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Abstract—Many methods have been proposed to detect 
communities in complex networks, but very little work has been 
done regarding their interpretation. In this work, we propose an 
efficient method to tackle this problem. We first define a 
sequence-based representation of networks, combining temporal 
information, topological measures and nodal attributes. We then 
describe how to identify the most emerging sequential patterns of 
this dataset and use them to characterize the communities. We 
also show how to highlight outliers. Finally, as an illustration, we 
apply our method to a network of scientific collaborations. 
 
Keywords: Dynamic Attributed Networks, Community 
Interpretation, Topological Measures  

I. INTRODUCTION 

Complex networks have become very popular as a 
modeling tool, because they help to better understand the 
intrinsic laws and dynamics of complex systems in many 
fields: sociology, physics, genetics, computer, etc. [1]. The 
complex nature of the modeled systems leads to the presence 
of non-trivial topological properties in the corresponding 
networks. Among them, the community structure is one of the 
most common and most studied. Intuitively, we can define a 
community as a group of nodes which are densely 
interconnected, relatively to the rest of the network [2]. 
Hundreds of algorithms have been proposed to detect 
community structures [3].  

Although these algorithms differ in terms of nature of the 
detected communities, algorithmic complexity, result quality 
and other aspects, their output can always be basically 
described as a list of node groups. From an applicative point 
of view, the question is then to make sense of these groups 
relatively to the studied system. For the community structure 
to be useful, it is necessary to interpret the detected 
communities. And yet, almost all works in the field of 
community detection concern the definition of detection tools. 
Only a very few works try to tackle the problem of 
characterizing and interpreting the communities.  

Authors historically interpreted their data manually [4] but 
this somewhat subjective approach does not scale well on 

large networks. In order to characterize each community 
individually, some authors take advantage of the information 
conveyed by nodal attributes, when it is available. In [5], the 
authors propose a statistical method to characterize the 
communities in terms of the over-expressed attributes found in 
the elements of the community. In [6], authors interpret the 
communities of a social attributed network by using statistical 
regression and discriminant correspondence analysis. 
Community detection methods based on nodal attributes also 
allow outputting the most representative attributes of the 
communities [7, 8]. These works are valuable, however they 
do not take advantage of all the available information to 
enhance the interpretation process. 

In this work, we see the interpretation problem as 
independent from the approach used to detect the communities, 
and we try to propose a method tackling the limitations of the 
existing approaches. We use descriptors to represent the nodes, 
considering both their attributes and topological properties. 
We then represent a dynamic attributed network as a sequence 
database of node descriptors. We aim at finding the most 
representative emerging sequential patterns for each 
community on this new representation of the network. These 
patterns can then be used for both characterizing the 
community, and identify outliers. We illustrate our proposal 
on a dynamic co-authorship network extracted from DBLP.  
Our work contributes to the domain in several ways: (1) 
statement of community characterization as a specific problem, 
distinct from community detection; (2) introduction of a new 
representation of dynamic attributed networks, under the form 
of a sequence database; (3) definition a method taking 
advantage of this representation to extract sequential patterns 
able to characterize the communities, (4) illustration of our 
method through its application to a real-world network.  

The rest of this article is organized as follows. In section II, 
we give the preliminary definitions needed to describe our 
method. In section III, we specify the problem and explain in 
detail our interpretation method. In section IV, we present our 
experimental results obtained on the DBLP data. Section V 
discusses our work and presents its possible extensions. 
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II. PRELIMINARY DEFINITIONS 

We define a dynamic network � � ����� � � ��	
 as a sequence 
of chronologically ordered time slices. Each time slice 

corresponds to a separated subnetwork �� (�  �  �), which 
represents the connections between the nodes for a given time 
interval. Moreover, the networks we consider are attributed, 
meaning their nodes are described by some individual 

attributes. We note � � ���  the number of nodes, which is 
constant through time. A topological measure quantifies the 
structural properties of the network or its components. Here, 

we focus on five nodal measures: internal degree (�), local 
transitivity (� ), within module degree ( � ),  participation 
coefficient (�) and embeddedness (�) [9]. The within module 
degree and participation coefficient are two measures 
proposed by Amaral & Guimerà [10] to characterize the 
community role of nodes.  

A node descriptor is either any of these five topological 

measures, or a node attribute. Let � � ���� ��� � ���� be the 

set of all descriptors. Each descriptor from � can take one of 

several discrete values, defined in its domain �� (�  �   ). 
We process each of these measures for each node, and at each 

time slice. A community structure ! � �!�� � � !"�  is a 

partition of �, where each !# $ �� and % &!�� !'(��')�����"� � *. 

