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Résumé

Nous étudions sous l’angle langage de requêtes la spéci-
fication des processus d’extraction de connaissances dans
les données contenues dans les systèmes OLAP, c’est à dire
des données par nature multidimensionnelles et pouvant se
consulter à plusieurs niveaux de granularité. Dans ce travail
nous considérons plus particulièrement les processus cen-
trés sur la découverte de règles d’associations. Nous utili-
sons un langage requêtes permettant de spécifier les mani-
pulations de données dans les systèmes OLAP et nous mon-
trons qu’il est aussi adapté à la description des traitements
de pré-processing et post-processing nécessaires lors de la
recherche de règles d’associations. Ce langage de requêtes et
le modèle de données sous-jacent fournissent un support ho-
mogène de description du processus d’extraction de connais-
sances et permettent ainsi de mieux appréhender le caractère
interactif d’un tel processus.

Mots clés : règles d’associations, OLAP, langage de re-
quêtes

Abstract

We study KDD (Knowledge Discovery in Databases) pro-
cesses on OLAP (multidimensional and multilevel) data from
a query point of view. Focusing on association rule mining,
we consider typical queries to cope with the pre-processing
of multidimensional data and the post-processing of the dis-
covered patterns as well. We use a model and a rule-based
language stemming from the OLAP representation and ma-
nipulation, and argue that such a language fits well for wri-
ting KDD queries on multidimensional and multilevel data.
Using an homogeneous data model and our language for ex-
pressing queries at every phase of the process appears as a
valuable step towards a better understanding of interactivity
during the whole process.

Keywords : association rules, OLAP, query language

1 Introduction
Discovering knowledge from data appears as a complex ite-
rative and interactive process containing many steps : from
the preparation of the data set (also called pre-processing),
to the post-processing of discovered patterns [14]. Different
kinds of patterns might be used and therefore different data
mining techniques are needed (e.g., association and episode
rules for alarm analysis, clusters and decision trees for sales
data analysis). This paper addresses the challenge of suppor-
ting KDD processes using a querying approach.

Following Imielinski and Mannila [22], second generation
data mining systems might support the discovery process by
means of powerful query languages. Indeed, managing the
whole KDD process is one of the crucial issues to design me-
thodologies and integrated environments for relevant classes
of applications. This is a long term goal for which one can
not expect a comprehensive answer in the near future.
As a valuable step towards such a goal, we study how a query
language dedicated to data manipulation can be used during
the process of association rule mining [2]. We choose not to
concentrate on the data mining phase since impressive re-
sults have been obtained in the last years for this phase (e.g.,
the efficient discovery of frequent sets in binary data), while
less attention has been given to the pre-processing and post-
processing phases.
These interactive non trivial tasks are often ad-hoc and sim-
ply done by means of standard database queries and/or pro-
gramming scripts. We argue that these steps should be perfor-
med with a single model and query language so that raw data
and mined patterns can be accessed uniformly, thus giving
rise to static analysis and optimization of these steps. The-
refore, we propose a model and a language for expressing
queries at different steps of a KDD process. This language
stems from On-Line Analytical (OLAP) representation and
manipulation where a cube model is used to organize and
manipulate data according to multiple perspectives and mul-
tiple granularities.
Several reasons motivate this proposal :
– data mining is often seen as a client of OLAP servers [4,

12],
– there is a natural correspondance between OLAP treat-

ments and some operations performed during pre-pro-
cessing and post-processing [8],

– OLAP treatments are also concerned with interactive data
analysis [20], and

– there is no loss of generality since standard transactional
processing can be expressed with an OLAP language [4,
26].

The context is as follows :
– the data to be mined (called raw data) are contained in

multidimensional cubes or can be put under the form of
cubes. Moreover, each dimension of a cube can be asso-
ciated with a hierarchy,

– we are interested in association rule mining,
– the frequent sets from which association rules are derived,

are discovered by using the Apriori algorithm [3] and its
extensions or better algorithms that have been designed
recently like [28, 6, 21, 29, 9, 11].

Under these assumptions, the pre-processing step is a collec-
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tion of queries on raw data that provide binary tables. These
binary tables are input to the mining algorithms that provide
the frequents sets. The post-processing step turns to be a col-
lection of queries on raw data and on the results of the mining
step to provide interesting patterns (i.e., rules) from the ex-
tracted frequent sets.

Main contributions This paper is a significant extension
of [8] by pointing out the complementarity between OLAP
treatments and the support of KDD processes. We show that
an OLAP data model enables to handle the description of
multilevel and multidimensional raw data (called OLAP data
in the following), binary tables, collections of frequent item-
sets and frequent association rules. We show that OLAP que-
ries are well suited for expressing some important non trivial
treatments within typical rule mining processes.
Providing a framework for reasoning about sequence of que-
ries to define complex mining processes is a long-term goal.
This ongoing research investigates rather simple but yet not
well understood issues about association rule mining. Even if
we do not address implementation issues, we emphasize that
OLAP systems can be straightforwardly extended to incor-
porate some association rule extraction facilities, providing
new analysis tool for data owners.

Outline This paper is organized as follows. In Section 2
we present our motivations for connecting rule mining pro-
cesses and OLAP possibilities. Generalities about the KDD
process, the rule mining framework and OLAP concepts are
given. Section 3 introduces informally the data model and
the manipulation language we use. Section 4 illustrates via
examples the use of an OLAP query language during asso-
ciation rule mining. We conclude in Section 5.

2 Preliminaries : Queries for rule mi-
ning

The goal of this section is to survey the needs in terms of
queries for typical rule mining processes. We begin by a a
short description of some KDD concepts, focusing on the
rule mining framework. Then we briefly present OLAP data
manipulation. We conclude by motivating the connections
between rule mining and OLAP queries.

