférieure a la durée d’extraction
des ensembles fermés fréquents par les algorithmes correspondants. Ainsi, nous calculons
des ensembles fermés fréquents plus efficacement qu’avant. Un autre avantage qui peut
étre remarqué est la capacité de DBC a produire les ensembles fermés fréquents et les en-
sembles 0-libres fréquents correspondants, ce qui facilite beaucoup le calcul des couvertures
de régles d’association (par exemple, les couvertures proposées dans [Bastide 00a, Zaki 00|
se servent toutes les deux de ces ensembles). L’intérét de calculer des couvertures de régles
d’association est trés important, les couvertures présentent a I’expert un résumé compact
des collections (habituellement de trés grande taille) de régles d’association.

Nous pouvons ainsi dire que DBC donne fonctionnellement accés aux mémes résultats
(connaissances) que les ensembles fermés fréquents, mais nous pouvons le faire plus ef-
ficacement avec DBC qu’en calculant directement les ensembles fermés fréquents. On
peut également dire qu’avec de mémes ressources, l'utilisateur peut analyser plus des
phénomeénes, le surplus correspond aux phénoménes les plus difficiles a extraire (a cause

du support qui est plus petit).
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Régénération de SRBC a partir de DBC et des ensembles fréquents
fermés & partir de SRBC

SRBC avec 6 = 0 est une représentation sans perte d’information. Sa reconstruction &
partir de DBC (une autre représentation sans perte d’information) devrait étre possible.
Egalement, la régénération des ensembles fermés fréquents devrait étre possible & partir
de SRBC.

En effet, elles sont toutes les deux possibles grace & I'algorithme de conversion de DBC en
ensembles fermés fréquents qui consiste en une composition de ces deux algorithmes. Les
temps de conversion élémentaires résultant sont certainement inférieurs a la conversion

combinée DBC— ensembles fermés fréquents.

Pistes vers la découverte des régles d’association avec des négations

Il arrive parfois que nous voulons trouver des associations entre les attributs positifs (la
présence d’une propriété) et les attributs négatif (des attributs dont la présence traduit
’absence d’une propriété “positive”). Dans la suite, on emploie le terme régles généralisées
pour de telles régles. Le calcul de régles généralisées fréquentes s’avére intractable dans
de nombreux cas pratiques, pour les mémes seuils de support que ceux accessibles pour
la découverte des régles d’association “standard”.

Lors de 'extraction des régles généralisées, 1’étape cotiteuse concerne le calcul des ensem-
bles généralisés fréquents desquels les régles généralisées sont dérivées. C’est pourquoi
nous nous sommes intéressés a cette étape de 1’extraction.

Nous avons étudié des possibilités pour un calcul tractable des ensembles fréquents
généralisés et leur post-traitement en régles d’association généralisées.

Nous avons essayé d’utiliser des contraintes adéquates pour élaguer au plus tot des régles
généralisées surabondantes (telles que les régles faisant intervenir uniquement des attributs
négatifs) ou l'utilisation de représentations condensées. Les deux approches permettent
de gagner en tractabilité de calcul des régles généralisées pour des seuils de supports tres

petits.

Conclusion, Travaux Futures et Perspectives

Conclusion

L’extraction de motifs est une technique importante d’extraction de connaissances quand
nous disposons d’une large base de données et que nous voulons améliorer notre com-
préhension du systéme générant les observations stockées dans la base.

L’extraction des ensembles fréquents (un type de base de motifs descriptifs) a été effectuée

avec succes sur quelques jeux de données. Malgré un potentiel relatif des ensembles
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fréquents pour comprendre d’autres jeux de données, plusieurs d’entre eux nécessitent des
calculs trop lourds ou non tractables. Entre autres raisons, ’échec est dii a la corrélation
forte des attributs et & I’explosion résultante du nombre d’ensembles fréquents.

Dans cette thése, nous avons proposé d’éviter une partie de la charge liée au cal-
cul d’ensembles fréquents. Pour ce faire, nous avons proposé des méthodes basées
sur ’exploitation de la redondance observée dans les collections d’ensembles fréquents.
D’abord, on a observé que quelques approches du passé peuvent étre ramenées a cette
idée.

Puis, nous avons étudié en détails deux types de redondances ce qui a parmis de proposer
deux principales représentations condensées des collections d’ensembles fréquents. En
pratique, elles sont beaucoup plus petites que les collections d’ensembles fréquents qu’elles
représentent et plus efficaces a calculer.

Nous observons également ces avantages une fois les nouvelle représentations sont com-
parées aux ensembles fermés fréquents, probablement la seule structure proposée dans le
passé a laquelle nous pouvons nous comparer vraiment.

Nous avons fourni des principes théoriques détaillés, des algorithmes et des preuves ex-
périmentales sur quelques jeux de données fortement corrélés typiques pouvant béné-
ficier des résultats de la thése. Les méthodes résultantes permettent en général d’élargir
I’applicabilité de la découverte des connaissances basée sur les ensembles fréquents, pour
réduire des seuils de supports (approfondir ’analyse de données) avec les mémes ressources
ou pour accroitre ’applicabilité des méthodes connues a des donnés plus difficiles.

Nous avons également proposé un cadre pour décrire uniformément des représentations
condensées de motifs.

