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Abstract : We present  STARLET, a new compiler  compiler  which compiles 

Extended Affix Grammars  defining a t ranslat ion into an executable program : the 

translator. We look at its operational semantics and we focus on the points which are 

close to or different from Prolog procedural semantics. We discuss the two interwoven 

issues which are Program Reliability (due to many  static checks) and Program Efficiency 

(optimizations at compile time). Both are reached through a systematic  use of 

grammatical  properties. 

I I n t r o d u c t i o n  

Our research group has  been working on grammatical programming development 

i.e. an  approach to software construction based on compiling methods [Beney-86], 

Compiler compilers are designed as high-level programming environments  and if 

compiler writing is the major  application field, we also investigate other application 

fields [Fr~con 89]. 
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Within the grammatical programming framework, the specification step must  

produce abstract language definitions. As context-free grammars are non-algorithmic 

descriptions for the syntax of languages, two-level grammars are grammatical  

formalisms which enable the semantic part to be defined. Among the best known types of 

two-level grammars are the W-grammars devised by A. van Wijngaarden and the 

Attribute Grammars devised by D.E. Knuth. To help language prototyping and also to 

improve its final implementations, the idea of analysis-orlented two-level grammars 

(and compiler compilers] leads to restricted classes of attribute grammars (L-attrlbuted 

systems [E2S-84], SNC attribute grarmnars [Jourdan-88].,.) or restricted classes of W- 

grammars (Affix Grammars, Extended Affix Grammars, RW-grammar and transparent 

W-grammars devised respectively by C.H,a~. Koster [Koster-70], D.~ Watt [Watt-74], M. 

Simonet [Simonet-81] and J,  Maluszynskl [Maluszynski-84]). CDL was the first 

compiler compile r based on afl?u~ grammars [Koster-77]. 

Our group has worked on affix grammars and one CDL-like implementation based 

on its own set of well-form conditions to deal with a deterministic top-down analysis 

[Beney-80]. This system is called LET [trademark of INSA de Lyon). Then, we needed to 

extend the class of grammar which was accepted as well as to improve the translator 

writing facilities. Independently of the research in Berlin or in Nijmegen (e.g. EAGLE 

[Franzen-77] or PROGRAMMAR [Meijer-86]), thls has  lead to a shift from Affix 

Grammars to Extended Affix Grammars and a shift from an algorithmic language to a 

logic programming language. We called this grammatical system and its metalanguage 

STARLET while the first implementation is called STARLET/GL. 

I I  Background  : Aff ix  Grammars  and  related fo rma l i sms  

Like W-grammars, Affix Grammars have two grammatical levels but there is a 

clear distinction between the notions (i.e. the non-termlnals) and their parameters : the 

so-called affiw positions which are variables. It introduces structural constraints on 

hypernotions and an underlying context-free grammar [UCFG). The affix level (affix 

rules) assign domains to affix positions. The referencing problem known to be 

undecidable for W-grammars is then decidable and one can make straightforward 

extensions of context-free parsers.  As it is oriented towards analysis and 

metacompilation, mode assignment is introduced to specify the data flow. Another 

useful concept for programming purposes is the "primitive predicate". The primitive 

predicates, described in CDL and LET by some programming languages, are used to 
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define i npu t /ou tpu t  operations (reading or writing of terminal symbols) or any 

algorithmic processing (e.g. symbol table management). 

The class of grammars accepted by CDL or even LET is rather poor since the 

analysis method is an adaptation of the recursive descent (without any automatic 

backtracking and a one-pass left to right evaluation of every affix value}. These systems 

are not good enough for general programming purposes since they look like algorithmic 

programming languages where coding and concrete data structure processing always 

interferes with higher-level analysis tasks. 