Knowledge Discovery in Databases Discovering know-
ledge from data is a complex process containing many steps
(e.g., [14]) :

1. Understanding the data, that is the domain background
knowledge that guides the whole discovery process.

2. Pre-processing the data, i.e., preparing the data set for a
mining task. The first thing to do is to collect the data to
be mined (the raw data). These data may be under dif-
ferent forms (e.g., databases, flat files), and so must be
put into a form suitable to the mining algorithm. This
is done by e.g., selecting relevant attributes, cleaning,
sampling, grouping and/or discretizing data. We find
here, among others, the major technical issues of data
warehouse design.

3. Discovering potentially interesting patterns (the mining

phase) i.e., using an extraction algorithm on the prepa-
red data set.

4. Post-processing of discovered patterns, which consists
in dealing with the (often huge) amount of discovered
patterns to highlight the most significant ones once the
end-user needs are defined explicitely. This step relies
on objective and subjective measures of interestingness.
Objective measures can be computed for each pattern
and enable ordering (e.g., ranking the rules w.r.t. confi-
dence measure). Subjective measures are often user-
driven queries based on more or less sophisticated tem-
plates [24, 5].

5. Putting the results in use, that is obtaining a user
friendly representation where simple and intuitive ma-
nipulations (e.g., selection, visualization) are allowed. It
concerns also more or less automatic ways to use disco-
vered rules to produce operational business rules.

Moreover, a KDD process is highly iterative and interactive.
Discovering patterns leads to data pre-processing refinement
and the defintion of a new mining tasks that in turns provide
patterns that have to be post-processed, etc.
As a prototypical example of a KDD process, we consider
the framework of association rule mining.

Rule mining framework The association rule mining pro-
blem has received much attention since its introduction
in [2]. Given a schema � � ���� � � � � ��� of attributes with
domain ��� ��, and a relation � over�, an �����	�
	�� ��
�
about � is an expression of the form� � � , where� � �
and � � � � � . The intuitive meaning of the rule is that
if a row of the matrix � has a 1 in each column of � , then
the row tends to have a 1 also in column � . This semantics is
captured by ������
 and ����	����� values. Given� � �,
������
��� �� denotes the fraction of rows of � that have a 1
in each column of� .� is called a frequent set if its support
is greater than some user-given support threshold. The fre-
quency of� � � in � is defined to be ������
����� �� ��
while its confidence is ������
����� �� ���������
��� ��.
Typically, we are interested in association rules for which
the frequency and the confidence are greater than user-given
thresholds.
Frequent sets are a concise representation for binary data
from which association rules are easily derived [3]. The in-
tuition is that for every frequent set � , one can test for the
interestingness (e.g., confidence is greater than the user-given
threshold) of the rule� � � � � where � � � . Though an
exponential search space is concerned, association rules can
be computed thanks to the thresholds on one hand and a safe
pruning criterion that drastically reduces the search space on
the other hand (the so-called apriori trick [3]).
In this case of association rule mining, the pre-processing of
raw data implies the building of the binary relevant repre-
sentation � (relevancy w.r.t. the kind of properties the user is
interested in). The post-processing of the extracted patterns
implies to derive “interesting” association rules (interestin-
gness w.r.t. objective measures like confidence [2], convic-
tion [10], intensity of implication [17], J-measure [31] or
subjective measures like templates [24]).



2.1 On-Line Analytical Processing
This section introduces the concept of On-Line Analytical
Processing (OLAP). The reader interested in a complete
overview can refer to [12, 26].
The need for OLAP stems from the evolution of commer-
cial databases from transactional to decision support appli-
cations. E.F. Codd [4] identifies the category of OLAP treat-
ments as the ones used in different front-ends for data analy-
sis purpose (e.g., spreadsheets, graphical interfaces). These
treatments are concerned with the description and the mani-
pulation of data according to multiple perspectives and mul-
tiple granularities.

Multiple perspectives To fit the needs of user-analysts, bu-
siness historical data should reflect the natural view of the en-
terprise. The intuition is to consider data as points in a multi-
dimensional space. Indeed the user may want to represent the
information under the convenient form of a cross-tab, where
each point in the 2-dimensional space ���
������ 	
��� is
associated with a value �����
. For example, Figure 1 dis-
plays the number of items purchased by different customers.

sales wine beer bread meat

kate 0 20 50 20
mike 70 0 0 60
rick 0 50 50 20

FIG. 1 – The bidimensional table sales

The cube metaphor has emerged to generalize this concep-
tual view of multidimensional data. Figure 2 depicts a cube
based on a typical example of the OLAP literature, that can
be seen as the extension of the table of Figure 1 to the 
	��
dimension.
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FIG. 2 – The cube sales

A cube is composed of cells containing one or several va-
lues called measures. Each axis of the cube corresponds to a
dimension, and is graduated by values called members. The
location of a cell is given by one member of each axis, and
is called a reference. Hence a reference identifies in a unique
manner a cell of a cube.

