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Abstract

In today’s society, information is becoming ever more pervasive. With the advent of the digital
age, collecting and storing these near-infinite quantities of data is becoming increasingly
easier. In this context, designing new Pattern Discovery methods, that allow for the semi-
automatic discovery of relevant information and knowledge, is crucial. We consider data made
of a set of descriptive attributes, where one or several of these attributes can be considered as
target label(s). When a unique target label is considered, the Subgroup Discovery task aims
at discovering subsets of objects — subgroups — whose target label distribution significantly
deviates from that of the overall data. Exceptional Model Mining is a generalization of
Subgroup Discovery. It is a recent framework that enables the discovery of significant local
deviations in complex interactions between several target labels. In a world where everything
has to be optimized, Multi-objective Optimization methods, which find the optimal trade-offs
between numerous competing objectives, are of the essence. Although these research fields
have given an extensive literature, their cross-fertilization has been considered only sparsely.

Given collected data about a process of interest, we investigate the design of methods
for the discovery of relevant parameter values driving the its optimization. Our first con-
tribution is OSMIND, a Subgroup Discovery algorithm that returns an optimal pattern in
purely numerical data. OSMIND leverages advanced techniques for search space reduction
that guarantee the optimality of the discovery. Our second contribution consists of a generic
iterative framework that leverages the actionability of Subgroup Discovery to solve optimiza-
tion problems. Our third and main contribution is Exceptional Pareto Front Mining, a new
class of models for Exceptional Model Mining that involves cross-fertilization between Pattern
Discovery and Multi-objective Optimization. In-depth empirical studies have been carried
out on each contribution to illustrate their relevance. Our methods are generic and can be
applied to many application domains.

To assess the actionability of our contributions in real life, we consider the problem of plant
growth recipe optimization in controlled environments such as urban farms, the application
scenario that has motivated our work. It is an intrinsic Multi-objective Optimization problem.
We want to apply our pattern discovery methods to discover parameter values that lead to an
optimized growth. Indeed, finding optimal settings could have tremendous repercussions on
the profitability of urban farms. On synthetic and real-life data, we show that our methods
allow for the discovery of parameter values that optimize the yield-cost trade-off of growth
recipes.

Keywords: Subgroup Discovery, Exceptional Model Mining, Multi-objective Optimization,
Urban Farms, Plant Growth Recipes
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Résumé

Dans la société actuelle, 'information devient de plus en plus pervasive. Avec avénement de
I’ére du numérique, collecter et stocker ces quantités presque infinies d’informations devient de
plus en plus accessible. Dans ce contexte, la conception de méthodes de découverte de motifs
permettant la découverte semi-automatique d’informations pertinentes ou de connaissances
est cruciale. Nous considérons des données mettant en jeu un ensemble d’attributs descriptifs,
avec un ou plusieurs de ces attributs qui peut (peuvent) étre considéré(s) comme variable(s)
cible(s). Quand on a un seul attribut cible, la découverte de sous-groupes vise a découvrir des
sous-ensembles d’objets — des sous-groupes — dont la distribution de I’étiquette cible dévie
significativement de celle de I’ensemble des données. La fouille de modeles exceptionnels est
une généralisation de la découverte de sous-groupes. C’est un cadre récent permettant la
découverte de déviations locales significatives dans des interactions complexes entre plusieurs
variables cibles. Dans un monde ou tout doit étre optimisé, les méthodes d’optimisation
multi-objectifs, qui trouvent les compromis optimaux entre plusieurs variables concurrentes,
sont essentielles. Bien que ces différents domaines de recherche possedent une littérature
riche, leur fertilisation croisée n’a été que peu étudiée.

Avec la disponibilité de données collectées sur un processus d’intérét, nous nous intéressons
a la conception de méthodes permettant la découverte de valeurs de parametres pertinentes
pour son optimisation. Notre premiere contribution est OSMIND, un algorithme de découverte
de sous-groupes qui retourne un motif optimal dans des données purement numériques. OS-
MIND exploite des techniques avancées de réduction de ’espace de recherche garantissant
l'optimalité de la découverte. Notre seconde contribution consiste en un framework itératif
générique qui met a profit 'exploitabilité de la découverte de sous-groupes pour résoudre des
problemes d’optimisation. Notre troisieme et principale contribution est la fouille de frontieres
de Pareto exceptionnelles, une nouvelle classe de modeles pour la fouille de modeles excep-
tionnels, qui implique une fertilisation croisée entre la découverte de motifs et I’optimisation
multi-objectifs. La pertinence de chacune de nos contributions a été confirmée a travers des
études empiriques approfondies. Nos méthodes sont génériques et peuvent étre utilisées dans
de nombreux domaines d’application.

Pour évaluer I'exploitabilité de nos contributions en situation réelle, nous considérons le
probleme d’optimisation de recettes de pousse de plantes en environnements controlés tels que
les fermes urbaines, le scénario d’application qui a motivé nos travaux. Améliorer la pousse
des plantes est un probleme intrinsequement multi-objectifs. Nous souhaitons appliquer nos
méthodes de découverte de motifs pour découvrir les valeurs de parameétres menant & une
pousse optimisée. En effet, découvrir ces réglages optimaux pourrait avoir des répercussions
importantes sur la rentabilité des fermes urbaines. A partir de données synthétiques et
réelles, nous démontrons que nos méthodes permettent la découverte de valeurs de parametres
optimisant le compromis rendement/cotts de recettes de pousses.

Mots clés: Découverte de Sous-Groupes, Fouille de Modeles Exceptionnels, Optimisation
Multi-objectifs, Fermes Urbaines, Recettes de Pousse de Plantes
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Chapter 1

Introduction

1.1 Context

This thesis was completed thanks to a public grant funded by the French Single Inter-Ministry
Fund (FUI AAP 24). The project, titled Digital Urban Farming 4.0 (DUF 4.0) was conducted
as a collaboration between Atos, an I'T services and consulting company, Ferme Urbaine Ly-
onnaise (FUL, Lyon Urban Farm) a startup company that is specialized in the design and
selling of urban farms, and the LIRIS at INSA Lyon. The main objective of the project was
to build one of the first urban and fully digital farms.

In this project, each participant was to bring its own specialized skill set and technical knowl-
edge to the table. Atos was selected to lead the overall project and ensure its progression and
completion according to the original plan. As an international giant of IT services, they were
in charge of developing everything related to the digitalization of the urban farm prototype,
including data access, data retrieval, and IT support. FUL, as the urban farm specialist had
a central place in the project, and was supposed to design and provide a fully functional
and automated prototype, but also deep knowledge of the inner workings of an urban farm,
and everything related to expert agronomic knowledge. For its part, the LIRIS was tasked
with developing innovative data science and artificial intelligence solutions to optimize diverse
processes, like, e.g., plant growth or maintenance.

At the beginning of my PhD, back in November 2018, the urban farm of FUL was very
much still a prototype, where only the growth of plants in a fully controlled environment
was completed. Everything else — e.g., farm automation, data collection — was still under
construction, and although several data science related ideas had been identified to optimize
the future digitalized farm, the exact problems that this thesis would try to solve were still
unclear. To pinpoint which problems would be most relevant and would have the biggest
impact on the future of the farms if solved, we had to proceed to a deep dive into vertical
urban farming.

Nowadays, conventional farming methods have to face many tough challenges like, for in-
stance, soil erosion and groundwater depletion. The concept of vertical urban farms (see,
e.g., AeroFarms, Infarm, Bowery Farming!) can be part of a solution. These farms allow for
a significant reduction in water consumption while being able to optimize both the quan-
tity and quality of plants. In their current form, vertical urban farms have to face a major

"https://aerofarms.com/, https://infarm.com/,https://boweryfarming.com/.
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problem: operating and infrastructure costs keep them from being profitable at large scale
in almost all existing cases. In this context, the development of computer-based methods al-
lowing the optimization of urban farming processes would be a big step toward urban farms
becoming successful.

Urban farms are able to produce large amounts of data thanks to numerous sensors, that
can be stored locally or in the cloud such that various artificial intelligence and data mining
methods can be used. New insights about the plant growth process itself but also other new
services could therefore theoretically be provided to farm owners. Several scientific prob-
lems that could potentially be solved using computed-based methods had been identified.
Among them, we found predictive maintenance, anomaly detection, the detection of inter-
esting events, and plant growth optimization. From this list, it seemed like optimizing plant
growth, if solved, would have the biggest impact on profitability. Furthermore, the scientific
challenges behind building methods to optimize plant growth were attractive to me and to
the DM2L team of the LIRIS, which I was a part of. We therefore decided to put our focus
on the optimization of plant growth recipes in controlled environments.

In controlled environments such as vertical farms, the number of parameters influencing plant
growth can be relatively important (e.g., temperature, hygrometry, water pH level, nutrient
concentration, LED lighting intensity, CO2 concentration). These parameters can all be su-
pervised from the moment the plants are planted up to the day of harvest. Experts can
specify a priori the expected values for these descriptive attributes, following what we will
now call plant growth recipes. There are numerous ways of measuring the relevance of the
harvested crops (e.g., cost, yield, size, flavor, or chemical properties). In other terms, we can
retrieve several targets that can be used to evaluate the value of a given crop. In general, for
a given type of plant, some expert knowledge exists regarding the sub-systems (e.g., to model
the impact of nutrient on growth, the effect of LED lighting on photosynthesis, the energy
consumption w.r.t. the temperature instruction) but we are far from a global understanding
of the interactions between the various underlying phenomena. In other words, setting the
optimal instructions for the diverse set of parameters given an optimization task remains an
open problem.

Can we learn from available recipe records to suggest new ones that should provide better
results w.r.t. the selected target attributes? Furthermore, as the urban farm of FUL was
still in the prototype phase, we were aware that real-life growth data would be unavailable
for most of the doctorate. Therefore, can we also design innovative solutions to assess the
relevance of our developed methods, such that they can be directly implemented into working
urban farms once the time comes?

We decided to address the issue by means of pattern discovery techniques, a domain of
predilection of DM2L.

It is important to note that while the focus of the research was put on optimizing urban
farms, we decided to develop generic methods that could be applied to other projects related
to the so-called Industry 4.0 area.

1.2 Pattern Discovery and Multi-Objective Optimization

As society becomes ever more digitalized, giant improvements in computing power and data
storage have been made. While only a few years ago data availability used to be a hindrance
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to the development and validation of new methods, researchers now have at hand large
masses of information to exploit. Extracting only relevant and actionable patterns from such
data using computer-based techniques is a tangible challenge that has the potential to yield
enormous benefits for many entities.

The need to discover interesting patterns in data is nothing new. Association Rule Mining,
which allows for the discovery of rules describing outstanding relationships between several
attributes, was introduced almost 30 years ago (Agrawal et al., 1993). Let us now imagine a
dataset composed of several descriptive attributes about the eating habits of a large number
of people and whether they are overweight or not. With this data at hand, we could discover
rules such as:

soda = “every_day” A junk_food = “often” = overweight = True

and
soda = “every_day” = junk_food = “often”

From these rules, we can extract relevant information: (1) people who drink soda every day
and eat junk food often tend to be overweight, (2) people who drink soda every day are likely
to often eat junk food.

Nowadays, a large part of data that is available can be defined as labeled data, i.e., data
made of objects defined by a set of descriptive attributes and a target label. Discovering
interesting knowledge in such data — known as Subgroup Discovery (SD) — is an important
pattern discovery task that has captured the attention of researchers for 25 years. SD aims
at discovering subsets of objects in data — subgroups — whose target label distribution signif-
icantly deviates from that of the overall data. In SD, the search space of subgroups consists
of a large set of subgroup descriptions, and each description is made of a set of constraints
on some attributes of the dataset.