Nous avons fourni des outils pour tirer profit des représentations condensées meéme
pour des techniques standard basées sur des ensembles fréquents, des ensembles fer-
més fréquents ou des ensembles O-libres fréquents. En effet, les techniques basées sur
des représentations condensées proposées dans la thése peuvent simplement étre utilisées
pour produire plus rapidement de motifs dont les méthodes mentionnées ci-dessus ont be-
soin (c’est-a-dire les ensembles fréquents, les ensembles fermés fréquents ou les ensembles
O-libres fréquents).

Finalement, nous avons considéré une tache d’extraction proposée dans le passé, mais qui
n’est pas tracktable en général, I’extraction de régles d’association avec des négations. On
propose des pistes pour pouvoir accomplir cette tache et I'une d’elles consiste a utiliser

une des représentations condensées originales proposées dans la thése.

Les résultats de la thése sont centrés sur amélioration des dispositifs pour les autres
techniques basées sur le calcul d’ensembles fréquents, déja bien connues. Ces résultats
ont déja été la base d’autres travaux, réalisés indépendamment, par ex. [Calders 02].

En plus, les prototypes concrets réalisés en relation avec la thése ont servi a valider la

viabilité d’une nouvelle direction de recherche entreprise et a explorer des jeux de données
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réels. La nouvelle direction de recherche entreprise, mentionné ci-dessus a été pré-étudiée
avec Min-Ex pour voir si elle est viable, avant d’entamer des recherches a échelle normale
(cette recherche est décrite dans [Abdennadher 00]). La nouvelle direction de recherche
en question est la génération automatique des régles de propagation (des régles logiques
utilisées dans le domaine de programmation par contraintes pour résoudre des groupes de
contraintes).

De nombreuses publications montrent ['utilisation pratique des prototypes pour ex-
plorer des données réelles |[Boulicaut 0la, Robardet 02] (analyse de données médicales)

et [Bykowski 00] (extraction de connaissances dans des logs Web).

Travaux Futurs

L’avancée fondamentale due a l'utilisation de représentations condensées pourra étre
pousuivie par des travaux dédiés a des usages spécifiques des ensembles fréquents.

Une application semble essentielle dans un futur immédiat. Il s’agit d’utilisation efficace
de contraintes, dont les études précédentes incluent [Srikant 97, Ng 98, Boulicaut 00d|
combinée avec 1’utilisation des représentations condensées.

Un guidage d’un systéme d’extraction de motifs vers des motifs importants en utilisant
des contraintes permet d’analyser des données dans les contextes ol le nombre total de
motifs fréquents est intractable a calculer ou post-traiter.

En combinant I'idée des contraintes avec 1’utilisation de représentations condensées sem-
ble étre trés prometteur. En effet, nous avons observé que la combinaison est efficace
lorsque 'on a étudié ’extraction d’une représentation synthétique des collections de re-

gles d’association (cf [Bykowski 02a]). Un travail de formalisation est ici nécessaire.

Finalement, d’autres motifs (par ex. séquentiels) pourraient directement profiter du cadre
des représentations condensées. Peut-étre, pourrions-nous méme 'appliquer aux régles
d’association. Est-ce qu’il serait possible de filtrer des régles redondantes autres que par
les méthodes concurrentes, rendant de résultat plus facile & analyser ou extraire? Ce point

nécessite d’étre approfondi et nous allons y atteler dans le futur.

Une perspective a long terme

A T’horizon, nous pouvons imaginer un systéme de gestion des données permettant, parmi
autres choses, de calculer des différentes classes de motifs en utilisant des fonctions
d’évaluation spécifiées par un utilisateur.

De tels systémes s’appellent des bases de données inductives (cf par ex. [Mannila 97a]). Ils
pourraient bénéficier de la matérialisation d’une certaine information redondante (d’une
maniére semblable comme les systémes de gestion de bases de données relationnelles béné-

ficient des indexes). Une telle information redondante serait recueillie avant une session
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interactive d’extraction de connaissances, pour améliorer le comportement pendant la
session interactive dans la plupart des cas.

Etant donné que les motifs sont en général assez difficiles & manipuler et exigent un ef-
fort élevé pour les calculer, un bon investissement en un calcul d’information redondante
(comme des index dans le cas d’une base de données relationnelles) permettrait une ac-
célération des réponses durant la session interactive. Typiquement, nous serions intéressés
par une collection de statistiques calculées telle qu’elle peut étre entiérement substituée
aux données extensionnelles pour éviter des lectures répétées du jeu de données lui-méme
pour évaluer les motifs candidats. D’autre part, des statistiques suffisantes pour certaines
requétes pourraient étre trop proches du résultat de ces requétes pour bénéficier d’autres
requétes. Par conséquent, un bon compromis entre la généralité (flexibilité) des sommaires
et leur contribution a l'efficacité doit étre trouvée.

Les représentations condensées proposées dans cette thése sont suffisamment flexibles pour
accomplir chaque tache qui se sert des ensembles fréquents en tant que seule information au
départ (car nous avons montré comment régénérer tous les ensembles fréquents). En méme
temps, les représentations condensées proposées sont efficaces pour obtenir les ensembles
fréquents, et donc méme en se servant d’elles pour obtenir efficacement les ensembles
fréquents (ce qui peut dans certains cas étre méme court-circuité pour mieux bénéficier
des représentations condensées), le processus d’extraction s’améliore.

Nous croyons que les représentations condensées proposées dans la thése seront des com-

posants des systémes opérationnels de bases de données inductives.
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