In addition to standard relational operations (e.g., selection,
projection) that can be easily extended to cube manipulation,
several elementary1 operations are concerned with the struc-
tural aspect of a cube. They are refered to as restructuring
operations, as they are used to animate this cubic represen-
tation and provide multiple perspectives. It is to be noticed
that each restructuring operation admits a reciprocal opera-
tion. We give the intuitions underlying the operations and we
give, for each operation, an example of the result of this ope-
ration :
– rotate means to reorder the axes of the multidimensional

view (Figure 3 depicts a rotate applied to the table of Fi-
gure 1) ;

– split means to present separately each “slice” of the cube
(Figure 4 depicts a split applied to the cube of Figure 2) ;

– nest/unnest allows to nest/unnest members of different di-
mensions (Figure 5 depicts a nest applied to the cube of
Figure 2) ;

– push/pull pushing consists in combining members of a
cube to measures. Pulling, the reciprocal operation, allows
to set up a new dimension from measures. These two ope-
rations provide symmetric treatment of members and mea-
sures (Figure 6 depicts a pull applied to the table of Figure
1, where the constant 1 is used to represent the validity
of the combination of each member, and the constant 0 is
used to represent the invalidity of the combination of each
member).

sales kate mike rick

wine 0 70 0
beer 20 0 50
bread 50 0 50
meat 20 60 20

FIG. 3 – “Rotate”

Multiple Granularities An other aspect of enterprise data
is that it can be viewed at different levels of detail, called
granularity levels in the OLAP literature. Indeed, each di-
mension of a cube is associated with a graph that indicates
how members of a level are grouped to form the members
of the immediate ancestor level. An example of such graphs,
called hierarchies is given in Figure 7. These graphs describe
the different granularity levels of the cube ��
�� of Figure 2,
and indicate, for example, how items are grouped into subca-
tegories. Usually, the name of the top level is the name of the
dimension.
The elementary operations dealing with granularity specify
the relative navigation along grouping hierarchies (we give
for each operation an example of the result of the operation
applied to the cube ��
�� of Figure 2) :
– rolling-up means to increase the level of aggregation, i.e.,

to decrease the level of detail (Figure 8 depicts such a roll-
up to sum up the sales over the years) ;

– drilling-down means to decrease the level of aggregation,
i.e., to increase the level of detail (Figure 9 depicts a drill
down to present the sales results at the cities level).
1Note that the term elementary refers to the user’s need [12, 30, 4].



sales wine jan feb mar

kate 0 70 100
rick 0 10 10
mike 70 50 40
sales beer jan feb mar

kate 20 10 30
rick 50 50 50
mike 0 10 40

sales bread jan feb mar

kate 50 20 0
rick 50 60 60
mike 0 10 0
sales meat jan feb mar

kate 20 0 10
rick 60 30 20
mike 40 20 0

FIG. 4 – “Split”

nested sales jan feb mar

wine 0 70 100
beer 20 10 30

kate meat 20 0 10
bread 50 20 0
wine 0 10 10
beer 50 50 50

rick meat 60 30 20
bread 50 60 60
wine 70 50 40
beer 0 10 40

mike meat 40 20 0
bread 0 10 0

FIG. 5 – “Nest”

2.2 Connections between rule mining and
OLAP querying

This section motivates the use of an OLAP query language
for expressing parts of the rule mining processes. Let us first
motivate the need for a query language during the KDD
process. As pointed out above, pre-processing and post-
processing are non trivial tasks, even in the simple case of
association rule mining.
– It is interactive : today most of the pre-processing and

post-processing tasks are often done by means of ad-hoc
programming scripts (like e.g., perl or awk) on flat files.
A query language is the opportunity to cleanly interact
with a database and to express these tasks under a rea-
dable and reusable form. Properties of the query language
can also be exploited for static analysis.

– It is iterative : refining the KDD process implies compa-
ring the results of the post-processing phase with what has
been done during the pre-processing phase. It leads to pos-
sibly new definitions of input data for further mining tasks
(the binary table in the case of association rules). With a
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single query language and data model used in both phase,
raw data and mined patterns can be accessed uniformly,
and the different tasks of these phases can be optimized.

[16] adresses this issue by presenting an approach with OQL
as a query language. Dedicated languages like [27, 23] also
enable to select data and specify various mining tasks. We al-
ready have shown [8] that a multidimensional query language
is a good candidate to express tasks of the pre-processing and
post-processing phase. Actually, the idea of integrating rule
mining and OLAP stems from Han [20]. Indeed, OLAP is
query driven, and the model provided by OLAP allows in-
teractive and flexible data analysis. Since KDD is machine
driven, OLAP and KDD can be seen as complementary. The
data cube structure facilitates efficient mining of multilevel
and multidimensional association rules.
Despite these advances, there is still a lack of a clear un-
derstanding of the pre-processing and the post-processing
of multilevel and multidimensional OLAP data. Existing ap-
proaches do not consider the correspondance of OLAP ope-
rations and KDD process tasks, and they do not consider the
multidimensional and multilevel aspect of data and patterns.
As a consequence no formal framework has been proposed
for integrating rule mining and OLAP at a logical level.
We propose to work in this direction. One of the goals of this
paper is to emphasize several strong connections between



firts quarter sales wine beer meat bread

kate 170 60 30 70
mike 160 50 60 10
rick 20 150 110 170

FIG. 8 – “Roll-up”

feb

mar

kate

rick

jan

bordeau

30

40

40
30

20

20

10

10 10

10

20

10

30 10

30 0

0

10

10

10

20

detailed sales

california

american
french

wholemeal

toast
beef

pork
lamb

mike bourgogne

20

60

20

0

10

0

0

0

0

0

0

0
0

0

0

0

0

10

10

0

30

30

30

30

30

30

0

0

0

0

20

10 10

0

0

0

0

0

0

40

20

20

20

20

40

30

0

0

FIG. 9 – The cube detailed sales

OLAP manipulations and parts of association rule mining
processes. This clearly extends [8] by taking aggregation on
hierarchical data into account.

3 Data model and language overview

The goal of this section is to motivate and describe the use
of a particular OLAP language for expressing queries during
the KDD process. The query language we use is not the main
contribution of this work and we do not provide here its for-
mal semantics nor implementation techniques. It is clearly
out of the scope of this paper. However, when details on the
language are available, we refer to the relevant papers.