Association Rule Mining and SD are closely related. In Association Rule Mining several
attributes can exist in both the antecedent and consequent of the rules, and two given rules
can have different attributes as consequent. SD, however, restricts the discovery to rules
that discriminate a predefined target attribute. For example, given the previous example,
the target attribute could be the binary label “overweight”. Then, we could be interested in
discovering subsets of the population (subgroups) that are more likely to be overweight than
the norm (the overall dataset).

The global problem that is tackled in this thesis regards the development of innovative Pattern
Discovery methods to help solving optimization problems when typical existing algorithms
cannot be applied. We consider a setting where there is a need to discover optimal values of
descriptive attributes that lead to the optimization of one or several numerical targets. In
this context, the use of SD is relevant.

For example, let us imagine a scenario where we have at hand several attributes describing
isolation properties of houses and a target label that defines, for each house, its energy con-
sumption. In this setting, discovering a subgroup of houses that optimize energy consumption
is extremely relevant. Indeed, the description of the subgroup would detail interesting isola-
tion properties that lead to reduced energy consumption. The information provided by the
description of the subgroup is therefore directly actionable to optimize the process: it can
easily be exploited to build new houses with better isolation and reduced energy consump-
tion.
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When only one target label is considered, SD can be applied. However, it is inherently lim-
ited to a single target, and there is a need for a framework that allows discovering the same
kind of interesting information when several target labels have to be optimized at the same
time. Exceptional Model Mining (EMM) is the task that allows this. It is a pattern discov-
ery framework introduced more recently (Duivesteijn et al., 2016) as a generalization of SD.
EMM is able to handle data where two or more targets exist, enabling the discovery of more
complex interactions between variables. In EMM, we consider models instead of simple dis-
tributions on the target labels, and we look for subgroups whose models deviate significantly
from the same model fitted on the entire dataset. Using the same scenario as for SD but
now with both the energy consumption and the cost of the house as target labels, we could
be interested in discovering informative subgroups of houses that optimize the energy/cost
trade-off. Exploiting the descriptions of these subgroups would help in designing new houses
with optimized energy/cost trade-offs. This is a difficult task: discovering optimal trade-offs
between several variables is the subject of an entire field of research, namely Multi-objective
Optimization (MOO).

Having access to generic methods that can solve any given optimization problem is essential
to the development and proper functioning of numerous complex processes. Multi-objective
optimization (Deb, 2014) is a sub-field of Multi-criteria Decision Making that is focused on
finding globally optimal solutions for real-life problems that involve a set of usually conflict-
ing objectives. For simple problems, we can use methods that transform the multi-objective
optimization problems into single-objective ones and discover a single globally optimal so-
lution. When dealing with more complex scenarios — such as plant growth optimization —
scalarization techniques lead to sub-optimal results and using proper MOO methods that
yield not one, but a set of optimal solutions is needed.

Inspired by nature and based on concepts from the theory of evolution (Eiben and Smith,
2015), evolutionary algorithms, and more precisely genetic algorithms represent by far the
most widely used methods in MOO. As global optimization techniques, genetic algorithms
are driven to converge toward global solutions, rather than local ones. Therefore, in the MOO
setting, genetic algorithms aim at discovering the set of globally optimal solutions, i.e., the
globally optimal trade-offs between the considered objectives.

Cross-fertilization between MOO methods and Pattern Mining techniques has unfortunately
received little attention thus far, and even more so when the focus is being put on SD and
EMM. In this thesis, we consider several complex problems that appear when we want to
couple Pattern Discovery and MOO to solve real-life problems.

1.3 Problems Addressed in this Thesis

We want to design innovative Pattern Discovery methods to solve a particular set of Multi-
objective Optimization problems, i.e., settings where there is a need to discover optimal
parameter values when several numerical objectives are optimized at the same time. The
application scenario at the heart of this research is the design of better plant growth recipes
in controlled environments. Indeed, plant growth optimization is an intrinsic MOO problem
where several competing objectives — such as yield and energy cost — need to be optimized
concurrently. Therefore, optimizing plant growth means finding the best trade-offs between
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these objectives. This is a crucially complex task: when optimizing recipes, the underlying
model is unknown and experiments are severely limited due to time and cost constraints,
making it impossible to exploit existing MOO approaches. We therefore need to devise
methods that support the discovery of relevant and exploitable information in such MOO
settings. To answer these limitations, let us now identify 3 important and open problems
that need to be solved.

e Problem #1: How can we exploit Pattern Discovery to discover relevant parameter
values for Single-objective Optimization problems?

While numerous optimization problems are multi-objective by nature, others only involve
one objective to optimize. In the absence of knowledge about the underlying models that
govern these processes, we need to be able to provide actionable information about the ideal
parameters that lead to an optimized objective. For example, in the absence of knowledge
about the cost of growth recipes, finding the ideal growing conditions that lead to an optimized
yield is relevant. We therefore need to explore the development of pattern discovery methods
that will help solve this problem.

e Problem #2: How can we leverage Pattern Discovery to discover relevant parameter
values for Multi-objective Optimization problems?

As most real-life optimization problems involve multiple competing objectives, a large part of
our work needs to focus on devising methods that can enable the discovery of relevant infor-
mation about the parameter values that lead to optimal trade-offs between these objectives.
For example, plant growth optimization can involve not only maximizing the yield but also
minimizing the cost of the recipes at the same time. In this setting, finding the environment
parameter values that optimize both objectives simultaneously is crucial.

However, answering these two crucial problems would be of limited importance, if their rel-
evance could not be confirmed in a real-life situation. This leads us to introduce our third
and last problem.

e Problem #3: In the absence of real data, how can we assess the performance of our
contributions?

Since obtaining access to real-life plant growth data is difficult, we need to find ways to
assess the relevance and actionability of our methods on comparable problems and/or data.
Notice however that producing synthetic data can be hard when qualitative aspects are to
be assessed.

1.4 Contributions

Having now introduced the main problems that this thesis tackles, we detail our contributions.

1.4.1 OSMIND: A New Algorithm for Optimal Subgroup Discovery in
Purely Numerical Data

Subgroup Discovery is a local pattern detection technique that aims at discovering subsets of
objects in a dataset — subgroups — whose target label distribution significantly deviates from
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that of the whole dataset. Mining subgroups in purely numerical data has unfortunately
received little attention thus far. The few proposed methods usually involve the use of
discretization methods on the numerical attributes. It is however well-known for inducing
loss of information, suboptimal results, and irrelevant patterns.

To solve these issues, we propose OSMIND, an SD algorithm that enables the discovery of
an optimal pattern in purely numerical data when the ¢2 .., family of quality measures is
considered. To ensure the optimality of the search, we consider the search space of interval
patterns as defined in (Kaytoue et al., 2011). OSMIND leverages the concept of closure on the
positives adapted to a numerical setting to compress the size of the search space. Furthermore,
we introduce a new tight optimistic estimate and exploit advanced techniques that allow
for the pruning of irrelevant patterns efficiently. Finally, we demonstrate the relevance of
OSMIND against the state of the art algorithm SD-MAP* (Atzmueller and Lemmerich, 2009)
in a thorough empirical evaluation.

1.4.2 Exceptional Pareto Front Mining: A New EMM Model Class to
Support Multi-Objective Optimization.

While OSMIND is a good first step toward discovering relevant parameter values (i.e., the
description of the optimal subgroup) driving the optimization of a process, it is by essence
limited to single-objective problems. However, in reality, most processes involve various com-
peting objectives that need to be optimized concurrently. We therefore consider Exceptional
Model Mining, a framework that generalizes SD and is able to deal with problems where
several objectives are involved and complex interactions between them have to be (better)
understood. While the literature on Pareto-based MOO is well-supplied, existing approaches
cannot be used when the underlying model is unknown and/or experiments are limited due
to time and cost constraints. There is a need for methods that would support the discovery
of relevant and exploitable information in such settings.

We design a new class of models for EMM, namely Exceptional Pareto Front Mining (EPFM),
and introduce two methods that fit the class: Exceptional Pareto Front Deviation Mining
(EPFDM) and Exceptional Pareto Front Approximation Mining (EPFAM). EPFDM discov-
ers exceptional deviations between the shape of the Pareto front left by the absence of a
subgroup of objects and the shape of the Pareto front of the overall dataset. EPFAM enables
the discovery of models that approximate exceptionally well the true Pareto front. To reframe
these contributions in our MOO setting: EPFDM can serve as a data analysis tool to dis-
cover interesting knowledge regarding MOO problems, while EPFAM enables the generation
of Pareto optimal solutions with a higher probability by exploiting the description of the best
subgroup (i.e., the best approximation). The relevance and effectiveness of both approaches
are confirmed through a thorough empirical study that includes a use case to hyperparameter
optimization in Machine Learning.

1.4.3 Optimizing Plant Growth Recipes in Controlled Environments.

The relevance of both our SD and EMM approaches has been validated to support the discov-
ery of relevant sets of parameter values for single and multi-objective optimization processes.
We investigate their actionability for plant growth recipe optimization in controlled environ-
ments.
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We first find a way to exploit an existing crop simulator to generate synthetic recipes that
replicate a controlled environment. Using synthetic recipes, we then investigate the optimiza-
tion of plant growth in a controlled environment when a single objective is considered. Since
existing methods fall short of real-life constraints, we propose a new iterative optimization
framework — based on a virtuous circle principle — that exploits the actionability of subgroup
descriptions to generate better growth recipes. Indeed, at each iteration, the description of
the optimal subgroup of recipes is directly used to sample the recipes of the next iteration.
Next, we show how EPFM can be used to support recipe optimization in a multi-objective
setting. In particular, we propose a simple iterative process that exploits EPFAM and the
descriptions of subgroups to iteratively optimize the yield/cost trade-off of recipes.

Finally, we apply both our SD and EMM methods to optimize the growth recipes of basil
thanks to a temporary access during summer 2020 to a real-life FUL operational urban farm.
Preliminary results confirm the potential of our methods to optimize recipes, both in single-
objective and multi-objective optimization settings.

1.5 Structure of the Thesis

The remainder of this thesis is organized as follows:

e In Chapter 2, we first propose an overview of the SD task, its different components, and
the various contributions which have been introduced since its inception. We propose
a more detailed review of the contributions for SD in numerical domains, i.e., when
numerical attributes and/or numerical targets are considered. We then investigate
optimal SD for each type of dataset that is commonly encountered in SD. Finally, we
consider the overall literature of EMM, the fairly recent generalization of SD.

e In Chapter 3, we first detail the reasons why studying the cross-fertilization between
Pattern Discovery and MOO is relevant. We then propose an overview of MOO, that
provides important information regarding the relevance and actionability of existing
methods to help solve our problems. We first review both classical and Pareto-based
approaches to MOO. Next, we consider the literature on quality evaluation and bench-
mark functions for MOO. Then, we detail existing tools and application cases of MOO.
Finally, we propose a detailed review of cross-fertilization between Pattern Discovery
and MOO.

e Chapter 4 is dedicated to our first contribution, the OSMIND algorithm for an optimal
SD in purely numerical data. We leverage the concept of closed interval patterns and
advanced enumeration and pruning techniques. The relevance of our algorithm is stud-
ied empirically and its added value with regard to the state of the art is illustrated.
This contribution has been published in the Proceedings of the 2020 Pacific-Asia Con-
ference on Knowledge Discovery and Data Mining (PAKDD) (Millot et al., 2020a), and
the Proceedings of the 2020 conférence Extraction et Gestion des Connaissances (EGC)
(Millot et al., 2020b).

e In Chapter 5, we investigate methods that exploit Exceptional Pareto Front Mining
(EPFM), a new model class for EMM. Two approaches, Exceptional Pareto Front De-
viation Mining (EPFDM) and Exceptional Pareto Front Approximation Mining (EP-
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FAM) are detailed. Then, an in-depth empirical evaluation, as well as an application
scenario to hyperparameter optimization in Machine Learning, confirm the relevance
of these methods. This contribution has been partially published in the Proceedings of
the 2021 SIAM International Conference on Data Mining (SDM) (Millot et al., 2021).
An extended version is currently under review for publication in the Data Mining and
Knowledge Discovery (DAMI) journal (submitted in March 2021).

e Chapter 6 investigates the actionability of our contributions for plant growth recipe
optimization in controlled environments like urban farms, the real-life setting that has
motivated our research. Furthermore, an iterative optimization framework based on
the actionability of SD is introduced. The relevance of our methods to optimize plant
growth recipes in both single and multi-objective optimization settings is validated on
synthetic and real-life data. Part of this chapter has been published in the Proceedings
of the 2020 International Symposium on Intelligent Data Analysis (IDA) (Millot et al.,
2020c).

e Chapter 7 concludes and details perspectives for future work.