D_~ Watt proposed Extended Affix Grammars (EAG} (Watt-74} in order to 

eliminate primitive predicates and return to a more generative formalism. An EAG is 

"extended" since affix positions can be affix expressions and this allows all 

relationships between the affix in each rule to be implicitly defined. Thus, explicit 

evaluation rules (which are often simple copies} and constraints become unnecessary 

since the Uniform Replacement Rule combined with the type discipline (following affix 

rules specifications for affix positions) are enough. Therefore, one of the major 

problems in designing a compiler compiler which processes EAG is to implement a 

grammatical unification algorithm [Maluszynski-84] (see § III.2}. 

The question arises of the differences between Affix Grammars (Extended or not) 

and Attribute Grammars. Some answer that there is no distinction : EAG has become 

either Extended Affix Grammars  or Extended Attribute Grammars  in [Watt-83}, 

assuming that  the original W-grammar mechanism for context-sensitive requirements 

by predicative hyperrules could be applied to attribute grammars  as constraints 

associated to each rule. We also notice that affLx grammars which are processed by the 

LET compiler compiler are 1L-Attribute Grammars (see for example the MIRA compiler 

compiler [E2S-841 or [Deransart-88a] for a survey}. This arises from the fact that in LET, 

affix rules (and thus two-level grammar mechanisms) are not really used since the user 

has to choose concrete data structures for affix variables and use them via the primitive 

predicates. In both cases, semantic values can be used to drive syntactic analysis (values 

may be computed during parsing}. 

However, there are differences between affix and attribute formalisms when no 

context-free basis is apparent. An attribute grammar ought to be defined from an 

underlying context-free language (which is independent from the attribute values). This 

means that the underlying language must  be defined by a well-formed context-free 

grammar according to a particular parsing method (LL, LR ...). 
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Within the affix framework, the UCFG m a y  have unwanted properties (e.g. 

ambiguities) that  affix-driven parsing can  allow because of the contextual analysis 

method. This problem has  already been informally considered in [Beney-89]. 

On the other hand, many  grammatical formalisms have been proposed under the 

generic term of "Log/c Grammars ". Metamorphosis Grammars (MG) [Colmerauer-77] or 

Defmite Clause Grammars (DCG) [Pereira-80] are grammatical formalisms designed for 

natural  language processing which are easily compiled into (or interpreted as) logic 

programs.  Furthermore,  it is interesting to consider MG or DCG as programming 

languages and implement with them more sophisticated grammar  processors. S. Saidi 

and J .F  Boulicaut are working on such an  implementat ion of t ransparen t  two-level 

grammars  [Saidi-90]. 

Logic Programming features such as the tree data structure of terms, the variable 

instantiation by unification and the systematic backtracking mechanism are useful to 

handle multiple analysis and hhus ambiguities in language processing. Given the SLD- 

resolution, interpreters t u m  Prolog into a real generator of non-deterministic top-down 

parsers.  

The well-known shortcomings of top-down parsing (prefix sharing and local 

ambiguities, e-productions, ambiguities} can easily be managed but  it costs too much 

for many  applications of practical interest. The efficiency of Prolog programs mus t  be 

improved by means  of explicit control over resolution (e.g. cut, freeze,diff, wait...), mode 

assignments or the informed use of unification (e.g. taking concatenation assoclativity 

into account). On the other hand, the production of more reliable logic programs is made 

easier by certain systems which have explicit type definitions [Borland-86], 

EAG provided with operational semantics (given a compiler compiler) are very 

close to logic programs, We decided to execute an EAG defining an unambiguous left to 

right translation as a logic program. Thus, the rules mus t  be selected by means of affix 

values to check whether the tried productions do not lead to blind alleys (we want only 

programs which deliver at least one result). This means  that  the affix values (or at least 

some of them) have to be computed while parsing, Local ambiguities are allowed since 

the right decision can  be taken  by inspecting known affix values (contextual LL(k) 

parsing). Each rule call can only have one successful completion as ff there was an 

implicit "cut" at the end of each rule (see the recursive back-up scheme in [Koster-74]). 