Among the existing formal query languages for dealing with
OLAP data manipulation at a logical level, (see e.g., [26]) we
choose to use an extension of Datalog for the sake of reada-
bility. Indeed, this language can be used to express complex
OLAP queries in a concise manner. As an extension of Data-
log, it can also be used to express relational queries, as well
as queries for putting relations under the form of cubes. It
is introduced in [19, 18], and the reader could refer to these
references for more details. It should be noticed that every
program in this language is translatable into standard Data-
log.

The language and its data model are now informally presen-
ted. Throughout the presentation, the reader is assumed to be
familiar with Datalog [1].

3.1 Data model
Names The constants we use in the model are called ato-
mic names. Structured names can be built from atomic names
using the constructor “.”, and are called nested names. In the
following, we use the term names to denote both atomic and
nested names.

Cells In this multidimensional data model, data are orga-
nized in cells. A cell is identified by a cell reference, and
is associated with a unique cell contents. A cell reference is
of the form ����� ��� � � � � ���, where ����� ��� . . ., ��

are names. � is the ���� name, and ��� ��� � � � � �� are the
members (i.e., coordinates in a �-dimensional space).
A cell contents is a tuple of names. Associations of cells
contents with cells references are represented by ground
atoms of the form :

����� ��� � � � � ��� � 	����� � � � � ����

where ����� � � � � ���� are measures. We call this form of
atoms cell atoms.

Cubes A cube is a set of ground cell atoms having both a
common cube name and the same number of members, and
in which the same reference does not appear more than once
to ensure cell monovaluation.

Database A multidimensional database is a set of ground
cell atoms in which the same reference does not appear more
than once.

example Consider the cube ��
�� of Figure 2. This cube is
represented by the following set :

���
�����
�� ���� �	��� � 	�
�
...

��
����	��� �������
� � 	��
�
Consider now the cube of Figure 5, which represents a nested
organization of the data of cube sales. Using nested names,
this cube, called nested sales is described by the set :

����
����
�����
���	��� ���� � 	�
�
...

���
����
����	������
� ���� � 	��
�

3.2 Intuitive syntax and semantics of the lan-
guage

In this subsection, we present informally the syntax and the
semantics of a rule-based language, and show how it can ex-
press the elementary OLAP operations.
Rules à la Datalog are used in this language to define new cell
references and their associated contents from existing cells.
A higher order syntax stemming from Hilog [13] allows va-
riables to range over atomic names used in cell references
and in cell contents. It should be noted that variables cannot
range over nested names but only over atomic names.
We adopt the following conventions : symbols beginning
with an upper-case letter denote variables, and symbols be-
ginning with a lower-case letter or a digit denote constants.
Built-in predicates (e.g., �) and standard Datalog predicates
are allowed. “_” denotes an anonymous variable.

Intuitive meaning Consider the rule ���� �
 ����� ��
��� �� The standard (Datalog) informal meaning of this rule



is if q(X,Y) holds and r(Y) holds, then p(X) holds. The basic
intuition of our extension is to read such a rule as follows : if
there are two cells of references q(X,Y) and r(Y), then there
is a cell of reference p(X). We also add the handling of cell
contents, and then a typical rule will be :

���� � 	� 
 �
 ����� � � 	� 
� ��� � � 	�
�
This rule will be informally read : if there exists a cell of
reference q(X,Y) containing W, and if there exists a cell of re-
ference r(Y) containing X, then there exists a cell of reference
p(X) containing W.

3.3 OLAP elementary data manipulations
We now illustrate how rules can specify the elementary data
manipulations used in OLAP systems on the cubes of Figure
1 and 2.

Restructuring cubes We first show how the cube restruc-
turing operations can be trivially specified.

Rotate The following rule can be used to rotate the table
��
�� and obtain the table depicted in figure 3 :
��
�
����
����� �� � 	�
 �
 ��
����� �� � 	�
�

Split Suppose we want to split the cube ��
�� in order to
obtain a cube per item (Figure 4). We can use a variable ran-
ging over items to form new cube names. This is shown by
the following rule :
��
������� � � 	�
 �
 ��
����� �� � � 	�
�

Nest The nested representation of Figure 5 can be obtained
from the cube ��
�� by the rule :
���
����
������� � � 	�
 �
 ��
����� �� � � 	�
�

Push, pull Suppose we want to pull the measures from the
cube ������!��
�� (Figure 1) to obtain the cube depicted
in Figure 6. This pull operation can be expressed by the fol-
lowing rules :
��

����
����� �� �� � 	�
 �
 ��
����� �� � 	�
�
��

����
����� �� �� � 	�
 �


��
���
����� �� � 	�
�� ��
����� _� � 	_
�
��
���_� �� � 	_
� ��
���_� _� � 	�
�

Summaries specification We now present how rules can
be used to specify summarizations of data at different levels
of aggregation. The following examples are based on the 2-
dimensional cube named ��
�	
����
�� depicted in Figure
9.
The specification of summaries requires that the grouping re-
lationship between members is known (e.g., how customers
are grouped into regions). Such a relationship is depicted in
Figure 7. In this example, customers can be grouped into re-
gions, and regions can be grouped to form the whole area
called location. In the same way, the different items can be
grouped to form the whole production called product.
The grouping relationship is represented by particular
literals of the form 	��"� #�, where " and # are atomic
names. For example the grouping relationship of Figure 7 is
described by the following set of ground grouping atoms :
�	������� ��	����� � � � � 	����
�� ���
�� � � � � 	�����
� 
���-

	����
It is to be noted that the grouping relationship can be speci-
fied by rules.