1.6 List of Publications

Peer-reviewed French national conferences:

e Alexandre Millot, Rémy Cazabet, and Jean-Frangois Boulicaut. Découverte d’un
sous-groupe optimal dans des données purement numériques. In Extraction et Gestion
des Connaissances : EGC 2020, Bruxelles, Belgique, January 27-31, 2020, pages 25-36.
Best academic paper award.

Peer-reviewed international conferences with proceedings:

e Alexandre Millot, Rémy Cazabet, and Jean-Francois Boulicaut. FEzceptional Model
Mining meets Multi-objective Optimization. In Proceedings of the 2021 STAM Interna-
tional Conference on Data Mining, SDM 2021, Alexandria, Virginia, U.S, Apr 29, 2021
— May 1, 2021, pages 378-386.

e Alexandre Millot, Rémy Cazabet, and Jean-Frangois Boulicaut. Optimal subgroup
discovery in purely numerical data. In Pacific-Asia Conference on Knowledge Discovery
and Data Mining, PAKDD 2020, Singapour, Singapour, May 11-14, 2020, pages 112-
124.

e Alexandre Millot, Romain Mathonat, Rémy Cazabet, and Jean-Francois Boulicaut.
Actionable subgroup discovery and urban farm optimization. In International Sympo-
sium on Intelligent Data Analysis, IDA 2020, Konstanz, Germany, April 27-29, 2020,
pages 339-351.

The following work is currently undergoing the reviewing process:
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International journals:

e Alexandre Millot, Rémy Cazabet, and Jean-Frangois Boulicaut. FEzxceptional Model
Mining to support Multi-objective Optimization. In Data Mining and Knowledge Dis-
covery, 38 pages. (Submitted in March 2021).






Chapter 2

Subgroup Discovery and
Exceptional Model Mining

In this chapter, we have several goals in mind: (i) to propose a detailed overview of
both Subgroup Discovery and Exceptional Model Mining, (ii) to introduce an in-depth
review of both Subgroup Discovery in numerical domains and Optimal Subgroup Dis-
covery, as well as their current limitations, (iii) to introduce and formalize the concepts
necessary to the understanding of the rest of the thesis. We first propose an overview of
the Subgroup Discovery process, its components, and the numerous contributions which
have been made to the field since its inception. We propose a more detailed review
of the contributions proposed for Subgroup Discovery in numerical domains, i.e., with
numerical attributes and/or numerical targets. We investigate existing approaches that
enable the discovery of the optimal subgroup, for each type of dataset that is commonly
encountered in Subgroup Discovery. Finally, we consider the overall literature that deals
with Exceptional Model Mining, the generalization of Subgroup Discovery.

11
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2.1 Introduction

Over the past 25 years, the digital revolution led to giant improvements in computing power,
data storage, and information recording. While in the past data availability used to be a
problem for researchers, they now have to deal with large masses of information to exploit and
information overload is a real growing concern. Extracting interesting and actionable patterns
from such data using computer-based techniques is a real challenge that could yield enormous
benefits for researchers, companies, and society as a whole. The need to discover patterns
in data is nothing new. Association rule mining, which allows for the discovery of rules that
describe interesting relations between attributes of a dataset, was introduced almost 30 years
ago (Agrawal et al., 1993). Using data mining methods for knowledge discovery (Piatetsky-
Shapiro et al., 1996) then became an important area of research, that lead to the introduction
of numerous new contributions throughout the years. Although the development of new
techniques, algorithms, and methodologies for efficient pattern discovery in diverse scenarios
has been a focus of most researchers in the past, the focus has more recently turned to the
discovery of the right patterns (see, e.g., (Bringmann and Zimmermann, 2009)). Indeed,
when dealing with large search spaces, a gigantic number of patterns can be discovered, of
which only a few might actually be relevant and exploitable. Nowadays, a large chunk of data
that is being processed could be defined as labeled data, i.e., data made of objects defined
by a set of descriptive attributes and one or several labels. Discovering relevant patterns in
labeled data, e.g., thanks to Subgroup Discovery (SD) is an important data mining subarea
that has captivated the attention of numerous researchers.

The remaining of this chapter is organized as follows. Section 2.2 contains an overview of
SD and a formalization of the discovery task. In Section 2.3, we review SD with numerical
attributes. We investigate SD with numerical targets in Section 2.4. Optimal SD is considered
in Section 2.5. In Section 2.6, we review contributions made to EMM. Finally, Section 2.7
concludes.

2.2 Overview of Subgroup Discovery

2.2.1 Definition

Subgroup Discovery is a local pattern detection technique (Morik et al., 2005) whose birth
is attributed to (Klosgen, 1996, Wrobel, 1997), although the idea of discovering “interesting
subgroups in a database” was already pointed out in (Siebes, 1995). It aims at discovering
subsets of objects in a dataset — subgroups — whose target label distribution statistically
deviates from that of the overall dataset. To measure the significance of that deviation, a
quality measure that takes into account both the generalization power of the subgroup and
its deviation from the norm is usually used. Interestingly, subgroups are defined by means of
patterns that are also called descriptions. These patterns are by construction understandable
by humans and can help in discovering interesting knowledge. Following its introduction, nu-
merous contributions (Atzmueller, 2015, Herrera et al., 2011) which investigate the different
facets of SD have been proposed. It is interesting to note the close relationships that SD
holds with association rule mining (Agrawal et al., 1996) and frequent pattern mining (Han
et al., 2000), but also emerging patterns (Dong and Li, 1999) and contrast sets (Bay and
Pazzani, 2001).
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In Subgroup Discovery, a dataset (G, M,T) is a set of objects G, a set of attributes M,
and a single target 7. In a given dataset, the set of attributes M and the target T can con-
tain real or nominal values. Table 2.1 depicts an example of a dataset structure that can be
used in SD. It is made of 5 descriptive attributes, of which 4 are nominal and 1 is numerical.
It has a unique binary target.

SD has been mainly concerned with nominal attributes and binary target labels. To deal
with numerical data, prior discretization of the attributes (Fayyad and Irani, 1993, Garcia
et al., 2013) is usually required. Numerical target labels can also be discretized (Moreland
and Truemper, 2009). However, discretization generally involves loss of information such that
the optimality of the returned subgroups w.r.t. a given measure cannot be guaranteed.

Table 2.1: Toy example of a dataset.

’ ‘ gender ‘ age ‘ status ‘ occupation | smokes H Cancer

g1 M 25 | Married Nurse Yes No
g2 F 59 Single Engineer Yes Yes
gs M 64 | Divorced | Researcher No No
ga M 33 Single Driver No No
gs F 61 | Married Teacher Yes Yes

The search space of subgroups consists of a very large set of subgroup descriptions (or

intents), and each description is made of a set of constraints on some attributes of the
dataset. Those constraints are linked to each other to form a proper subgroup descrip-
tion using boolean operators. The type of constraints considered on the attributes (e.g.,
<,>,<,=,=,#,interval membership), as well as the type of boolean operators (e.g., AND,
OR, NOT) define what we call the pattern language.
Considering the standard = constraint for nominal attributes, intervals membership for
numerical attributes, and conjunctions (AND) of attributes to build the descriptions, an
example of subgroup description that respects the defined pattern language using the toy
dataset of Table 2.1 would be ( age € [59,64] AN D status = ‘Married’ ).

Given a pattern language and a dataset, subgroups can be enumerated by applying a
refinement operator either on their description (intent) or on their coverage (extent). We
now give proper definitions of the intent and extent of a subgroup.

Definition 1. The intent of a subgroup p is given by pg = {p1, ... ,QO‘M|> where each p; is a
restriction on the domain value of m; € M.

Definition 2. The extent of a given subgroup p, denoted ext(p) < G, is the set of objects of
G that satisfy the restrictions of pq.

For example, given the toy dataset in Table 2.1, we could consider a subgroup whose
intent is ( gender = ‘M’ AN D age € [25,64] ) and whose extent is {g1, g3, g4}.
Although most SD settings consider a comparison between subgroups and the overall dataset,
comparing subgroups and their complements can be considered, e.g., in (Pieters et al., 2010).
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Definition 3. The complement of a subgroup p, denoted B, consists in the set of objects of
the dataset that are not in ext(p).

For example, the complement of the subgroup defined in the previous example and sup-
ported by ( gender = ‘M’ AN D age € [25,64] ) is {g2, 95}
When a refinement operator is applied to the description of a subgroup p (i.e., when a new
constraint is added to the description), it produces a specialization of p.

Definition 4. Let pg and p; be the descriptions of subgroups p and p'. p; is said to be a
specialization of pq if and only if pqg < pl.

For example, a specialization of { gender = ‘M’ AN D age € [25,64] ) is {( gender = ‘M’
AND age € [25,64] AND smokes = ‘No’ ), and its extent is {gs3, g4}

2.2.2 Search Space Exploration

Exploring the search space efficiently is among the most critical problems of SD since the
size of the search space grows exponentially in the number of attributes. Many enumeration
strategies for the subgroup discovery process have been studied. They can be grouped into 2
main categories: heuristic and exhaustive.

Heuristic approaches are employed when the search space is too large to be handled exhaus-
tively. Using such strategies, the guarantee to discover optimal patterns is lost, at the benefit
of tractability and running time. The goal is then to develop a strategy that enables the dis-
covery of high-quality patterns without neglecting diversity. Although several strategies have
been introduced (Lavrac et al., 2004, Luna et al., 2013, Mampaey et al., 2015), the search
space is most commonly explored using breadth-first search, as in the well-known beam search
algorithm. (Van Leeuwen and Ukkonen, 2013) and (Proenga et al., 2021) contain examples
of algorithms that exploit beam search to discover high-quality non-redundant subgroups.
Sampling-based methods (Boley et al., 2011, 2012), although less common and heuristic by
nature, have also been used sparsely for subgroup discovery. Their main advantage is the
discovery of high-quality patterns in a very low amount of time. In this strategy, a statistical
distribution based on the optimization of quality criteria is usually designed, such that pat-
terns that optimize those criteria have a much higher probability to be generated.
Exhaustive algorithms, that trade-off execution time — and possibly feasibility — for the guar-
antee of the optimality of the discovery, are popular in SD. Since the search space is usually
too large to enumerate the patterns exhaustively, diverse techniques can be used to render
the search tractable. Compressing the search space through the use of equivalence classes
and closure systems (Boley and Grosskreutz, 2009, Grosskreutz and Paurat, 2011, Lemmerich
et al., 2010) are common approaches. Pruning the number of candidates using anti-monotone
constraints (Kavsek et al., 2003) and optimistic estimates on the quality of the specializa-
tions of subgroups (Belfodil et al., 2019a, Grosskreutz et al., 2008, Lemmerich et al., 2016a,
Zimmermann and De Raedt, 2009) is also widely used for exhaustive SD. Finally, special
data structures that improve the efficiency of the search can be used, such as in SD-Map
(Atzmueller and Puppe, 2006a) which exploits the well-known FP-trees (Han et al., 2000),
and (Lemmerich et al., 2016a) that considers a modified bitset-based data structure.
Finally, the use of anytime algorithms that allow for the retrieval of the best set of patterns at
any given moment during the search has been investigated, although sparsely too. MCTS4DM
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(Bosc et al., 2018) and RefinesMine (Belfodil et al., 2018) are both anytime algorithms.
Anytime subgroup discovery combines some of the strength of the previous strategies: (i) it
provides subgroups instantly if needed, (ii) a set of high quality and highly diverse subgroups
can be retrieved at anytime, (iii) the quality of subgroups increases as time goes on, (iv) the
discovery goes from heuristic to exhaustive if the search is left to run until complete, though
it is not possible in most of the real cases. The use of an anytime algorithm for subgroup
discovery in labeled sequential data was also investigated in (Mathonat et al., 2019, 2021).