Two-level g r a m m a r  features  found in STARLET extend logic programming 

facilities for this class of problem fleft to right unambiguous  translations) by a well- 

motivated introduction of types, modes and implicit control of computations.  
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Other well-form conditions ensure the grammar computability i.e. the ability to 

recognize the axiom of the grammar while instantiating every affix variable. Therefore, 

our work on the reliability and the efficiency of translators developed with STARLET/GL 

contributes to the software engineering of logic programming on this restricted class of 

problem. 

I I I  T H E  S T A R L E T / G L  o p e r a t i o n a l  s e m a n t i c s  

The reference manual  of the STARLET/GL implementation is [Beney-87]. The 

STARLET/GL programming environment PLEIADE is running on a BULL DPX5000 

under SPIX and the compiler can be used on other UNIX-like systems. This has been 

implemented by J. Beney (STARLET/GL compiler), A.N. Benharkat (Syntactic Editor, 

Pretty-Printer and Application Managment : [Benharkat-90] } and H. Harti (interpreter 

[Harti-89]). 

III. 1 DeJ~ming languages, translations and programs 

The STARLET grammatical formalism is a set of conventions to specify EAG (see 

references for formal definitions}. Our notations for EAG have been influenced by the 

van Wijngaarden style and also by our practical experiences with the LET language. 

Lexical features bring STARLET grammars very close to the natural language style of W- 

grammars.  

A non-terminal symbol is made up of letters, spaces, quotes, minus signs and 

dollar signs (e.g. "do $ times $"). The number of dollar signs is the arity of the symbol (the 

number  of the affix positions of the symbol). A hypernot ion is written with 

parenthesized affix sentential forms in place of the dollar signs (e.g. "do (one N) times 

(ABC)"). We say that STARLET/GL allows split identifiers. 

We illustrate the notations on a classic example : L1 = { anbncn, n >_ 1 } 

Exump/e 1 : 

ROOT : anbncrL $ EAG ax/om $ 

AFFIXES : $ The metarules $ 

ABC : alpha ; beta ; gamma. $ A ru/e which enumerates the available t~tluesforABC $ 

N : zero ; one N. $ An affix rule which defines the natural numbers $ 

NOTIONS: $ Rules defining the non-terminals $ 

anbncn: do(N)t lmes (alpha), do(N)t lmes (beta), do(N)t imes (gamma). 
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do ( : zero ) t imes ( : A B C  } : TRUE. 

do{ : o n e N )  t imes(  : A B C ) : a n  {ABC), do(N)  t imes(ABC).  

an  { : alpha} : object{"a"). 

an  ( : beta) : obJect('~'~. 

an  ( : gamma) : object{"c'). 

STARLET/GL keywords  are  in uppe rca se  style. Modes  are  lexical ly defined with 

t he  s y m b o l "  : " in front of (resp. behind) a p a r a m e t e r  to define the  inher i ted  mode  (resp. 

the  synthesized) .  An unde r sco re  in front  of an  affix var iable  deno tes  t ha t  i ts  va lue  will 

be unused  by  the computation.  

This  EAG is a spec~cation of  the language LI. 

We can  cons ider  th is  EAG as  a generative g r a m m a r  (assuming tha t  "object" p lays  

t he  role of "pro tonot ions  end ing  with  symbol" in the  two-level  g r a m m a r  s c h e m e  a n d  

forget t ing mode  a s s i g n m e n t  or  underscores )  b u t  it  is  wor th  us ing  it e i ther  to genera te  

sentences  of L I or pa r se  some str ings which m u s t  belong to L1. 

In fact, "object" is  a n  ex te rna l  func t ion  which  o u t p u t s  i ts  s t r ing  pa rame te r .  A 

s l ight  change  to Example  1 gives a correct  STARLET/GL p rog ram which  gene ra t e s  

sentences .  We c a n  give a va lue  to N by an  in t roduc t ion  of an  inher i ted  affix pos i t ion  to 

"anbncn" : anbncn ( : N ). 