Aggregate subgoals Aggregate subgoals used to specify
the summaries are of the form : $ � ������� � � � � ����
where $ is a constant or a variable, � is an aggregate ope-
rator (e.g., sum, min) and ����� � � � � ��� is a possibly non
ground cell reference2.
Their intuitive meaning is illustrated by the following
example. Consider the ground aggregate subgoal :

�� � ������
�	
����
����	������� �������.
It holds if the amount of bread bought by rick in march
is equal to 60. More precisely, let ��
�	
������
�	
��-
��
����	�������������� be the set of the references corres-
ponding to the lowest level of description for rick’s puchases
of bread in march. According to the grouping relationship
depicted in Figure 7, we have :
��
�	
������
�	
����
����	������� ������� �

���
�	
����
����	������� �%�
����
��
��
�	
����
����	������� 
���
��.

Assume ��
�	
���
���
�	
����
����	������� ������� is
the multiset formed with contents of the references in the set
��
�	
������
�	
����
����	������� �������. Then, we
have : ��
�	
���
���
�	
����
����	������� ������� �
�		�
� 	��
�.
The semantics of the aggregate subgoal can now be stated
more precisely : �� � ������
�	
����
����	�������
������� holds if the sum of the elements in the multiset
��
�	
���
���
�	
����
����	������� ������� is equal to
60.
Let us now illustrate the use of aggregate subgoals for ex-
pressing roll-ups, on the cubes sales and detailedSales using
the grouping relationship depicted in Figure 7.

Simple roll-ups Suppose we want to roll-up the data of the
cube ��
�� to obtain a cube containing the amount of wine
purchased by ��
� during the first quarter. We simply use the
following rule :

�
�
���
�� �	��
 ����
��� �	��� � 	$ 
 �


$ � ������
�����
�� �	��
 ����
��� �	�����
It is to be noted that, following the same principle, the cube
��
�� can be obtained by rolling-up the data of cube ��
�	
��
��
�� (Figure 9) to the different categories (we use the 	�
relation to restrict the variables� and � to range respectively
over customers and items) :
��
����� � �� � 	$ 
 �


$ � ������
�	
����
���	
	����� � ����
	������� 	���� 
���
	����
	���� � �� 	���� ������
��
	�� � �	��
 ����
����

Multiple roll-up Computing the total sales by categories
from the cube sales can be done by rolling-up simultaneously
from the months level to the first quarter level, and from the
customers level to the location level :

�
�
��
����� 
�
�
� � 	$ 
 �


$ � ������
���
���
	��� �	��
 ����
��� ����
	���� ������
��

A graphical counterpart of the cube 
�
�
 ��
�� is represen-
ted in Figure 10.

2Note that rules are range restricted [1], i.e., every variable appearing in
an aggregate subgoal must also appear in an other literal of the body of the
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sales

total

drinks 610
food 450

FIG. 10 – The cube total sales

Relational operations Classical relational operations are
of course still needed in OLAP query languages. Suppose
we are interested in a subset of the cube ��
��, that contains
only the data for january (to obtain the table of Figure 1).
Such a table can be obtained with a combination of selection
and projection called slicing-dicing in the OLAP literature.
This combination can be expressed using the following rule,
that selects the month january, and projects on the customer
and items dimensions :
��
����� �� � 	�
 �
 ��
��������� �� � 	�
�

The other relational operations are taken into account
straightforwardly as in Datalog [1].

4 OLAP queries in the KDD process
This section presents typical treatments during an association
rule mining process. It concerns both the pre-processing and
the post-processing phases. These treatments can be conside-
red as OLAP queries, and thus can be expressed with the lan-
guage introduced in the previous section. We begin by des-
cribing how we model the association rule process, and next
we present some typical pre-processing and post-processing
queries.

4.1 Modeling the rule mining process
The way we propose to model the extraction of association
rules can be summarized by Figure 11. The result of the pre-
processing step is a collection of binary tables that are the in-
put of the mining algorithm. The binary tables have attributes
as row names and attributes as column names. Examples of
binary tables are depicted in Figures 13 and 14. The output
of the mining step is a collection of tables representing the
frequent item sets mined on the corresponding 	���
 tables.
The �������
� tables have attributes as column names and
frequent set identifiers as row names. They are binary tables
as well : a cell contains 1 if the frequent set (whose identifier
is the row name) contains the attribute as column names. A
column that contains the support for each frequent set is ad-
ded. Examples of �������
� tables are depicted in Figures
15 and 16.
The data model leads us to take the following conventions :
– a naming convention for binary tables : nested names are

used for differenciating them.
– when constructing a binary table, every row or column

attribute has the same level of nesting. Otherwise, post-
processing queries like inclusion would be less easy to
specify.

Association rules are derived from frequent sets and repre-
sented in tables too. The form we choose is the following (but
OLAP queries can be used to restructure the ��
�� tables to

rule.

derive more user-friendly representations) : the row name re-
fers to the body of the rule and the column name refers to the
head. If this rule holds in the raw data, then the cell contains
its support and its confidence. It might also contain other in-
terestingness measures (e.g., conviction) associated with this
rule. This model emphasizes the role of frequent sets as a
condensed representation from which various knowledge eli-
citation can be derived [25].