2.2.3 Relevance of Subgroups

When applying subgroup discovery methods, we have to deal with a huge number of pat-
terns, of which only a few will be of interest in a given context. There is therefore a need to
define criteria that will allow us to differentiate between relevant and irrelevant subgroups,
hopefully during the search and not in a post-processing step. The idea that (i) user-defined
constraints can specify a priori desired properties for patterns and (ii) enumeration techniques
can exploit (efficiently) these constraints to avoid the computation of irrelevant patterns has
given rise to the prolific research domain of constraint-based data mining. This has been the
core algorithmic contribution to the so-called inductive database framework (Boulicaut et al.,
2005, Dzeroski et al., 2010).

Primitive constraint can refer or not to data. Many useful primitive constraints make use
of interestingness measures (see surveys on such measures in for instance (Freitas, 1999, Geng
and Hamilton, 2006)). Researchers have studied smart properties of useful constraints to be
able to perform an efficient search of a priori relevant descriptive patterns like, for instance,
frequent and valid association rules. Constraint-based Subgroup Discovery has been studied
as well (Lavra¢ and Gamberger, 2006). For instance, we can consider syntactic constraints on
the descriptive attributes like a maximum number of conditions in the intent of the subgroups,
or a proper range of values for each attribute. We can also exploit constraints on the size of
the extent of the subgroup, i.e., a minimum (maximum) number of objects.

We may use primitive constraints that specify the search for the Top-K best patterns with
respect to a given quality measure. Indeed, considering a given dataset, the interestingness
of each subgroup can be measured by a numerical value. Usually, the value quantifies the
discrepancy between the target label distribution of the subgroup and that of the overall
dataset (i.e., its discriminative power). Since important discrepancies can easily be achieved
with small subsets of objects, a factor that takes into account the coverage of the subgroup
in some form (i.e., its generalization power) is usually introduced in the quality measure. In
SD, new quality measures can be designed or adapted for each given context. Therefore, we
find a large panel of indicators in the literature, such as measures for binary targets (Herrera
et al., 2011, Li et al., 2014), for numerical targets (Boley et al., 2017, Lemmerich, 2014), and
also for multi-class nominal targets (Abudawood and Flach, 2009).

For binary targets, the most commonly used measure is the Weighted Relative Accuracy
(WRAcc) (Lavrac et al., 1999). The WRacc compares the proportion of positive objects in
the extent of the subgroup to the proportion of positive objects in the overall dataset. It is
given by:

WRACC(p) = fre(J(p) x (5ext(p) - 5ext(®))
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with freq(p) the frequency of the subgroup in the dataset, deat(p) the proportion of positive
objects in the extent of p, and ., (g) the proportion of positive objects in the overall dataset.
The frequency serves as a generalization optimizer so that subgroups with larger coverage
are favored. The WRAcc takes values in the range [-0.25,0.25].

As an example of quality measure for numerical targets, we propose to consider the
popular family of quality measures based on the mean introduced in (Lemmerich et al.,
2016a). Given a subgroup p, its quality is given by:

qgnean(p) = |€xt(p)‘a X (.uext(p) - Me:ct(@))va € [Oa 1]

wWith fieg(p) the mean of the target label for p, peq(g) the mean of the target label for the
overall dataset, |ext(p)| the cardinality of ext(p) and a a parameter that controls the number
of objects in the subgroups. With lower values of a, smaller subgroups are favored, while it
is the opposite for larger values of a.

It is interesting to note that constraints on the minimum significance or interestingness
required for the subgroups can also be used to guide the search.

Generalization-aware subgroup discovery.

In SD, we often discover subgroups whose target distribution is close to that of one or
more of its generalizations. In this setting, the subgroups might be deemed interesting ac-
cording to a quality measure, although they are not since they do not deviate from their
generalizations. To remedy this problem, generalization-aware (Lemmerich and Puppe, 2011,
Lemmerich et al., 2013) subgroup discovery can be exploited to prune irrelevant specializa-
tions that might make the result set less diverse. In generalization-aware subgroup discovery,
the quality of a subgroup is measured by comparing it to its generalizations. To do this, a
relatively simple modification on common measures can be applied, such that we compare
the distribution of the target in the subgroup and the distribution of the target in its best
generalization. With generalization-aware SD, a basic measure can be defined as:

q(p) = gen(p) x (Vear(p) — mai Veat(@))

with gen(p) the generalization power of the subgroup, 9. () the target label distribution in
the extent of p, and maz Yext(c) the target label distribution of the generalization of p that
cp

deviates the most from the overall dataset.

Statistical significance.

A common issue with subgroup discovery methods is the lack of statistical significance behind
many of the patterns described as “interesting” or “relevant”. Although several contribu-
tions have been made for the discovery of statistically significant patterns in association rule
mining (Hamalainen, 2010, Zhang et al., 2004) and the generic pattern mining framework
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(Hamalainen and Webb, 2019), few works have investigated the notion of statistical signifi-
cance in the patterns produced by subgroup discovery algorithms.

The most significant work in the SD field is that of (Duivesteijn and Knobbe, 2011). It is ar-
gued that SD suffers from the multiple comparisons problem, i.e., when looking for exceptional
deviations in a large search space, an algorithm is bound to discover interesting subgroups,
although most of those might correspond to false discoveries. The authors therefore build a
statistical model that detects false discoveries — through the generation of a random baseline
model — such that the statistical significance of each subgroup can be validated by comparing
its deviation from the statistical model. Going further, the authors propose the application
of this method to determine the statistical significance of quality measures. This is done
by measuring by how much the top subgroups found with a given quality measure deviate
from the random baseline generated for that measure. By applying this method to several
well-known quality measures, their statistical significance can be compared. Twelve measures
are compared, and the authors conclude that the worse measures are Purity and Sensitivity,
while x? has the highest statistical significance.

The discovery of statistically non-redundant subgroups was investigated in (Li et al., 2014).
To this end, odds ratio is used as a statistically sound quality measure, and the statistical sig-
nificance of the subgroups is measured using the confidence intervals of odds ratios. Finally,
they introduce an algorithm for the optimal subgroup discovery of statistically non-redundant
subgroups using tight optimistic estimates and a pruning strategy. However, this only works
when the odds ratio quality measure is considered.

Background knowledge and subjective interestingness.

Exploiting background knowledge (e.g., expert knowledge, domain literature, or informa-
tion specific to a given setting) can be an important part of the subgroup process for many
application scenarios. The concept of Expert-guided Subgroup Discovery was introduced in
(Gamberger and Lavrac, 2002a) and (Gamberger and Lavrac, 2002b). Ezpert-guided Subgroup
Discovery is an iterative discovery process that involves exploiting the input of an expert at
each step of the process. In a first step, a set of apriori interesting subgroups are selected
and presented to the expert, who gives directions according to his knowledge as to how to
proceed for the next iteration. The expert can select a subset of more interesting subgroups,
or give his input on the selection or removal of certain descriptive variables for example. Con-
sequently, the pattern mining process exploits both expert knowledge and objective measures
for the discovery of relevant and exploitable subgroups. Both contributions provide a proper
methodology for the discovery of exploitable information using expert knowledge, and apply
it to real-life scenarios to show its relevance.

Exploitation of background and expert knowledge in the subgroup discovery process has also
been studied in-depth for Knowledge-intensive Subgroup Discovery (Atzmueller and Puppe,
2006b, Atzmueller et al., 2004, 2005). They propose to apply as much background knowledge
as possible from the start of the discovery process, but also to add knowledge throughout the
interactive iterative process. For subgroup discovery, background knowledge can take many
forms. It can consist in applying constraints on the different components of the discovery
process. For example, constraints can be applied to the values of the descriptive attributes,
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but also constraints can be used to remove irrelevant attributes. Expert preferences can also
be included in the design of the quality measure. The pattern language can also be modified
to take into account relevant knowledge, and weights can be used on descriptive attributes to
drive the search on certain parts of the search space. Using background knowledge can help
avoiding the discovery of too many subgroups, but also discovering uninteresting subgroups.
Through application scenarios in the medical field, it was shown that exploiting background
knowledge can help focusing the search on already known interesting parts of the search
space, leading to the discovery of subgroups of higher quality.

Avoiding redundancy.

One of the main problems of subgroup discovery and other pattern discovery methods is
the sheer amount of redundant patterns that can be discovered during the discovery process.
There is therefore a need for techniques that favor the discovery of diverse subgroups. The
most common technique is to use weighted covering, which exploits a weighting scheme on
the objects of the dataset (Kavsek and Lavrac, 2004a, Kavsek et al., 2003, 2004, Lavrac et al.,
2004) in an iterative process. In this approach, each object of a given dataset is assigned a
weight (usually 1) at the start of the search process, and a quality measure that takes into
account the weight of each object in its computation is devised. Then, the given SD algo-
rithm is executed, and the best subgroup found is retrieved. Next, the weight of each object
that is part of the best subgroup is decreased following the predefined weighting scheme. The
SD algorithm is repeated once again, but this time using the reweighted objects, and so on.
The principle behind this method is to iteratively reduce the quality of subgroups made of
objects that have already been part of the best subgroups in the previous iterations. Using
this technique, the diversity of the set of discovered subgroups is usually greatly improved.
The well-known CN2-SD and Apriori-SD algorithms use such a weighting scheme. This
approach was inspired by the sequential covering approach introduced in the CN2 algorithm
(Clark and Niblett, 1989), although in CN2 the objects that are part of the best pattern at
each iteration are removed from the dataset instead of being reweighted. (Scholz, 2005) also
introduced an iterative process using a weighted scheme for the discovery of a small diverse
set of interesting subgroups. However, contrary to existing approaches, the new weighting
scheme allows for the incorporation of previously discovered knowledge in the reweighting,
such that already discovered knowledge should not be rediscovered in the next iterations. The
incorporation of prior knowledge is made possible through the use of Rejection Sampling.
The concept of subgroup set discovery was introduced by (Van Leeuwen and Knobbe, 2012).
In subgroup set discovery, instead of looking at individual subgroups, we are interested in
the discovery of sets of high-quality non-redundant subgroups. A method to mine for such
subgroup sets — called Diverse Subgroup Set Discovery (DSSD) — is devised for both subgroup
discovery and exceptional model mining. The relevance of the approach compared to weighted
covering is studied, and results show that DSSD can find comparable results in a significantly
lower amount of time.

In (Belfodil et al., 2019a), a new approach for subgroup set discovery that incorporates both
the interestingness and the diversity of the subgroup in the same quality measure is intro-
duced. The corresponding efficient algorithm, FSSD (Fast Subgroup Set Discovery) is able
to discover overall better and more diverse subgroups than CN2-SD and DSSD in a shorter
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amount of time. The concept of skyline was exploited in (Van Leeuwen and Ukkonen, 2013)
to mine for sets of high-quality non-redundant subgroups that offer the best trade-offs be-
tween quality and diversity. (Li et al., 2014) also introduced an optimal algorithm for the
discovery of statistically non-redundant subgroups.

Finally, (Bosc et al., 2018) proposed an anytime algorithm — MCTS4DM — for the discovery of
a diverse set of subgroups by cross-fertilization of Monte Carlo Tree Search (MCTS) and SD.
MCTS finds local optima iteratively by generating random simulations of the search tree and
guiding the search exploiting an exploration/exploitation trade-off, which ensures the diver-
sity of the resultant subgroups. One of the main strengths of MCTS4DM is that any pattern
language can theoretically be used, e.g., nominal data, numerical data, using conjunctions,
or disjunctions on attributes, etc.