With 'ROOT : anbncn ( one one one zero )" the output  is "aaabbbccc" 

A recognizer of L1 could  eas i ly  be  i m p l e m e n t e d  too. The effective t e rmina l  

symbols  a re  recognized by  a n  externa l  funct ion "symbol". This funct ion manages  a buffer 

which  allows source  back t r ack ing  when  necessary .  The funct ion  "object" gene ra t e s  the  

object  code  wi th  b a c k t r a c k i n g  synchron ized  to source  back t r ack .  A recognizer  of  L1 

{with the  affix rules  of Example 1} could be  : 

ROOT : parser.  

NOTIONS : $ "write string" and "needed EOF' are extemal self-explanatory functions $ 

parse r  : anbncn,  needed EOF, write string ("OK") ; write string ("KO"). 

?anbncn  / N : accept  and  count  (N) t imes  (alpha), 

accept  (N) t imes  (beta), accept  (N) t imes  (gamma). 

?accept  and  count ( one N :) t imes ( : a lpha ) : 

there  is  an  (alpha) on  input,  accept  and  count  ( N ) t imes  ( a lpha  ). 

accept and  count  ( zero : ) t imes ( : a lpha ) : TRUE. 

accept{zero :)  t tmes{:ABC} : TRUE. 

?accept  ( one N : ) t imes ( : ABC } : there is an  { ABC ) on input, accept ( N } t imes ( A t ~  ). 
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?there is a n  ( : a lpha ) on input  : symbol ("a'~. 

?there is an  ( : beta  ) on input  : symbol ('~"). 

?there is a n  ( : gamma ) on  input  : symbol ("c'~. 

Character "?" is used to specify tha t  the rule is supposed to be a Test (vs. Actior~. 

There is a (static) check of the algorithmic consistency of this  specification : a test  may 

fail while a n  ac t ion  never  fails. It is useful  to help error  recovery dur ing  parsing.  

Character  "/" is followed by local variables used in  the right h a n d  side of a rule. 

111.2 Grammatical unification and Uniform Replacement Rule 

To execute a STARLET/GL program is to try to recognize the root of the FAG for a 

given i npu t  text. Its resul ts  are available as a n  object text. Data types are considered as 

in termediate  l anguages  defined by  m e a n  of the context-free aft'ix rules.  Affix sen ten t ia l  

forms parameterize the non- t e rmina l  symbols  and  are generally man ipu la t ed  via their 

der iva t ion  tree in  th i s  g r a m m a r  of affixes. Thus ,  the genera l  case  of g rammat i ca l  

unif ica t ion is the tree confronta t ion which is used  to bu i ld  a nd  look at  affix sentent ia l  

form s t ruc tu re s .  Var iables  are cons idered  as  logic var iab les  : the  program tr ies  to 

i n s t a n t i a t e  t h e m  (at present ,  every var iable  of a STARLET/GL program has  to be 

ins tan t ia ted) .  

A not ion  rule defines a n  analys is  method  for the non-terrr~nal  which is its left 

h a n d  side. There may  be several ru les  defining a given non- te rmina l .  Alternatives in  a 

rule development are considered from left to right. 

A rule call in t roduces  a confrontation between formal parameters  and  a rgumen t s  

i.e. a n  or ien ted  type-sens i t ive  g rammat i ca l  uni f ica t ion .  W h e n  the  con f ron t a t i on  

succeed,  the resu l t  is ei ther a tree construction or a tree split (expression in  front of 

expression is no t  allowed). A rule call is a success  if : ~nput confrontation is a success,  

the development of the rule is a success  and  finally the output confrontation is a success.  

T h u s  a rule  call may  fail ei ther because  of the  confronta t ions  or i ts  development. 