4.2 Pre-processing queries

The main task the user has to perform during the pre-pro-
cessing step is to filter and transform the raw data so that (a)
all the relevant information from which knowledge is to be
explicited is available and, (b), it satisfies the input require-
ments of the mining algorithms. In this paper, we consider
only pre-processing steps that provide binary tables. We as-
sume that, provided such a binary table, data owners can as-
sign a meaning to frequent itemsets in it and thus interpret
the derived association rules. Hence a pre-processing step
consists in using OLAP queries to construct binary tables.
Generalizing that, we can describe the pre-processing phase
as a collection of queries that transform the raw data into a set
of binary tables (each being an input to the mining algorithm
to perform various mining tasks).
We describe how to get binary tables from the table ���
 of
Figure 12 and the cube ��
�� of Figure 2. It illustrates how
queries express typical pre-processing steps.

cust age income lives in

kate 20 3000 west
mike 40 2000 east
rick 80 1000 east

FIG. 12 – The table ���


Binary tables In our model, a binary table can be defined
as a table whose cells contain either the constant 1 or the
constant 0. 2 binary tables are depicted in Figure 13 and Fi-
gure 14. Recall that cells from the cube ��
�� are of the form
��
����� � �� � � where � is a customer, is a month, �
is an item and � is the number of item � bought by � in .
Some of the typical OLAP operations (e.g., nest, pull) are
very useful to change the structure of cubes and tables, and
can be used to construct the binary table(s) from raw data.
In the following, we suppose that the user does not want to
represent the number of items sold, then a nest operation and
a selection can be used to obtain a binary table 	���
����

from the cube ��
�� :

	���
����
��� ��� � ��
 ��
����� � �� � �� � & ��
	���
����
��� ��� � ��
 ��
����� � �� � ��

Expressing background knowledge The queries can be
used to incorporate the background knowledge (knowledge
not to be discovered but not explicitly represented in the
data).
Suppose the user wants to describe the fact that a customer
is a good customer if he/she is a regular customer and has
an income over 2000. This can be done by the following
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FIG. 11 – Modeling the KDD process

query, where ��'�
�����
���� is a table containing pre-
viously known (or extracted) information :

���
��� 
!��� � '����

���
��� 	������ � �� � & �����
��'�
�����
��������

Aggregation (roll-up) can also be used to express background
knowledge. For example, a very good customer can be de-
fined as a regular customer who purchased more than 150
items in the first quarter :

���
��� 
!��� � (��!'����

� � ������
����� �	��
����
��� ����
� & �
�� ��'�
�����
��������

Filtering Since the OLAP language can express classical
relational operations (e.g., selection, projection, join, diffe-
rence), OLAP queries can be used to discard unwanted attri-
butes. Suppose the user is only interested in very good custo-
mers. The query for constructing the binary table becomes :

	���
����
��� ��� � ��
 ��
����� � �� � �� � & ��
cust(C,type) : very good.

	���
����
��� ��� � ��
 ��
����� � �� � ��
���
��� 
!��� � (��!'����

Discretizing Raw data often contain continuous valued at-
tributes (e.g., age, salary). It is common to discretize these
attributes (i.e., to group them into intervals) to ensure that
they reach a sufficient level of support. For example, assume
the user wants the binary table to contain only two categories
of age :

	���
����
��� �'��

_
�� � ��
 ���
��� �'�� � )�
) * 
��

	���
����
��� �'��

_
�� � ��
 ���
��� �'�� � )�
) � 
��

	���
����
��� �'��'�_
�� � ��
 ���
��� �'�� � )�
) � 
��

	���
����
��� �'��'�_
�� � ��
 ���
��� �'�� � )�
) * 
��

Indeed, the decision to split on the value 50 is the hardest part
of that step. This is a well-identified problem in data analysis
and discussing it is out of the scope of this paper.

Selecting A rotate operation can be used on the binary
table to select which kind of association rules are to be ex-
tracted. For example, in the table 	���
 of Figure 13, asso-
ciation rules will concern each customer behavior. If the user

age jan . . .
input cust lt_50 ge_50 wine beer . . .

kate 1 0 1 1 . . .
mike 1 0 1 0 . . .
...

...
...

...
...

. . .

FIG. 13 – The table 	���
����


kate . . .
input items jan feb . . .

wine 1 1 . . .
beer 1 0 . . .
...

...
...

. . .

FIG. 14 – The table 	���
�	
���

wants to compare the behavior on each item, he/she can use
the following query to get the binary table of Figure 14 from
that of Figure 13 :

	���
�	
������ �� � � + �
 	���
����
��� ��� � +�
 �� �'��

Navigation through hierarchy, (roll-up and drill-down) can
be used to select the level of detail to construct the binary
table used as input for the extraction. For example, suppose
the user is only interested in customer who purchased more
than 50 drinks during the first quarter :

	���
����
���� ���	���� � ��

� � ������
����� �	��
����
��� ��	������
� & 
�� ��
����� _� _� � 	_
�

	���
����
���� ���	���� � ��

� � ������
����� �	��
����
��� ��	������
� � 
�� ��
����� _� _� � 	_
�

Now the user is interested in the full list of categories, wha-
tever the sales :

	���
����
���� �� � ��

� � ������
����� �	��
����
��� ����
� �� �� 	���� ������
�� ��
����� _� _� � 	_
�

Roll-ups can also be used to simply filter unwanted attributes.
For example, the following rule discards regions where less
than 100 items have been sold :

	���
����
	��� ��� � ��
 � � ������
����� � ����



age jan . . . support
frequents cust lt 50 geq 50 wine beer . . .

f� 1 0 1 1 . . . 0.1
f� 1 0 1 0 . . . 0.03
...

...
...

...
...

. . .

FIG. 15 – The table �������
� ���


kate . . .
frequents items jan feb . . .

f� 1 1 . . .
f� 1 0 . . .
...

...
...

. . .

FIG. 16 – The table �������
� 	
���

� & ���� 	���� 
���
	����
	������� ��
����� _� _� � 	_
�

Once binary tables are built, it is possible to run the mining
algorithm. The user may specify support thresholds, or more
generally interestingness measures that fit to the mining task.
The result can also be modeled as tables and cubes.