2.2.4 Optimizing the Search

Compressing the search space.

In subgroup discovery, the size of the pattern search space can quickly become too large
to handle, especially when exhaustive enumeration strategies are involved. In Association
Rule Mining, condensed representations of the data in the form of §-free sets have been used
to discover simple rules the characterize classes (Crémilleux and Boulicaut, 2003). Using
closure operators and equivalence classes (Bastide et al., 2000, Grosskreutz and TAIS, 2012,
Soulet et al., 2004, Wang, 2005) are popular solutions to reduce the number of explored sub-
groups. (Garriga et al., 2008) introduced the concept of closed-on-the-positives for binary
labeled data by adapting the existing closure system of itemsets. In (Boley and Grosskreutz,
2009), the authors make use of extension-based classes of equivalence, such that each exten-
sion has only one pattern. (Lemmerich et al., 2010) developed the BSD algorithm for the
discovery of relevant subgroups. Relevant subgroups are a very restrictive class of patterns,
that is, a subset of closed and closed-on-the-positives subgroups. (Grosskreutz and Paurat,
2011) also introduced an efficient algorithm for top-K subgroup discovery using a relevancy
check on patterns. It is interesting to note that these methods for compressing the search
space can also be used to avoid redundancy, as in (Boley and Grosskreutz, 2009, Li et al.,
2014).

Pruning the search space.

When the number of potential subgroups is too large to be efficiently explored, pruning
techniques that allow for removing entire parts of search space from the discovery process
can be exploited. Optimistic estimates, that define upper-bound values for the quality of
entire sets of patterns, are the most common way of pruning the search space (Li et al., 2014,
Morishita and Sese, 2000): if the optimistic estimate of a subgroup is lower than the required
minimal quality, it is useless to consider its specializations.

Definition 5. Given a subgroup p and a quality measure q, an optimistic estimate for q,
denoted as bsq, is a function that gives an upper bound for the quality of all specializations
of p. Formally, ¥s < p: q(s) < bsq(p).
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In (Grosskreutz et al., 2008), the authors introduce the concept of tight optimistic esti-
mates for subgroup discovery with binary targets. An optimistic estimate is said to be tight
if it is the most restrictive estimate that can be made (i.e., the lowest value) according to the
information available. Optimistic estimates for numerical targets have also been investigated
in (Lemmerich, 2014, Lemmerich et al., 2016a). Although optimistic estimates cover most
of the pruning used in SD, anti-monotone constraints can also be exploited in certain cases,
e.g., if a minimum coverage is defined for the subgroups.

Handling big data.

Subgroup discovery in big data is explored in both (Cano et al., 2008) and (Padillo et al.,
2016). Indeed, the subgroup discovery process faces difficulties when either the search space
is too large, or when the cost of computing each subgroup is too high. The use of a combina-
tion of stratification and instance selection algorithms is investigated in (Cano et al., 2008)
to remedy these issues. Using a different approach, (Padillo et al., 2016) makes use of the
MapReduce framework and optimistic estimates to efficiently explore the search space. Both
approaches show the relevance of their methods in experimental studies.

2.2.5 Tools and Applications

To democratize the use of SD, several easy-to-use tools have been developed. Although
numerous software allow for the development, plug-in, and use of subgroup discovery algo-
rithms (Alcald-Fdez et al., 2009, Berthold et al., 2009, Meeng and Knobbe, 2011, Witten
and Frank, 2002), few specialized SD tools exist. The VIKAMINE (Visual, Interactive and
Knowledge-intensive Analysis and Mining Environment) system (Atzmueller and Lemmerich,
2012) was introduced in 2005, and then refined throughout the years. The system contains
several subgroup discovery algorithms, as well as widely used quality measures that enable
fast and efficient subgroup discovery for any user. Data preparation and visualization tools
are also available. Numerous advanced functions for the analysis of the characteristics of the
discovered subgroups are also accessible.

With Python becoming the standard programming language for data analysis-related tasks,
the pysubgroup (Lemmerich and Becker, 2018) package for subgroup discovery was recently
developed. Based on the most widely used data processing Python packages — Pandas and
Numpy — pysubgroup provides a simple and exploitable framework where only a few lines of
code are needed to run a subgroup discovery process on a dataset. It currently features the
most widely used subgroup discovery enumeration strategies (e.g., Apriori, beam search,
BSD, depth-first-search, best-first-search) and numerous quality measures for binary and nu-
merical targets. Furthermore, the package can easily be extended with new algorithms and
quality measures by users. Finally, visualization functionalities that improve the exploitabil-
ity of the results are also available.

Although the subgroup discovery process itself still struggles to find its place in the toolbox
of most companies for data-related tasks, numerous real-life application cases (Atzmueller
and Puppe, 2008, Lavrac¢ et al., 2004) to subgroup discovery in diverse domains have been
presented in the last 20 years.
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A common use of subgroup discovery at the start of the century was its application in the
medical field. Indeed, we find several application cases detailed in (Gamberger et al., 2003)
for the detection of coronary heart disease risk groups, in (Mueller et al., 2009) for breast
cancer diagnosis, and also in (Gamberger et al., 2007) where an iterative approach to the
discovery process is applied to analyze brain ischaemia data.

Election data analysis was explored in (Grosskreutz et al., 2010). Using 2009 German federal
Bundestag election data and socio-economic information, the authors seek out to discover sub-
groups that describe interesting voting behavior. Among other results, the authors discover
subgroups of voters with a strong preference for the winning party, and whose socio-economic
description contains information such as “high average living space per accommodation” and
“high share of detached houses”.

More recently, SD was exploited to identify key factors of student academic performance
(Pass or Fail) (Helal et al., 2019). In their experiments, the authors find, among other re-
sults, that the students who are the most likely to fail either come from low socio-economic
backgrounds or were admitted through special entry requirements.

In (Centeio Jorge et al., 2021), spatio-temporal data that describes interactions between chil-
dren in the school play yard was analyzed and the subgroup discovery process was exploited.
One of the goals was to discover subgroups of children that presented exceptional behavior.
Relevant behaviors, although already known by domain experts, such as gender homophily,
and individuals having strong influence on groups of peers were detected.

Subgroup discovery was also applied to biological data aggregation in (Pieters et al., 2010),
to UK traffic data analysis in (Kavsek and Lavrac, 2004b), to logistics data in (Sternberg and
Atzmueller, 2018), to smart electricity meter data in (Jin et al., 2014), and for uncovering
structure-property relationships of materials in (Goldsmith et al., 2017).

2.2.6 Subgroup Discovery in Atypical Data

Although we have now given a wide overview on contributions related to SD, several other
specialized contributions also exist. We first find a Redescription Mining approach to SD in
(Gallo et al., 2008). Given a dataset made of boolean values, the goal is to discover subgroups
for which at least two significantly different descriptions exist (in terms of Boolean formulas).
Algorithms that exploit pruning techniques are introduced, and experimental results show
the relevance of the approach.

Community Detection in graphs using subgroup discovery is investigated in (Atzmueller et al.,
2016). The goal is to discover subsets of nodes (subgroups) that show a deviation from the
norm of the overall graph. An exhaustive branch-and-bound algorithm that exploits efficient
pruning techniques is also presented. The discovery of interesting subgroups in graph data
is also explored in (Deng et al., 2020). A method is developed to mine for pairs of nodes
(subgroups) whose edge density is significantly different (higher or lower) from that of the
overall graph.

Finally, subgroup discovery in sequential data is proposed in (Mathonat et al., 2019) and
has been extended in (Mathonat et al., 2021). The anytime sampling algorithm — called
SegScout — exploits a multi-armed bandit model to mine interesting sequential patterns.
Given a budget, the algorithm discovers locally optimal subgroups. Furthermore, the method
possesses two main advantages (i) its configuration is relatively simple (ii) it is generic to
any quality measure. The relevance of the approach is verified through qualitative and
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quantitative results.

2.3 Subgroup Discovery with Numerical Attributes

2.3.1 Dataset, Pattern Language and Search Space

We assume that a numerical dataset (G, M, T) is a set of objects G, a set of numerical at-
tributes M, and a single target 7. In a given dataset, the domain of any attribute m € M
is a finite ordered set denoted D,,, and the target T' can contain real or nominal values.
Figure 2.1 (left) depicts an example of numerical dataset structure used in SD. It is made of
2 numerical descriptive attributes and a unique binary target.

To deal with numerical attributes natively, the pattern language usually involves conjunc-

tions or disjunctions of intervals over the domain of the considered attributes. An interval is
made of 2 components, called cut-points or bounds. The left bound is the lower bound, while
the right bound is the upper bound. Although closed intervals are much more common, open
and half-open intervals can also be used.
For example, given the toy dataset of Figure 2.1 (left), m; € [2,4] means that m; > 2
(lower bound) AND m; < 4 (upper bound). Furthermore, an example of a subgroup intent
given a pattern language that involves conjunctions of closed intervals is {(m € [3,4] AND
ma € [3,3]), and the associated extent is {gs, g¢}-

While pattern flooding — the exponential growth of the pattern search space as the number
of attributes and attribute values increase — is a well-known problem with nominal data, it is
even worse when it comes to numerical data. Indeed, given a set of M numerical attributes,
the size of the search space of intervals X is given by:

ie {1 M1}

For example, given the small toy dataset of Figure 2.1 (left), there are 10 x 6 = 60 possibles
patterns. For larger datasets, it is easy to see how the number of patterns quickly becomes
intractable.

mo
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Figure 2.1: (left) Example of a numerical dataset involving 2 numerical attributes and
a binary target. (right) Non-closed (c; = {[2,4],[1,3]), non-hatched) and closed (cz =
{([2,4],[2,3]), hatched) interval patterns.
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2.3.2 Numerical Attributes in Association Rule Mining

In Association Rule Mining (ARM), dealing with numerical attributes has seen numerous
contributions throughout the years. The first occurrence of rules involving optimized in-
tervals on numerical attributes dates back to 1996, with the introduction of Quantitative
Association Rules in (Srikant and Agrawal, 1996). In this paper, the authors define a new
type of rule where the antecedent can include intervals of discretized numerical attributes.
The rules take the following form: X € [a,b] = Y, where X and Y are attributes and
[a,b] is an interval of values of X. The discretization, however, leads to loss of information
and possibly irrelevant rules.

(Miller and Yang, 1997) proposed an alternative quality measure that takes into account
the quantitative properties of intervals to define more relevant cut-points for numerical at-
tributes. They introduced a two-step approach. First, a clustering algorithm is applied to
discover the proper discretization of intervals, and then a standard ARM algorithm can be
applied. Using this method, the quality and relevance of rules are improved compared to
(Srikant and Agrawal, 1996). (Zhang et al., 1997) also proposed an approach that employs
clustering to improve interval-based ARM.

(Fukuda et al., 1996a) investigated the discovery of optimized association rules with numer-
ical attributes. In their work, they detail a method for finding the optimal interval in the
antecedent that leads to the highest rule quality (according to measures such as confidence
and support). However, only one interval can be used in the antecedent of the rules. An
extension of this method has been proposed in (Fukuda et al., 1996b) for rules with 2 intervals
in the antecedent. (Brin et al., 2003) proposed an improvement over (Fukuda et al., 1996a,b).
They propose to mine for optimized association rules using disjunctions of intervals. Inter-
estingly, their approach allows for more than 2 intervals in the antecedent of the rules.

An evolutionary approach that allows for the discovery of all frequent patterns involving
numerical attributes without a priori discretization was also investigated (Mata et al., 2002).
The detailed evolutionary algorithm enables the discovery of the intervals of each numerical
attribute that induce a frequent pattern. QUANTMINER (Salleb-Aouissi et al., 2007), a ge-
netic algorithm for quantitative association rule mining was also introduced. The algorithm
allows for the discovery of good intervals by finding optimized trade-offs between support
and confidence.