The Uniform Replacement Rule is responsible for the correct propagat ion of the values  

a l ready known.  The conf ron ta t ion  of a variable  a n d  a n  affix express ion  m a y  succeed 

only if this  expression and  one of the legal s t ruc tu re s  for the variable data  type are 

compatible (e.g. a n  affix expression 'e' is compatible  with the s t ruc ture  of a n  affix 'a' ff 

affix rules  exist such that  'e' can  be derived from 'a' according to the afl~LX rules). 
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A t ree  cons t ruc t i on  h a p p e n s  wheneve r  a n  affix sen ten t i a l  form a p p e a r s  as  a n  

a r g u m e n t  to be  unif ied  with  a n  inher i ted  var iable  affix pos i t ion  or  a s  a syn thes ized  affix 

pos i t ion .  

A t ree  sp l i t  h a p p e n s  wheneve r  an  affix sen ten t i a l  form a p p e a r s  a s  a n  inher i t ed  

affix posi t ion or  as  an  a rgumen t  to be unified with a synthes ized  affix posit ion.  

There  a re  spec ia l  ca se s  of conf ron ta t ion  s ince  we need  predef ined  da t a  types  

(INTEGER for Integer,  CHARAC for c h a r a c t e r  a n d  STRING for c h a r a c t e r  s tr ings)  or  

e n u m e r a t e d  types  (every va lue  is  a single t e rmina l  affix : it  a l lows the  del 'mit lon of the  

implici t  in te r sec t ion  of types).  

W h e n  possible,  tes t  which are  needed  dur ing  the confronta t ions  are  carr ied  out  at  

compile  t ime a n d  therefore ru les  which are  able  to succeed  are  s ta t ica l ly  sorted.  It avoids 

use le s s  a t t empt s  at  confrontat ion (see § IV). 

A p p l i c a t i o n  of t h e  Uniform Replacement  Rule c o m b i n e d  wi th  t he  spl i t  

ident i f iers  and the confrontation fac i l i t ies  give a n  idea  of  t h e  conc i s ion  and  

readabi l i ty  of the  p r o g r a m s :  

With  these  affix ru les  defining list  of integers  : 

L: empty ; X L .  X:  INIEGER 

Test  for the  equal i ty  of two list  If( :L) is ( : L ) : T R U E .  

Ext rac t  the  first e lement  of a l ist  The First of ( : X _L) is ( X : ) : TRUE. 

Test  the  flrst  e lement  of a l i s t  I f thef l rs t  of ( : X _ L )  is ( : X ) : T R U E .  

Unused variables are  a convenient  m e a n s  of imposing  type cons t r a in t s  over the  

values .  We i l lus t ra te  the  use  of STARLET a s  a logic p rogramming  language  on a complete  

p rog ram tha t  r e a d s  a n  in teger  l ist ,  bu i lds  it  in m e m o r y  and  o u t p u t s  it  in  the  reverse  

order .  

Example 2 :  $ I n p u t 3 4 2  ¢xalputs 2 4 3 5  

ROOT : Reverse, next llne. 

$ "next line", "read integeV', "write integer", "write charac" are external functions $ 

AFFIXES : L:  e rnp ty ;XL.  X: INIEGER. CAR : CHARAC. 

NOTIONS : 

Reverse / L, LI : Read (L), Reversed list of (L) in front of ( empty ) is (L1), Wptte (L1). 

Reversed list of ( : X L )  infront  of (:Ll)is ( L 2 : ) :  

Reversed list of (L)  i n f r o n t o f ( X L 1 ) i s ( L 2 ) .  

Reversed list of { : e m p t y )  infront  o f ( : L ) i s  ( L : ) : T R U E .  
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?Read (X L : ) : read integer (X), write integer (X}, write charac (' '),Read (L). 

Read( empty  : ) : next l lne .  

Write( : X L ) : write integer (X), write charac  (' ' ) ,  Write (L). 

Write { : empty ) : TRUE. 

111.3 A translator written in STARLET/GL 

We i l l u s t r a t e  STARLET p r o g r a m m i n g  wi th  t h e  e x a m p l e  of  e x p r e s s i o n  

t rans la t ion .  We ob ta in  a l ist  of identif iers  a n d  t hen  a n  a s s ignmen t  ins t ruc t ion  where  the  

r i gh thand  side is  a n  infLx express ion  ( input  device is  the  s t a n d a r d  one). 