The community size of a given community !# is �!#�, i.e. the 

number of nodes it contains. We note +  the number of 
communities in the community structure. 

III. CHARACTERIZATION METHOD 

We break down the problem of community interpretation in 
two sub-problems: 1) finding an appropriate way of 
representing a community, and 2) taking advantage of this 
representation to identify its most characteristic features. We 
solve the first sub-problem by representing a community as a 
set of sequences describing the evolution of its nodes. This 
encoding allows handling attributed dynamic networks, via 
their nodes topological measures and attributes. To solve the 
second sub-problem, we mine this set to identify sequential 
patterns fitting several criteria. 

The process we propose includes , steps. The first is to 
identify the community structure. In the second step, we 
search for emerging sequential patterns and extract the 
corresponding supporting nodes for each community. Finally, 
the third step consists in choosing the most representative 
patterns to characterize the communities. 

Step 1: Detecting Communities. To detect how nodes 
evolve in terms of community membership, we need first a 
reference community structure. To identify it, we chose to 
apply the so-called sum method [11]. First, we integrated the 
network links over time. Second, we applied the Louvain [4] 
algorithm, which is very widespread,  to the resulting network.  

Step 2: Mining Emerging Sequences. We want to 
characterize each community according to the common 
evolution of the descriptors of its nodes over time. For this 
purpose, we need to identify series of descriptor values which 
appear often in the same community and over several time 
slices. This is precisely the goal of sequential pattern mining 
methods.  

Let us first define the concepts necessary to the description 

of the method itself. An item -��� ./ ) � 0 �1  is a couple 

constituted of a descriptor ��  and a value . from its domain 

�1. The set of all items is noted 2. An itemset 3 is any subset 

of 2. A sequence 4 � �3�� � � 35
 is a chronologically ordered 

list of itemsets. The size 6 of sequence 4  is the number of 

itemsets it contains. A sequence 7 � �8�� � � 89
  is a sub-
sequence of another sequence : � �;�� � � ;<
 iff =��� ��� � � �9 

such that �  �� > �� > ? > �9  @  and 8� $ ;��� 8� $
;��� � � 89 $ ;�9. This is noted 7 A :. It is also said that : is a 

super-sequence of 7, which is noted : B 7.  

The node sequence of a node C  is a specific type of 

sequence noted D-C/ � �-E��� � � E��/� -E�	� � � E�	/
  where 

E��  is the item containing the value of descriptor ��  for C  at 

time � . A node sequence D-C/  includes �  itemsets, i.e. it 
represents all time slices. Each one of these itemsets contains 

all   descriptor values for the considered node at the 

considered time. In other words, D-C/  contains all the 

available descriptor-related data for node C. These tuples will 
be used later to constitute the database analyzed by our 
method.  

The set of supporting nodes F-4/ of a sequence 4 is defined 

as F-4/ �� �C ) �G D-C/ B �4�. The support of a sequence 4, 

FDH-4/ � �F-4/� �I  , is the proportion of nodes whose node 

sequences are super-sequence of 4 . Similarly, the set of 

supporting nodes F-4� !#�/ of a sequence 4 in�!# is defined as 

F-4� !#�/ �� �C ) !#G D-C/ B �4� and the support of a sequence 

in a community !# , FDH-4� !#/ � �F-4� !#�/� �!#�I , is the 

proportion of nodes in !#, whose node sequences are super-

sequence of 4 . Given a minimum support threshold noted 

6��JKL , a frequent sequential pattern (FS) is a sequence 

whose support is greater or equal to 6��JKL . A closed 
frequent sequential pattern (CFS) is a FS which has no super-
sequence possessing the same support. 

In this study, we used the algorithm CloSpan [12] to 

identify all possible CFS for a given 6��JKL. CloSpan is an 

efficient algorithm, which can mine long sequences in 
practical time for real-world data. It outputs both the 
sequences and their supports. We modified the original 