Finally, an innovative approach that considers not intervals, but a weighted sum of numerical
attributes as the antecedent of the rules was proposed in (Ruckert et al., 2004).

2.3.3 Numerical Attributes in Subgroup Discovery

Traditionally, subgroup discovery has been mainly concerned with nominal attributes and bi-
nary target labels. To handle numerical attributes, typical methods resort to the discretiza-
tion of the numerical variables into nominal ones (Fayyad and Irani, 1993, Garcia et al.,
2013), which inevitably leads to loss of information, suboptimal results, and even irrelevant
patterns. As pre-discretization — also called offline discretization — of attributes could not
offer satisfying results, online-discretization, which entails finding the best cut-points within
the SD algorithm, was more recently investigated.

To avoid the use of discretization techniques, (Kralj et al., 2005, Lavra¢ and Gamberger,
2006) explored the use of a binarization scheme where each distinct value of each numerical
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attribute is transformed into a boolean attribute. Doing this, it is then theoretically possible
to apply an exhaustive search algorithm for nominal data, such as SD-Map (Atzmueller and
Puppe, 2006a). Using such a technique, however, leads to a huge increase in the size of the
search space, making the exhaustive discovery process intractable.
In (Nguyen and Vreeken, 2016), the authors propose a method for mining better subgroups
in numerical data. They employ a binning strategy on each numerical attribute whose goal
is the optimization of the average quality of the subgroups generated by said binning. The
main advantages of the proposed model are that (i) by creating a discretization that seeks
to maximize the average quality of the patterns, they obtain better overall subgroups (ii)
the algorithm places no restriction on the target which can be univariate or multivariate,
and handles numerical, nominal and binary data. Although the proposed approach allows
for finding good numerical patterns for numerical targets, its non-exhaustive nature cannot
guarantee the discovery of optimal solutions.
The following investigated methods deal with numerical attributes natively, i.e., without us-
ing discretization. The BestInterval algorithm was proposed (Mampaey et al., 2012,
Mampaey et al., 2015) to compute the optimal direct specialization of a subgroup, given a
numerical attribute to optimize. It enables the discovery of the optimal interval that max-
imizes the quality of the pattern. This is done efficiently by only considering the subgroup
specializations that lie on the convex hull in ROC space. The procedure can be directly inte-
grated in a standard algorithm, be it a greedy approach such as beam search or an exhaustive
method. It is interesting to note that this only works for convex quality measures.
When it comes to exhaustive subgroup discovery in numerical domains, (Grosskreutz and
Riiping, 2009) introduced an efficient algorithm, MergesSD, which makes use of an advanced
new pruning scheme to optimize the search. No discretization is applied and overlapping
intervals are considered, such that no information is lost. The authors detail new bounds on
the quality of the specializations of a subgroup based on constraints proper to overlapping
intervals. Furthermore, the authors provide an in-depth comparison of the results obtained
using several commonly used discretization techniques, compared to the results obtained by
applying an exhaustive search with MergeSD. In their results, they conclude that using either
entropy discretization or frequency discretization with both overlapping and non-overlapping
intervals leads to suboptimal results in most scenarios.
MinIntChange (Kaytoue et al., 2011) was proposed as a new framework for the comprehen-
sive mining of numerical patterns with Formal Concept Analysis (FCA, (Ganter and Wille,
1998)). In FCA, an interval pattern represents a vector of intervals where each interval corre-
sponds to the space of values taken by an attribute. The goal is then to compute the complete
set of interval patterns efficiently. In their work, the authors exploit equivalence classes and
closure operators to efficiently and exhaustively traverse the pattern search space.

Let us provide several definitions from (Kaytoue et al., 2011).

Definition 6. Given a numerical dataset (G, M,T), an interval pattern p is a vector of
intervals p = <[bi’ci]>z’e{1 M) where b;,c; € Dy, each interval is a restriction on an
attribute of M, and |M)| is the number of attributes.

Next, we can consider the extent of an interval pattern.

Definition 7. An object g € G is in the extent of an interval pattern p = <[bi, cl]>
Zﬁ Vi€ {17 L3) |M|}7ml(g) € [bl7 Ci]‘

e {1, M}
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A specialization of an interval pattern is defined as follows.

Definition 8. Let p; and py be two interval patterns. py S py means that pa encloses p1,
i.e., the hyper-rectangle of py is included in that of po. It is said that py is a specialization of

p2-
Finally, we can introduce the concept of closed interval pattern.

Definition 9. Given an interval pattern p and its extent ext(p), p is defined as closed if
and only if it represents the most restrictive pattern (i.e., the smallest hyper-rectangle) that
contains ext(p).

For example, in the toy dataset of Fig. 2.1 (left), the domain of m; is {1,2,3,4} and
([2,4],[1,3]) is the interval pattern that denotes a subgroup whose extent is {g3, g4, 5. g6}-
Fig. 2.1 (right) depicts the same dataset in a cartesian plane as well as a comparison between
a non-closed (c;) and a closed (cz2) interval pattern.

Extending the work of both (Kaytoue et al., 2011) and (Garriga et al., 2008), (Guyet
et al., 2017) introduced an algorithm that enables the extraction of closed-on-the-positives
and relevant interval patterns for binary labeled data.

In (Bosc et al., 2018), a generic anytime algorithm based on Monte Carlo Tree Search (MCTS)
for SD is introduced. It exploits a closure system, it can find diverse subgroups, and it is
agnostic of the pattern language, enabling its use for SD in numerical domains without the
need for prior discretization. However, the use of MCTS leads quickly to high memory usage,
and no guarantee is provided on the optimality of the search on empirical data. Based on
the interval pattern framework, (Belfodil et al., 2018) also proposed an anytime algorithm
with guarantees to mine patterns in numerical domains with binary target variables. The use
of an advanced closure scheme on interval patterns removes the need for discretization, such
that the algorithm can run an exhaustive search if given enough time. However, no pruning
strategy based on optimistic estimates is employed. It limits the efficiency of the search and
its application to real problems.

In (Meeng et al., 2014), a heuristic ROC-guided algorithm for SD with numerical attributes
without prior discretization is introduced. A main advantage of this method is the fact that
contrary to typical beam search approaches, no parameter needs to be set. This is due to the
fact that at each level of the search, the algorithm defines an ideal size for the width of the
beam of the next level. When compared to typical beam search, it provides better results
faster. This, combined with the fact the numerical attributes are treated natively makes it
an attractive approach when exhaustiveness is not needed.

For a more exhaustive overview of numerical data in SD, the reader is invited to consult the
recent survey (Meeng and Knobbe, 2021), which explains in detail the problems surrounding
numerical SD, and provides a thorough comparison of existing methods.

2.4 Subgroup Discovery with Numerical Targets

Historically, SD has mostly been investigated for binary labeled data. For numerical tar-
gets, researchers made use of discretization techniques, that again inevitably lead to loss of
information and suboptimal results. More than that, numerous real-life applications of SD
involve numerical targets, and it would be useful that proper methods can treat the problem
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natively. Fortunately, the interest for numerical data in SD seems to have picked up in the
last few years, and several new contributions have been made. In this section, we propose an
overview of SD with numerical targets.

2.4.1 Numerical Targets in Association Rule Mining

To understand numerical targets in ARM, we have to go back to its inception, with the intro-
duction of Quantitative Association Rules in (Srikant and Agrawal, 1996). In their proposal,
the authors define a new type of rule that can take the form X € [a,0] = Y € [¢,d],
where X and Y are attributes and [a,b] and [c, d] are intervals of values of these attributes.
While this type of rule does allow for the discovery of patterns with numerical intervals as
consequent, said intervals are based on discretization, which is well-known for not only being
suboptimal but can also lead to irrelevant rules. Furthermore, intervals make poor represen-
tatives of the distribution of numerical targets.

With the understanding that numerous problems cannot be solved using discretization, (Au-
mann and Lindell, 1999) extended the concept of Quantitative Association Rules by intro-
ducing a new rule concept where a rule consequent is the mean or the variance of a numerical
attribute. A rule is then defined as interesting if its mean or variance significantly deviates
from that of its complement. Two types of rules are defined: (i) categorical to quantita-
tive association rules that involve a nominal antecedent and a statistical distribution over
a numerical consequent, and (ii) quantitative to quantitative association rules where the an-
tecedent corresponds to an interval of a numerical attribute, and the consequent is a statistical
distribution over a numerical attribute. Furthermore, constraints on the support and confi-
dence on the rule are used, such that said rules are in essence very close to what we consider
nowadays as subgroup discovery.

Later on, (Webb, 2001) proposed an extension of such quantitative rules called Impact Rules.
In this work, the author argues that measures based on statistical distribution might lack
interest when one is looking to identify a group of objects with a large contribution with
regard to the total of a given target. New aggregate measures are therefore designed, such
as the sum of the values of the target in the subgroup.

Tight optimistic estimates for association rule mining with numerical targets were intro-
duced in (Morishita and Sese, 2000). Several common convex interestingness measures, such
as correlation and chi-squared are studied.

2.4.2 Subgroup Discovery Approaches

We now consider SD contributions that involve numerical targets. For a more exhaustive
view of the subject, the reader is referred to both (Lemmerich, 2014) and (Pieters et al.,
2010). Most typical SD methods employ standard discretization techniques when numerical
targets are involved. In (Moreland and Truemper, 2009) the TargetCluster algorithm
was introduced. It allows to find adequate cut-points for numerical target concepts using
a clustering approach. The method is compared to a discretization technique that com-
bines equal-width-intervals and equal-frequency-intervals, called EWF. The authors show
that TargetCluster supports the discovery of better subgroups than using standard tech-
niques. However, it still involves discretization, and therefore does not give a proper answer
to SD with numerical targets.
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The Explora system (Klésgen, 1996) introduced the first SD algorithm that enables the dis-
covery of subgroups with numerical targets without prior discretization. Explora allows for
the discovery of subgroups with a mean that significantly deviates from the overall dataset.
(Grosskreutz, 2008) introduced an iterative method for diverse subgroup set discovery with a
numerical target. They make use of a framework that combines standard SD and rule-based
regression to build a prediction model for the target value of the subgroups. In each iteration,
they look for the best subgroup in the subset of the overall data where the prediction cur-
rently deviates the most from the real target value. They show that the resulting subgroup
set possesses better diversity than using an exhaustive search, with or without the use of
condensed representations.

Later on, the SD-MAP x algorithm (Atzmueller and Lemmerich, 2009) was introduced as an
exhaustive subgroup discovery method for numerical targets. The algorithm takes advantage
of optimistic estimate pruning, using new tight optimistic estimates for well-known measures
such as Continuous Piatetsky-Shapiro, Continuous LIFT, and Continuous Weighted Relative
Accuracy. This work has been significantly extended in both (Lemmerich et al., 2016a) and
(Lemmerich, 2014). (Lemmerich, 2014) introduces a new algorithm for exhaustive SD with
numerical targets, called NumBSD, an adaptation of the BSD algorithm (Lemmerich et al.,
2010) used for SD with binary targets. It employs a special bitset-based data structure
that allows for the fast discovery of subgroups. Numerous new quality measures and cor-
responding optimistic estimates are also introduced, including mean-based, variance-based,
median-based, rank-based, and distribution-based measures. It however only works with
nominal attributes, and numerical attributes have to be pre-discretized which limits its us-
ability in real-life settings.

A new quality measure and corresponding tight optimistic estimate to improve existing qual-
ity measures was introduced in (Boley et al., 2017). In their work, the authors argue that
current measures lead to unreliable results since the variance is not optimized when look-
ing for high-quality subgroups. A branch-and-bound algorithm that exploits the proposed
tight estimator is developed and shown to be very efficient. However, it is only applicable
to median-based metrics, while most use cases involve other types of quality measures, e.g.,
based on the mean and/or the variance.