We pa r se  it a n d  check  for the  identif ier  use  : each  u sed  ident if ier  m u s t  have been  

declared once only. Then  the t ree represen ta t ion  of a correct  "program" is  t r ans la t ed  into 

i ts  postf ix r ep resen ta t ion  on  the  s t a n d a r d  ou tpu t  device. If the  express ion  t u r n s  out  to be 

cons t an t  (each of i ts  ope rands  is  a constant) ,  the  t r ans l a to r  eva lua tes  it. 

Example 3: $ input "a, b, c; c := b+c*a" outputs "c b c a * + =" $ 

$ input "a ; a := 2 + 3 * 4"outputs "a 14 =" $ 

R(xYr : t ranslate .  

WITH : lexico. $ 

AFFIXES : 

absy  : absy  op absy  ; cste ; name. 

cste: INTEGER. 

name  : STRING. 

op : p lus  ; mnl t  ; ass. 

symbtab  : name  symbtab  ; emp ty .  

VARIABLES : symbtab .  

This program uses notions from this module : needed EOF, error, 

symbol, iden~ constant... $ 

$ Abstract syntax $ 

$.4 symbol table is a list of identifiers $ 

$ Global variable to contain the symbol table $ 

NOTIONS : 

t r ans l a t e  : ini t(symbtab],  declara t ions ,  i n s t r u c t i o n ,  needed  EOF. 

dec la ra t ions  : identif ier  l i s t ,  needed  symbol  (";"]. 

ident i f ier  l ist  : one v a r i a b l e ,  o thers  identifiers.  

o thers  identif iers:  symbol  C,"), identif ier  l ist  ; TRUE. 

one variable  / name  I : 

i den t (name l} ,  check  and  enter  {name 1) in  (symbtab) gives (symbtab) ; 

error("ident if ier  expected").  

ins t ruct ion / absy  : ass ignment  (absy),  postfix (absy).  
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assignment{ name I ass  absyl  : ) / absy : 

variable reference (nameD, needed symbol{":="}, 

expression(absy ) ,  optimization of (absy) gives {absyl). 

?variable reference (name:) : ident(name) ,  check  for (name) .  

variable reference ("foo":): error("identffier expected"). 

$ 'foo" replaces the missing ident~er in symbtab $ 

expression (absyl:} / absy2 : te rm (absy2), rest of expression (absy2,absyl) .  

?rest  of expression (: absy, absyl:)  / absy2 : 

symb{"+"), term{absy2), rest  of expression (absy plus  absy2,absyl) .  

rest  of expression ( : absy,absy : } : TRUE. 

t e rm(absy : ) / absy l :  factor(absyl) ,  rest  of te rm (absyl ,absy).  

?rest  of te rm (:absyl,absy:} / absy2 : 

symb("*"), factor(absy2), rest  of te rm (absyl  mul t  absy2,absy) o 

rest of term ( : absy ,  absy :) : TRUE. 

?factor(cste : ): cons tant  (cste). 

?factor(absy : ): symb("("), expression (absy), needed symbol (")"). 

?factor{name : }: variable reference (name). 

factor (0:} : error ("operand is needed"). 

postfix(: este ): write integer (cste). 

postfix(: name) : write string (name). 

postfix(: a b s y l  op absy) : posffix(absyl),  postfix(absy), write op (op). 

write op (: plus) : write string (" + "). 

write op (: mult) : write string (" * "). 

write op (: ass) :  write string ( " =  "). 

$ Optimization $ 

?optimizat ion of {:absy) gives (absyl:} : ff expression {absy) is cons tan t  its value is {absyl). 

optimization of ( : absy  ) gives ( absy  : ) : TRUE. 

?if expression (: absy l  ..op absy2 } is constant  its value is { absy30 : } / absy l0 ,  absy20 : 

ff expression {absyl} is constant  its value is ( a b s y l 0  ) ,  

ff expression (absy2} is constant  its value is ( absy20 }, 

eval (absyl0,  op, absy20,  absy30). 

ff expression (: cste) is constant  its value is { cste : ) : TRUE. 