4.3 Post-processing queries
Frequent sets can be represented in a binary table where each
row name is a frequent set identifier and each column name
is an attribute. The cell identified by a given column name
(an attribute) and a given row name (a frequent set identifier)
contains 1 if this attribute is part of this frequent set. Figure
15 (resp. 16) shows the result of the extraction for the table
of Figure 13 (resp. 14).
When it is clear from the context, we use the “generic” table
name �������
� instead of using �������
��	
���, etc.
The same idea applies for tables named 	���
 and ��
��.
Presenting the result The representation of frequent item
sets introduced above may seem unfriendly, but here again
OLAP queries can be used to switch to a convenient pre-
sentation. For example, a split query can be used to get a
frequent set per table :

, � � �� � ��
 �������
��,� ��� � �� �� �'��

Note that the �'� attribute can be taken apart form the other
attributes since for a particular frequent item set, its value
holds for every combination of the other attributes.

, ��'�� (�
��� � )�
 �������
��,� �'��)� � ��
Useful queries The representation of the frequent sets in a
binary table provides an easy way to write some typical post-
processing queries. For example, inclusion of frequent sets
can be simply written :

�������
����
��	���,�� ,���

��
�������
����,�� ,����
�������
���,���
�������
���,���

������
����,�� ,���

�������
��,�� )�-� � ��
�������
��,�� )�-� � ��

Where frequent-id range over the frequent set identifiers.

Item set complement can also be defined by means of a
ternary predicate ����
����
�,�� ,�� ,�� which holds if
,� � ,� � ,� and ,� � ,� � �.

����
����
�,�� ,�� ,���
 �������
���,���
�������
���,���
�������
���,���
�������
����
��	���,�� ,���
�������
����
��	���,�� ,���
��
�	�
�����
�,�� ,����
��
�����(�����,�� ,�� ,����

where uncovered(F1,F2,F3) holds if ,� � ,� � ,�, and is
defined by the folowing rule :

����(�����,�� ,�� ,���
 �������
��,�� )�-� � ��
�������
��,�� )�-� � ��
�������
��,�� )�-� � ��

and intersect(F2,F3) is straightforwardly defined by :

	�
�����
�,�� ,���
 �������
�,�� )�-� � ��
�������
�,�� )�-� � ��

Support, confidence, interestingness measures Associa-
tion rules and their interestingness measures can be derived
from the �������
� table by queries. Let us compute the
support of the rules of the form ,�� ,� as follows.

��
�������
�,�� ,�� � � �

�������
��,�� ������
� � ��
����
����
�,�� ,�� ,���

Then rule confidence can be computed by :

��
������,�� ,�� � � �

�������
��,�� ������
� � ���
�������
��,�� ������
� � ���
����
����
�,�� ,�� ,���
� � ������

Other interestingness measures can be specified. For
example, conviction [10] can be expressed by :

��
����(	��,�� ,�� � � �
 ����
����
�,�� ,�� ,���
�������
��,�� ������
� � ���
�������
��,�� ������
� � ���
�������
��,�� ������
� � ���
� � ���� ��
��������
���.

Presenting the association rules A table ��
�� can be
constructed from the tables ruleConf and ruleSupport, such
that each cell of the table describes a rule :

��
���,�� ,�� � 	�� �
 �
 ��
�������
�,�� ,�� � ��
��
������,�� ,�� � �

rules f� f� . . .

f� C�� S�� C�� S�� . . .
f� C�� S�� C�� S�� . . .
...

...
...

...

FIG. 17 – The table ��
��

Selection/filtering of rules can now be expressed on the table
��
��. For instance, the following query asks for the rules
having confidence higher than 90 % :

�
 ��
���,�� ,�� � 	�� �
� � � ��




The following query asks for the rules whose head contains
���� :

�
 ��
���,�� ,�� � 	�� �
� �������
�����
�,�� _�������

This one asks for pairs of rules such that the body of the first
and the head of the second share an item :

�
 ��
���,�� ,�� � 	��� ��
� ��
���,�� ,	� � 	��� ��
�
�������
�����
�,�� )�-��
�������
�����
�,	� )�-��

Links to raw data Having a unique data model enables
that raw data and mined patterns are uniformly accessed. For
instance, assume the user wants to get the customers viola-
ting a given rule, this can be obtained by the following rules :

(	�
�
�����,��,���
 ��
���,�� ,�� � 	_� _
�
	���
���
��	���,�� ���
��
�	���
���
��	���,�� ����

	���
���
��	���,����
 �������
���, ��
	���
����
��� _�_� � ��
��
�������
�������
�,�����

������
�������
�,����

�������
�����
�,�)�-� � ��
	���
����
���)�-� � ��

We can write generic queries by using variables in table
names. For instance, it is straightforward to build tables
(	�
�
�������,��,��, inputInclusion���,��� and
nonIncludeInput���,��� where� will be bound to ���
 to
focus on customers or 	
��� to deal with items.

Rolling-up and drilling down patterns The frequent sets
can be hierarchized in the same way than the other dimen-
sions are hierarchized in the OLAP framework. A natural
hierarchy for the frequent is the frequent lattice, that can be
set up by using the inclusion query :

	��,�� ,���
 �������
���
��	���,�� ,���
In that case, rolling up could mean dropping an attribute from
a frequent itemset, whereas drilling down could mean adding
an item to a frequent itemset.
The language provides an easy way to define the transitive
closure of the 	� relation :

	�$�������� ��
 	����� ��
	�$�������.��
 	����� �� 	�$������� .��
As an example, from rule ,� � ,�, we can find the rules
having the same body but a larger head :

�
 ��
���,�� ,�� � 	_� _
� ��
���,�� ,�� � 	_� _
�
	�$�����,�� ,���

The 	� relation can also be used to represent how items are
grouped to compose a frequent itemset :

	��)�-� , ��
 �������
�,�)�-� � ��
Using this hierarchy allows to represent rules under a mul-
tidimensional form that displays attributes (items). Suppose
the user is interested in rules with 2 attributes in the body and
1 attribute in the head. With the following query, such rules
can be represented as a table where the attributes in the body
are represented as row names and the attribute in the head as
column names :

��
���� .����� .� � 	�� �
 �
 ��
���,�� ,�� � 	�� �

� � ����
��������
��,�� ,����
�������
��,�� _��� � ��

�������
��,�� _�� � � ��
� � ����
��������
��,�� ,����
�������
��,�� _�.� � ��

rulesXYZ age lt 50 age geq 50 . . .

beer C�� S�� C�� S�� . . .
wine bread C�� S�� C�� S�� . . .