A more generic approach to SD with numerical targets is proposed in (Lijffijt et al., 2018). The
authors develop a method for SD whose goal is to discover subjectively interesting patterns,
i.e., that are interesting according to the knowledge of an expert. To do this, a background
distribution of the numerical target is generated using expert knowledge. The goal is then to
look for subgroups that maximize the information gained compared to this subjective distri-
bution. Two types of subgroups are mined using this method: location patterns, which look
for subgroups of objects whose statistical distributions significantly deviate from the back-
ground distribution, and spread patterns, which exploit each discovered significant location
pattern to look for exceptional dispersion around its statistical distribution. For example,
given a location pattern whose mean significantly deviates from expert knowledge, it could
also be defined as a spread pattern if its variance is somehow exceptional. The proposed
algorithms have been shown to be both effective and efficient for SD. It is interesting to note
that this framework is also extended to the case where multiple numerical targets exist, i.e.,
Exceptional Model Mining.

A Minimum Description Length (MDL) approach to SD with numerical targets has also been
proposed in (Proenca et al., 2021). Their goal is to discover a set of diverse patterns, called
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subgroup list that when combined, offer a good overall representation of the distribution of
the numerical target over the whole dataset. A new quality measure that maximizes the
Sum of Weighted Kullback-Leibler divergences is introduced. It allows for the discovery of
subgroups whose mean significantly deviate from the norm while keeping the dispersion of
the objects low. Finally, a new greedy algorithm based on beam search, called SSD++, is
presented and shown to achieve better performance than existing methods.

Recently, (Meeng et al., 2020) introduced a new type of interestingness measure for numerical
targets. The authors explain that using simple statistical measures such as the mean or the
variance is inadequate, and that interesting subgroups can be missed. They argue for the
use of probability density models — using techniques such as kernel density estimation and
histograms — to discover more diverse types of deviations in the distribution of the targets.

2.5 Optimal Subgroup Discovery

Although most subgroup discovery methods support the discovery of a set of high-quality
patterns, algorithms that can discover the optimal subgroup with respect to a quality measure
or the proper set of top-K optimal subgroups are rare. Optimal SD necessarily implies the
use of exhaustive enumeration strategies, since other strategies, i.e., heuristic ones including
sampling-based and anytime ones provide no guarantee on the quality of the results.
Mining optimal patterns has been investigated in the past for association rule mining with
numeric attributes. The proper term in the domain is optimized association rules, and it
consists in finding a rule that contains one or a set of numerical attributes as antecedent, and
which optimizes a target quality measure, such as confidence, support, or gain.

Mining optimal subgroups has also been investigated, although unevenly depending on the
type of data considered. We first formally define the concept of optimal subgroup.

Definition 10. Let (G, M,T) be a dataset, q a quality measure and P the set of all subgroups
of (G,M,T). A subgroup is said to be optimal iff Vp' € P : q(p') < q(p).

Notice that several subgroups can have the same optimal quality. In such situations, it
is up to the user to find a way to determine which subgroup(s) is (are) more suited to his
needs.

Nominal attributes with binary targets. We first review contributions that find op-
timal subgroups in nominal data, i.e., data made of nominal attributes and a binary target
concept. This is the area that has seen the most work done for Optimal Subgroup Discov-
ery, probably due to the fact that nominal data has by far been the most studied setting
for SD. (Garriga et al., 2008) was the first to introduce the concept of close-on-the-positives
and the theory of relevance for subgroup discovery in labeled data. Using this closure sys-
tem, an exhaustive search can be applied to return the optimal subgroup. Cluster-grouping
(Zimmermann and De Raedt, 2009) exploits pruning techniques through optimistic estimates
in a branch-and-bound algorithm that allows for the discovery of the optimal subgroup in
nominal data. The popular SD-Map algorithm (Atzmueller and Puppe, 2006a) employs an
exhaustive enumeration strategy, made possible by the use of an optimized data structure
(FP-trees), with a guarantee to discover the optimal subgroup. (Li et al., 2014) can provide
a guarantee on the discovery of the statistically non-redundant optimal subgroup, although
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only in nominal data. The optimality of the search is ensured by the use of a pruning scheme
based on the interestingness measure considered. Finally, the concept of relevance, as in
(Grosskreutz and Paurat, 2011, Guyet et al., 2017, Lemmerich et al., 2010) can also allow for
the guaranteed discovery of the optimal subgroup.

Nominal attributes with numerical targets. We now review proposals made for Opti-
mal Subgroup Discovery in data made of nominal attributes, and a numerical target. Contri-
butions in this setting have been relatively rare. The SD-Map* algorithm (Lemmerich et al.,
2016a), an improved version of SD-Map is perhaps the most well-known that can handle
numerical targets with an exhaustive strategy. Using the same data structure as SD-Map,
the authors also employ advanced pruning techniques based on tight optimistic estimates to
make the search tractable. However, only nominal attributes can be handled, meaning that
numerical attributes have to be discretized. Building on the work from (Lemmerich et al.,
2016a), (Boley et al., 2017) develop a new class of quality measures and corresponding tight
optimistic estimates for numerical targets. The authors argue that current quality measures
are insufficient since they do not optimize for the error or dispersion of the subgroups. Using
this new scheme within a branch-and-bound algorithm, the authors guarantee the discovery
of the optimal subgroup with regard to the proposed quality measure.

Numerical attributes with binary targets. Although several contributions have been
made for subgroup discovery with numerical attributes, very few provide a guarantee on
the optimality of the search. (Meeng et al., 2014) introduced a ROC-guided algorithm for
subgroup discovery with numerical attributes. However, the optimality guaranteed by their
method is not based on the quality of the subgroups, but on a minimized cost regarding a
cost assignment for false positive and false negative objects. Therefore, we can not consider
their contribution as being able to provide the optimal subgroup. MergeSD (Grosskreutz
and Riiping, 2009) allows for an exhaustive search in numerical data. Overlapping intervals
are considered without pre-discretization, such that exhaustiveness can be guaranteed. This
is made possible by introducing and exploiting new advanced pruning techniques. Finally,
the Refines&Mine algorithm (Belfodil et al., 2018), although based on an anytime strategy,
can return the optimal subgroup, provided that enough time is given to the algorithm to
converge. However, as it was not created with the specific goal of discovering an optimal
subgroup, pruning strategies are not exploited.

Numerical attributes with numerical targets. The investigation of purely numerical
data in SD has been close to non-existent. The few contributions that consider numerical
targets either ignore the case of numerical attributes or employ discretization technique to
make the search tractable. MCTS4DM (Bosc et al., 2018) is, to our knowledge, the only
known algorithm that theoretically enables the discovery of optimal subgroups in purely
numerical data without prior discretization, due to its agnosticism toward both the used
pattern language and quality measure. This is also only possible if a large enough time
budget is given so that it produces an exhaustive search. However, there is no guarantee
that the search will be complete in a finished amount of time, even for small datasets, as the
algorithm was not built for exhaustive search and lacks advanced pruning and compression
strategies. Furthermore, MCTS4DM is limited by its high memory usage, which is problematic
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for exhaustive exploration. To the best of our knowledge, there is therefore a research gap
that needs to be filled regarding Optimal Subgroup Discovery in purely numerical data when
no discretization techniques are allowed.

2.6 Overview of Exceptional Model Mining

2.6.1 A Generalization of Subgroup Discovery

Exceptional Model Mining (EMM) was introduced over 10 years ago in (Leman et al., 2008) as
a generalization of subgroup discovery for problems involving multiple targets. In subgroup
discovery, we have only one target. The quality of a subgroup is usually defined as the
discrepancy between the distribution of the target variable in the subgroup and its distribution
over the entire dataset. Exceptional Model Mining enables for two or more target variables
depending on the chosen model class. A model class can be any mathematical model that
involves and measures complex interactions between a set of targets. In EMM, a dataset
(G, M, T) is a set of objects G, a set of attributes M and a set of targets T'. In a given dataset,
the set of attributes M and the set of targets T contain real and nominal values. Table 2.2
depicts an example of dataset used in EMM made of 5 descriptive attributes (nominal or
real) and 2 numerical targets.

Table 2.2: Example of a dataset with 5 attributes (nominal and real) and 2 numerical targets.

L L [mo[ma[my|msfl 1 [ 2 |
g | LA A F |3 ]0] 05]120
2|56 | B |G| 6|1 03] 400
95 102 A | H | 8 | 0 | 075 2560
g | 73 C | H | 7| 1097|1812
95| 94 | D | H | 2|1 |015] 727

Most definitions that hold for SD also hold for EMM, i.e., pattern language, intent, extent,
and specialization. It is important to note that since a given model class only involves the
target variables, pattern languages that can be used for EMM are the same as those used
for SD. In the standard EMM setting, the interestingness of a subgroup is measured by a
numerical value that quantifies the deviation between the model fitted on the subgroup and
the model fitted on another subset of the data. There are usually two options about the
subset that is chosen for comparison: we can compare the model of the subgroup either to
the model of its complement or to the model of the whole dataset. Choosing one or the other
can lead to very different results and may depend on the considered application setting. In
(Duivesteijn et al., 2016), the authors show that there is not always a clear-cut best solution
for which subsets to compare, and that several parameters should be taken into account by
the Exceptional Model Miner before making a choice.

From an algorithmic perspective, the search space of subgroups for most EMM algorithms
is traversed in a general to specific way. At each stage, a specialization operator is applied
to create more complex subgroups by addition of a restriction on an attribute. Since EMM
is still a fairly recent addition to the pattern mining field of study, relatively few works have
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been introduced so far, although its popularity seems to have picked up in the last couple of
years.

2.6.2 Enumeration Strategies

While EMM is still in its infancy, several heuristic and exhaustive, methods have been devel-
oped. We investigate the several enumeration strategies which have been introduced to make
EMM efficient. We first explore heuristic proposals.

In the introduction of EMM (Leman et al., 2008), the researchers proposed the use of a
standard beam search strategy, an algorithm that performs a level-wise exploration of search
space. A standard beam search possesses two main parameters: a maximum depth of ex-
ploration d (i.e., the maximal number of restrictions in the description of a subgroup), and
a beam-width w (i.e., the number of subgroups specialized at each level). In their strategy,
the authors run the search starting from the most general pattern and apply a specialization
operator to generate the candidates of the lower levels. At each level, the best w subgroups
according to the chosen quality measure are stored to be specialized in the next level. During
the whole search, the overall top-K best subgroups are also stored and updated when better
subgroups are discovered. The search stops once the level d of exploration is reached, and
the best subgroups are returned. In (Duivesteijn et al., 2016), the authors provide a more
detailed version of this strategy, that they name Beam Search for Top-q Exceptional Model
Mining. Since then, beam search has become the most common strategy for EMM. It is in-
teresting to note that although beam search for EMM is an interesting heuristic, it provides
no guarantee on the discovery of the optimal subgroup.

The use of a new heuristic strategy called Tree-Constrained Gradient Ascent (TCGA) to
mine for exceptional models is developed in (Krak and Feelders, 2015). A goal of TCGA
is to find relevant and exploitable information about the influence of a single object on the
quality of a subgroup. To do that, they rewrite the quality measure as an objective function
to be optimized. They transform the notion of subgroup into fuzzy subgroup by creating a
concept of inclusion weight for each object of a given extent. Then, using a numerical op-
timization technique — gradient ascent — they find the locally optimal extent that optimizes
the objective. The weights of each object of the extent are then rounded to obtain a crisp
extent. The next step is to discover the subgroup description from the extent. To ensure
that concise descriptions can be extracted from extents, the numerical optimization step is
modified, leading to the introduction of a constrained gradient ascent method. The relevance
of TCGA is studied in-depth on synthetic and real-life data for linear regression EMM as
well as for typical SD. On synthetic data, TCGA is found to be superior to beam search.
However, on real-life data, TCGA performs as well as beam search for EMM, and way worse
than beam search for SD.