?eval (: absy l ,  : plus, : absy2, cste : } : add (cstel,cste2,cste). 

?eval (: absy l ,  : mult, : absy2, cste : ) : mul  (estel,cste2,cste}. 
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$ Symbol table management $ 

in l t (empty :) : TRUE. 

?check  and  enter  (: name) in (: symbtab) gives (symbtab : ) : 

look for  (name) in  ( s y m b t a b ) ,  error("identifier a l r eady  declared").  

check and enter  (: name) in (: symbtab) gives ( name  symbtab  :) : TRUE. 

look for (: name) in ( : name  _symbtab) : TRUE. 

? look for (: name) in  (: _name1 symbtab)  : look for (name) in  ( symbtab) .  

check for (: name) : look for (name) in (symbtab) ; error("identifier not  declared"). 

IV STARLET/GL f o r  grammatical  debugging 

Opt imiza t ions  cons is t  of cu t t ing  use le s s  p ieces  of the  genera ted  program.  Dur ing  

th i s  p rocess ,  t he  t r a n s l a t i o n  of some ru le-ca l l  or  some ru l e s  m a y  become imposs ib le .  

Therefore,  op t imlza t ions  c a n  lead  to e r ror  m e s s a g e s  t h a t  he lp  to debug  the  p rog ram 

wi thou t  hav ing  to execute  it. We in t roduce  some of the  op t imiza t ions  m a d e  by  the  

STARLET/GL compi le r  which  a re  re la ted  to g r a m m a t i c a l  proper t ies .  It he lps  e i ther  

language  des ign (grammatical  debugging) or  t r ans l a to r  debugg ing ,  

Firs t ,  for each  rule call, we select only the  ru les  whose pa r ame te r s  are  of the  "right 

type". Note t ha t  wi th  Prolog th i s  canno t  be  done and  t ha t  some ru les  a re  a lways  re jected 

when  t r ied  dur ing  execution.  

Th is  op t im i za t i on  m a y  show logical  e r ro r s  s ince  we only  work  on p r o g r a m s  

which have a t  l eas t  one so lu t ion  : 

if, for a call, not  one single rule  has  good p a r a m e t e r s  ; the  call  will a lways 

fail so tha t  the  rule  t ha t  con ta ins  th is  call  is  a systematic blind alley. 

ff a rule is  never  used  because  of i ts pa ramete r  types  

This  is  checked  a t  compile  t ime by  m e a n s  of affix ru les  pars ing.  To sort  the  ru les  

before r un t ime  enab les  t he  u s e r  to give the  s ame  n a m e  to ru les  which  p rocess  objects  of 

different types  wi thout  u se l e s s  a t t emp t s  at  confrontat ion.  

Example : 

Given the  affix ru les  

LE : e m p t y ; e  LE. 

I ~  : e m p t y ; n  LN. 

e : INTEGER. 

n : STRING 
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write (: e LE) : ... 

write (: n LN) : ... 

write (: empty) : ... 

A : ... write (LE), write (LN) .,. 

In  t ry ing the development  of "A", the first '~r i te"  call will no t  use  the second 

"write" rule while the second will not  use  the first "write" rule. A single rule c a n  be used  to 

process va lues  which are not  of the same type b u t  which share  some s t ruc tu res  (e.g. 

"empty"). The third rule will be used for each of the '~vrlte" call in  the development of '7¢'. 

Static checks ensure  tha t  tree cons t ruc t ion  will always succeed. At r u n  time, in 

the case of tree split, one m u s t  also check tha t  the actual  value for variables  have the 

r ight  s t ruc tures .  Thus ,  for the rule call "write (LE)", there is a tes t  which tells ff the 

s t ructure  of the variable "LE" is "e LE" (the first 'h~rite" rule is tried)) or "empty" (the third 

"write" rule is tried). 