CloSpan in a way to extract the supporting node sets  F-4� !#/M  
In our case, we want to identify, for each community, its most 
representative sequential pattern(s). For this purpose, we turn 
to the notion of emerging pattern, i.e. a pattern more frequent 
in a part of the node set than in the rest of it. The emergence 

of a pattern 4 relatively to a community !# is measured by its 

growth rate �N-4� !#/ � FDH-4� !#/ FDH-4� !#OOO/I where !#OOO 
represents the nodes not belonging to !#. A value larger than � 

means 4 is particularly frequent (i.e. emerging) in !# , when 
compared to the rest of the network. We consider that the 
higher the growth rate, and the more representative the 

sequence 4 for community !#. In order to calculate the growth 
rate, it would be necessary to search CFS in all communities 
separately, which can be a costly operation. However, we 
apply a more efficient method proposed in [13] to handle the 
case where classes are assigned to item sequences. For our 
problem, classes correspond to the communities. 
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Step 3: Selecting Sequential Patterns and Identifying 
Outliers. After the emerging patterns are identified for a 
given community, together with their support, growth rate and 
supporting nodes, we need to select the most representative 
ones, in order to characterize the considered community. We 
give more attention to the most emerging pattern, i.e. that 
whose growth rate is the highest. However, there is no 
guarantee for this pattern to cover a sufficient part of the 
community. And indeed, in practice it appears to be the 
opposite. It is thus needed to identify other complementary 
patterns, allowing us to obtain a more complete coverage of 
the community. Intuitively, we want to find a small number of 
patterns, such that they cover a significant part of the 
community, and are different in terms of supporting nodes. 
Thus, (1) the intersection of the patterns supporting nodes sets 
must be minimal, (2) the union of these supporting nodes sets 
must be maximal (if possible: the whole community), (3) the 
number of patterns must be minimal. In order to solve our 
problem, we select iteratively the most distant patterns, in 
terms of supporting node set. We use Jaccard’s coefficient as 
a distance measure between the node sets.  

Once the most characteristic patterns of a community have 
been identified (the most emerging one with its supplementary 
patterns, and the one with highest support), it is possible to 
use them to detect outliers. We determine the outlier nodes set 
as the set of nodes not following any representative pattern. 
These nodes are different in the sense they do not follow the 
general trends of their communities. We detect them 
automatically when finding the representative patterns. 

The overall complexity of our method includes calculating 
all the selected topological measures, detecting the 
communities, applying CloSpan to identify the patterns, 
processing their growth rates, and finally selecting the most 
representative ones. Considering all simplifications and 
negligible terms, we get a worst case total complexity of 

P-+N�/  for the post-processing of calculating growth rate, 

where N is the number of patterns found by CloSpan.  

IV. RESULTS 

We now present the results obtained on real-world data. We 
selected the dynamic co-authorship network extracted from 

the DBLP database. Each one of the Q�RS nodes represents an 
author. Two nodes are connected if the corresponding authors 
published an article together. Each time slice corresponds to a 

period of five years. There are a total of �T  time slices, 
ranging from 1990 to 2012. The consecutive periods have a 
three year overlap for the sake of stability. For each author, at 
each time slice, the database provides the number of 

publications in R,  conferences and journals. We use this 

information to define R, corresponding node attributes, and 
we add two more: the total number of conference and journal 

publications. Finally we have a total of RS attributes. 
For Guimerà &Amaral’s measures, we use the thresholds 

originally defined in [10]. They distinguish community hubs 
-� U QMS/ and community non-hubs -�  QMS/. Note that this 
is different from the traditional notion of hub. A community 
hub is a node whose internal degree is well above its 

community average. The other topological measures are 
discretized depending on their distribution. The result 

community structure has �QV communities and a modularity 

of TMSW, representing a well-separated community structure.  
The most supported patterns are always representing that 

the majority of the nodes for each community have the role of 
non-hub. Although this type of pattern appears in all 
communities, we can make a distinction in considering the 
size of the sequence. In Table I, we list the size of some most 
supported sequential patterns with their community label, 
community size, sequence size and support. The communities 
whose sizes are 43 and 41 (i.e. #40 and 77) have long 
sequences (8 and 7 resp.). Especially, the support of 
community #77 reaches the maximal value 1. It means there is 
no remarkable hub author for a long time, or even if they 
appear sometime, they disappear very quickly in this 
community. This observation is particularly interesting, and 
reflects the absence of a community leader who would 
structure the community through its many connections.  

For community #115, the size of the sequence is 1, and its 
support is also 1.This means all the nodes of this community 
had the role of non-hub together once, but for the rest of the 
time slices, they at least took the hub role once. For 

communities #38 and 40, the support is less than �, so we can 
say there is at least one hub, different from the rest of its 
community, and probably leading it. 