In (Lemmerich et al., 2012), the authors introduce the first method for fast exhaustive EMM,
titled Generic Pattern Growth (GP-growth). In this work, the well-known concept of FP-tree
(Han et al., 2000) is extended to mine for exceptional models. To do this, a new concept
called valuation basis is presented, which replaces the original frequency data used in typi-
cal FP-trees. A waluation basis consists of the minimal amount of information about a set
of objects needed to compute the model corresponding to the considered model class. For
example, given the simplistic mean model with one target variable, a valuation basis could
involve (i) the number of objects, (ii) the sum of the values of the target variable of the
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objects considered. Using only this information, the mean target value of the objects can be
reconstructed, and a metric that measures the discrepancy between this mean and that of the
entire dataset can be computed. The same goes for more complex model classes. In order for
GP-growth to be efficient, valuation bases have to be as small a possible. It is interesting to
note that GP-growth for EMM is a generalization of both FP-growth and SD-Map, as these
algorithms can be implemented with GP-growth by simply using the corresponding valuation
basis. Among the contributions, several valuation bases for well-known EMM model classes —
such as variance, correlation, and linear regression — are also detailed. In the empirical study,
the superiority of GP-growth compared to a naive exhaustive search algorithm is confirmed.
Finally, we investigate the use of weighted controlled pattern sampling for instant EMM pro-
posed by (Moens and Boley, 2014). In their work, the authors argue that interactive discovery
is necessary to make pattern discovery more relevant and actionable to users. For interactive
discovery, heuristic and exhaustive approaches are usually too slow, justifying the need for
algorithms that can discover high-quality patterns instantly. In this paper, Controlled Direct
Pattern Sampling (CDPS) (Boley et al., 2012) is extended by applying a utility weight to each
object of the dataset. Using these weights, the notion of weighted frequency — the relative
total weight of a pattern compared to the total weight of the dataset — can be computed.
Then, using a predefined distribution that gives high generation probability to patterns with
high weighted frequency in their positives objects (or to other subsets of the data depending
on the model class and the definition of interestingness considered), random patterns can
be sampled from the search space. By exploiting this method, subgroups with high gener-
alization and whose models deviate significantly from the global model can be discovered
almost instantly. In their experiments, the authors confirm the relevance of their approach
for instant discovery of subgroups whose quality is close to that of a beam search strategy.

2.6.3 Model Classes

In EMM, each problem to be solved relates to a particular model class. Indeed, if we consider
the two following problems: mining for exceptional correlations and mining for exceptional
Bayesian networks, each problem needs its own approach and quality measures to be solved.
The notion of model class has been introduced in (Leman et al., 2008).

In this paper, 3 classes of models are presented as a basis to justify the relevance of EMM.
First, the correlation model class is introduced, for which the authors consider 2 numerical
variables and their linear association according to their correlation coefficient. We now detail
the correlation model and 2 of its quality measures for a better understanding of the EMM
framework. The objective is to estimate the deviation between the correlation of a given
subgroup p, and the correlation of its complement. Given the two numerical targets t; and
to, the correlation coefficient is estimated by the sample correlation coefficient r as follows:
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A first simple quality measure that can be defined is the absolute difference between the
correlation of the subgroup, denoted G, and its complement, denoted G. Therefore, we have:

ngs(p) = |TG - TG_’|
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This measure however does not take into account the generalization of the subgroup. Conse-
quently, small subgroups whose correlation can easily deviate from the norm would be given
a high quality. To resolve this issue, a measure that involves the entropy of the split between
the subgroup and its complement can be used (Leman et al., 2008).

Definition 11. The entropy of a subgroup p is:
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where 1g denotes the binary logarithm, n the number of objects of p, and N the number of
objects of its complement.

The entropy favors balanced splits over unbalanced ones. It returns 0 when the subgroup
or its complement is empty. It returns 1 when a perfect 50/50 split is achieved. Notice
however that it introduces a bias against subgroups with a large cover. The improved quality
measure is therefore as follows:

QEnt(p) = Entropy(p) x |7'G - TG‘

Using any of these 2 quality measures and the model class defined, a standard EMM algorithm
can then easily be used to mine for exceptional correlation models.
Next, a model class for regression problems is investigated. In their work, the authors consider
the simple linear regression model described by y; = a + bx; + ¢; and introduce a metric that
measures the significance of the slope difference between the model fitted on the subgroup,
and the model fitted on its complement.
A model class for classification models is also explored. Although EMM allows for any
complex method, only 2 simple classifiers are considered: Logistic Regression and Decision
Table Majority (DTM) Classifier. For both classification methods, an appropriate quality
measure is detailed.

For a recent and up-to-date introduction to Exceptional Model Mining, the reader is re-
ferred to (Duivesteijn et al., 2016).
After the introduction of the EMM framework, researchers started working on more complex
problems than what had been done until then, when subgroup discovery involving a single
target was the only tool available. In (Duivesteijn et al., 2010), the discovery of exceptional
Bayesian networks is investigated. The authors argue that when dealing with datasets with
several discrete targets, studying their interdependencies is an interesting task. To do this,
the interdependency relationship is modeled by Bayesian networks. They look for subgroups
whose network structure is significantly different from the structure of the model over the
entire dataset. A quality measure based on edit distance is designed to discover those ex-
ceptional models. The relevance of their approach is verified statistically on several datasets
from different domains.
In (Duivesteijn et al., 2012a), the authors take on what they call the “workhorse” of data anal-
ysis problems, namely Linear Regression. They introduce a new model class for exceptional
regression model mining thanks to a quality measure based on Cook’s distance. They also
exploit interesting bounds to avoid computing the model on unfit subgroups. Model classes
for classification problems have also been explored in (Duivesteijn and Thaele, 2014) and
(Duivesteijn et al., 2012b). In the first approach, the authors look for subspaces of the search
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space where a given classifier performs particularly well or badly, giving the user insights
on which parts of their classifier they must focus on. In the second approach, the authors
propose a method for identifying and exploiting exceptional interdependencies between labels
in a multi-label classification setting, allowing them to improve the classifier overall quality.
In 2016, (Lemmerich et al., 2016b) introduced a new EMM class exploiting first-order Markov
chains to mine for exceptional transition behavior in sequential data. Discovering deviating
models can be useful, for example on mobility and internet user data. A proper quality mea-
sure adapted to the model class is detailed, and the applicability of the approach is studied
on synthetic and empirical data. Exceptional Preferences Mining (EPM) (de S& et al., 2016)
was introduced as a cross-fertilization between EMM and preference learning. In EPM, they
look for subgroups whose preference relations significantly deviate from the norm, using a
specialized quality measure. (Luna et al., 2016) formalizes the concept of Exceptional Re-
lationship Mining (ERM) and details a grammar-guided genetic programming algorithm to
discover such models. The goal of ERM is to discover any kind of exceptional relationship
between a set of variables. In their empirical study, they look for exceptional relationships
between several quality measures used in association rule mining. Interestingly, they find
that under some constraints, the support and leverage measures are negatively correlated,
which goes against expert knowledge.

The discovery of exceptional correlations has also been investigated more in-depth in (Dow-
nar and Duivesteijn, 2017), (Hammal et al., 2019) and (Luna et al., 2020). In (Downar
and Duivesteijn, 2017), the authors mine for exceptional monotone relations between two
predefined targets in terms of rank correlation. The work of (Hammal et al., 2019) can be
seen as an extension of (Downar and Duivesteijn, 2017), which generalizes the discovery of
exceptional rank correlations to any number of targets. In (Luna et al., 2020), the authors
observe that current EMM proposals only consider the discovery of one exceptional behavior
for a given subgroup. This leads to the question of whether finding subgroups with multiple
occurrences of exceptional behavior is possible. In this work, a first answer is given with
the introduction of the Subsets of Pairwise Exceptional Correlations (SPEC) model class. In
SPEC, a subgroup is deemed exceptional if multiple pairs of target concepts show exceptional
rank correlation behavior. Since typical EMM algorithms can not be exploited for SPEC,
the authors also introduce several heuristic and exhaustive search strategies.

In (Belfodil et al., 2017), the discovery of exceptional pairwise behavior in voting and rating
data is investigated. For example, there is usually a clear difference of position between
far-left and far-right political parties on most issues. However, for some issues, these po-
litical parties might present the same behavior, which can be reflected in voting data. In
their approach, the authors look for such exceptional behavior. To that end, the Discovering
Similarities Changes method and its corresponding quality measure are introduced and val-
idated on European parliament votes and collaborative movie reviews. Following this work,
(Belfodil et al., 2019b) detailed a new method for the discovery of statistically significant
exceptional agreements or disagreements within groups. The DEvVIANT branch-and-bound
algorithm is introduced, which leverages several techniques for efficiency optimization, such
as closure operators, optimistic estimates, and confidence intervals.

Recently, we also find proposals about the discovery of exceptional models with real-valued
targets (Lijffijt et al., 2018), exceptional descriptions of people (Hendrickson et al., 2018),
exceptional mediation models (Lemmerich et al., 2020), and exceptional spatio-temporal be-
havior (Du et al., 2020).
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2.7 Conclusion

In this chapter, we investigated the literature of SD, a pattern discovery task that was first
introduced 25 years ago. We first gave a full overview of SD, including its relationship to
other mining tasks, its formalization, and the many contributions w.r.t. its different compo-
nents.

As part of this thesis is focused on SD in purely numerical data, we investigated in detail both
SD with numerical attributes and SD with numerical targets. SD with numerical attributes
has historically been of relatively low interest for researchers, with few contributions existing
in the literature. Fortunately, the study of numerical attributes has been receiving more at-
tention for a few years now. When considering numerical attributes, relatively few approaches
propose proper strategies that do not rely on discretization techniques. Therefore, methods
for treating numerical attributes natively will likely be of interest to researchers in the near
future. SD with numerical targets has also seen sparse contributions. This is problematic
since many real-life scenarios involve numerical objectives, further demonstrating the need
for proper techniques that avoid loss of information.

As we are interested in discovering optimal parameter values for optimization problems, al-
gorithms that allow for the discovery of an optimal subgroup are highly relevant to us. For
this reason, we reviewed Optimal SD in different types of data. While exhaustive approaches
are relatively numerous for nominal data, numerical domains once again fall short of what
would be expected, given the pervasiveness of numerical data nowadays. Indeed for SD in
data with numerical attributes and a binary label, we found only 2 methods that allow for
an exhaustive search, and both employ suboptimal techniques for search space compression
and pruning. For SD in purely numerical data (i.e., numerical attributes and numerical tar-
get), there is currently no approach that has proved empirically its ability to discover an
optimal subgroup. The only existing method, MCTS4DM, can only find an optimal subgroup
in principle. Indeed, the drawbacks of the method (i.e., high memory usage, lack of pruning,
and optimized compression scheme) would likely render the search intractable even for small
datasets.

We also investigated EMM, a generalized framework for SD with an undefined number of
targets. Few contributions have been made to the field, especially in the first few years of
the previous decade. Fortunately, more and more approaches are being introduced and its
interest seems to have increased recently.

Let us now imagine a setting where we have at hand a purely numerical dataset — i.e.,
made of a set of numerical attributes, and one or several numerical targets — and we want
to find the attribute values that optimize the target(s). In this setting, using SD or EMM —
depending on the number of targets — is extremely relevant. Indeed, the description of the
best subgroups could provide interesting and actionable information regarding the attribute
values that lead to optimized targets.

For SD (i.e., a unique target to optimize), discovering an optimal subgroup would be even
more relevant than discovering the top-K subgroups with no optimality guarantee. There is
currently no efficient algorithm that support the discovery of the optimal subgroup for this
kind of problem. For EMM (i.e., a set of targets to optimize