...
...

...
...

FIG. 18 – The table ��
���� .

This multidimensional representation can be manipulated
with OLAP operations, by e.g., unesting the row names or
spliting according to the column names. It can also be the
basis for statistics. Consider the table of Figure 18. Suppose
the user is interested in knowing the average confidence of
the rules contained in this table. This can be expressed with
the following program. First, discard the support

��
�������)��)�� )�� � 	�
 �

��
���� .�)��)�� )�� � 	�� �
�

Then create an attribute representing the grouping of every
attribute occuring in the table :

	��)� �

��
 ��
�������)�_� _� � 	_
�
	��)� �

��
 ��
�������_�)� _� � 	_
�
	��)� �

��
 ��
�������_�_� )� � 	_
�
Finally, compute the statistics by aggregating the whole
table :
�('������ .����


� � �(���'����
�������

��

� �

���
Templates Templates have been introduced in [24] as
conditions (1) on the size of the rules, and (2) on the oc-
currence of attributes in their head or body.
In the first case, suppose the user wants to find the rules ha-
ving at least 3 attributes in their body :

�
 ��
���,�� ,�� � 	�� �
�
� � ����
��������
�,�� ,���� � & �,
�������
���,��� �������
���,���

For (2) now assume the user wants to select the rules
whose body concern customers having a high income (on the
frequent sets mined on the second binary table). This condi-
tion can be expressed with the following rule :

'�
�,�� ,�� � 	�� �
 �
 ��
���,�� ,�� � 	�� �
�
�������
��	
����,�� ���
�_� � ��
���
����
� 	������ � ��
� � �����

Finding ancestors In the context of multilevel data, [32]
defines the ancestors of a frequent itemset to be the frequent
itemsets having the same number of items where one (or
more) item is replaced with its ancestor. Ancestors can be
computed by the following rule :

�������
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 �������
���,���
�������
���,���
,� �� ,��
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�,�� ,����
�� � ����
��������
�,�� ,����
�� � ���
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�%	'%��/�(�
�,�� ,����
where higherLevel is defined as :

%	'%��/�(�
�,�� ,���
 �������
�,�� )� � ��
�������
�,�� -� � ��
	��-�)��

[32] defines the ancestors of a rule to be the rules where
frequent ancestors appear in the body and/or in the head.
They can be found by the program :
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According to [32], a rule is interesting if it has no ancestors.
Such interesting rules can be found with the following query :
�
��
���,�� ,�� � 	_� _
� ��
���
�)����
����,��,�� _�_���
Covering Rules can be compared with each other. For exa-
mple, structural covering [33] consists in filtering the rules
being less general than a particular one. A rule �� is less
general than a rule �� if the confidence of �� is lesser than
the confidence of��, and�� has a shorter head and a longer
body than ��. Computing covers of discovered association
rules is clearly needed in order to remove some redundant
rules. This is semantically clear for logical rules (rules with
confidence 1). It needs some careful interpretation with rules
whose confidence is less than 1.

��(����,��,�� ,��,	��
 ��
���,�� ,�� � 	��� ��
�
��
���,�� ,	� � 	��� ��
�
�� � ���
�������
���
��	���,�� ,���
�������
���
��	���,	� ,���

Such a rule is quite close to the specification of the task. Ob-
viously, it is one of the major advantage of a rule-based lan-
guage with a formal declarative semantics. It is clear that eva-
luating such queries can be very difficult even though opera-
tional semantics have been already studied.
The data model and the query language can be used to en-
hance the different steps of the KDD process. Our aim is
not to act on the mining algorithm. Instead we can act on
the different tables or cubes used during the process : the
	���
�� binary table, the �������
��� table that provides
the frequent item sets and the ��
���� table that provides
rules. Different mining phases can be performed for more or
less complex post-processing phases (e.g., querying simulta-
neously �������
�����
 and �������
��	
��� tables).

5 Conclusion
This paper has demonstrated that an OLAP manipulation lan-
guage enables to express typical pre-processing and post-
processing within the association rule mining context. The
uniform access to data and patterns is interesting : it means

that the whole process (beside the mining phases) is a collec-
tion of queries written with the same language. [16] presents
a similar approach by using OQL as a query language. In-
deed, in that case, multidimensional features are not conside-
red. Dedicated languages like for instance MINE RULE [27]
or MSQL [23] also enable to select data and specify various
mining tasks. However, they do not consider the multidimen-
sional aspect of data and patterns.
Modeling KDD processes as queries give rise to optimization
possibilities e.g., when complex processes have to be reused
on various datasets. This research is part of a project related
to the inductive database framework [25, 7, 15]. An inductive
database is a database that contains intensionally defined ge-
neralizations about the data, in addition to the usual data. The
KDD process can then be described as a sequence of queries
on an inductive database and mining phases are part of the
evaluation process for queries that select specific inductive
properties of the data. Indeed, implementing inductive data-
bases, not only for association rules but also for other classes
of patterns, will be a long term effort.
We consider that studying typical queries using languages
with a clean formal semantics is one mean to understand in-
teractivity during KDD processes. The next step of such a
research consists in relaxing the assumption that condensed
representation of data (e.g., frequent sets) are materialized
(i.e., computed beforehand by some data mining algorithm)
but instead that computing it is part of the query evaluation
process.
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