TABLE II 
MOST SUPPORTED SEQUENCE SIZE FOR EACH COMMUNITY 

Community 
ID 

Community  
Size 

Sequence
Size

Support 
Value

38 335 2 0.99

40 43 8 0.97

77 41 7 1.00

115 125 1 1.00

 
For community #38, we identify Philip S. Yu, Jiawei Han 

and Beng Chin Ooi as outliers, i.e. different from their 
communities. As expected, these nodes have a remarkably 
high number of connections within their communities, and the 
represented authors actually have leadership roles in their 
fields. Further analysis of the data also shows that they 

publish a total of more than �T  articles per time slice. In 
addition, they never took the non-hub role.  

Let us have a look at the interesting emerging patterns. For 
community #61, the most emerging pattern is < (ICML PUB. 

NUM=1) (�  is between 3-10 and � > QMS)>, with a growth 

rate of ,MSQ and a support of TM,T. This pattern refers to the 
authors who published once in ICML, then had a degree 

between ,  and �T  and became non-hubs. We extract 7 
supplementary patterns representing the trends of publishing 
in AAAI or CIKM to cover all the nodes of this community. 
The outliers of this community are Alex Alves Freitas, Claire 
Cardie , Edwin P. D. Pednault. Among these authors Alex 
Alves Freitas does not have any publication for the first 8 time 
slices, before he starts publishing very frequently in various 
conferences other than ICML or AAAI and journals. This can 
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be interpreted as a junior researcher progressively maturing. 
For the other two authors, while Claire Cardie publishes in 
ICML during the first 6 time slices at least once routinely, 
Edwin P. D. Pednault never publishes in not only ICML but 
also AAAI or CIKM.  

The most emerging pattern of community #45 is <(VLDB 

PUB. NUM=3)( d is between 3-10 � > QMS )> with growth 

rate XMRT and support TM,T. This sequence tells us that there is 
a remarkable group of authors who published 3 times in the 
VLDB conference, before seeing their degree reach a value 
between 3 and 10 and holding a non-hub role. The outliers are 
Ingmar Weber, Anastasia Ailamaki who do not have any 
publication for the first 7 time slices, while they both become 
more and more productive for the last 3 time slices. Their 
publication number increases fast. 

To summarize our observations, the most emerging patterns 
in almost all communities usually include being non-hub and 
having a small number of publications in various journals or 
conferences. Depending on the conferences or journals 
appearing in these patterns, it is possible to deduce the main 
theme of these communities. For some communities, however, 
the emerging sequential patterns are purely topological (no 
attributes). We can then assume that the members of these 
communities do not publish in a sufficiently homogeneous 
way so that it can appear under the form of patterns, which is 
itself a characteristic of the community. Regarding outliers, 
one can distinguish different types of profiles. Some seem to 
correspond to authors whose main theme is different from that 
of the community in which they were placed. In some cases, 
we found out the authors had clearly changed their theme, or 
just started in a given theme. They may also be authors active 
in another field, including conferences and journals not part of 
those used in the data we considered here. Another profile is 
that of junior researchers, whose number of publications and 
community position evolve jointly. These authors do not seem 
very active in their field in the first time slices. However, their 
number of publication and importance in their community 
increase with time. 

V. CONCLUSIONS 

In this work, we tackled the problem of the characterization 
of communities in dynamic and attributed complex networks. 
We proposed a new representation of the information encoded 
in the network to store the topological information, the node 
attributes and the temporal dimension simultaneously. We 
used this representation to perform a search of emerging 
sequential patterns. Each community could then be 
characterized by its most distinctive patterns. We also took 
advantage of the patterns to detect and characterize outlier 
nodes in each community. We applied our method to a 
scientific collaboration network constructed from the public 
database DBLP. The results showed that our method is able to 
characterize the communities, in particular their research topic. 
The outlier nodes we identified correspond to different types 
of profiles, such as community leaders, emerging researchers, 
or others changing research theme. 

Our tool can be improved in various ways. First, its 
effective processing time could be shortened through various 
computational optimizations, such as the use of hash maps 
when calculating growth rates. Second, to limit the complexity 
of this first approach, we deliberately restrained our analysis 
method by not considering the evolution of communities over 
time. In future works, we plan to take advantage of such 
communities, by inserting the appropriate information in the 
database used for the search patterns. We also plan to apply 
our method to the analysis of other types of networks, in order 
to explore its characterization capabilities. For instance, in our 
experiment, we saw that there were many nodes whose 
behavior was not typical of their community. Such 
observations could be used to study them in further details, 
and better understand how they are different. 
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