Note t ha t  it may  reveal problems w h e n  the affix ru les  define a n  a mb i guous  

g rammar  [Maluszynski-84] {as the "absy" affix rule in  I~.ample 3). As only one successful  

parse is re ta ined (parse of affix sentent ia l  forms given the afflx rules), one ma y  not  split 

some trees. However, Example 3 implements  a n  u n a m b i g u o u s  t r ans l a t i on  s ince the 

g rammar  which is used  to parse infix expressions is u n a m b i g u o u s  (operator precedence is 

well-defined). 

Secondly, we reject some rules  by checking the context  of a call i.e. the type or 

value cons t r a in t s  fixed by  the previous and  the following calls in  the  development.  It 

enab les  opt imiza t ions  bu t  ff every possibi l i ty  is e l imina ted  it shows tha t  there  are 

logical errors. 

Here we also Fred some errors : a succession of calls may always fail or a rule is no 

longer used because of the context of its calls. 

Example : 

Given the affix rule L : x L ; empty . 

Read (x L : ) :  .... 

Read ( empty : ) : .... 

Write ( : x L )  : .... 

Write ( : empty ) : .... 

Try / L:  Read ( L ) ,  write (L ) .  
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Ins ide  'Try" development ,  ff the  first rule '~ead"  is  a succes s  (resp. the  second), we 

should  t ry  only the  first  rule  WCrite" (resp. the  second). 

The d e c l a r a t i o n s  of the  poss ib le  fa i lure  of the  ru les  (test  rules)  al low ano the r  

opt imizat ion to be m a d e  when  unreachab le  rule cal ls  can  be  cut.  This  can  lead  to ano the r  

logical e r ror  de tec t ion  when  a rule  is a lways un reachab l e  because  of a previous  rule  t ha t  

a lways succeeds  (action rules). 

Lastly,  dataf low checking  is very s t r ic t  in  the  cu r r en t  imp lemen ta t ion  s ince  every 

var iab le  m a y  receive a value .  Global  va r iab les  a re  no t  cons ide red  a s  logical va r i ab le s  : 

they  are  ass igned by  a side-effect and  their  use  is not  checked. 

V Conclusion 

We are  work ing  on a n  efficient i m p l e m e n t a t i o n  of E x t e n d e d  Affix G r a m m a r s  

which  provides  high-level  debug  facfllties (g rammar  debugging) th rough  n u m e r o u s  s ta t ic  

checks .  Previous  expe r imen t s  with a n  a lgor i thmic  i m p l e m e n t a t i o n  of affix g r a m m a r s  

(LET} were  m a d e  a n d  a n d  we a l r e a d y  app rec i a t e  t he  ease  of  u se  of the  STARLET 

predica t ive  i n t e rp re t a t i on  s ince  i t  e l imina tes  m a n y  of the  coding  diff icult ies p rev ious ly  

encounte red .  

We have  few expe r imen ta l  r e su l t s  s ince  STARLET/GL is  c u r r e n t l y  u s e d  in  a 

r e s e a r c h  p r o g r a m  on the  au toma t i c  ana lys i s  of F rench  (3000 l ines,  M. De Brito) or h a s  

been  u sed  for an  exper t  sys t em genera to r  (5000 l ines,  L. Coudouneau) .  Moreover, our  

s t u d e n t s  l ea rn  compil ing techniques  with th is  compiler  compiler  (150 per  year). 

On the  o the r  h a n d ,  we stil l  have a lot of work  with  the  a s soc ia t ed  p rogramming  

tools.  It i n c l u d e s  no t  only  fu r t he r  deve lopmen t s  a n d  m a i n t e n a n c e  on the  PLEIADE 

e n v i r o n m e n t  b u t  a l so  t he  des ign  of new tools  a s  soon  a s  we are  ab le  to  expl ici t  

g r a m m a t i c a l  p r o g r a m m i n g  methodolog ies  {method-dr iven p r o g r a m m i n g  tools}. 
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