
Chapter 1

Constraint-driven co-clustering of
0/1 data

Ruggero G. Pensa
KDDLab, ISTI-CNR, Area della Ricerca di Pisa, I-56124 Pisa, Italy
ruggero.pensa@isti.cnr.it
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Abstract We investigate a co-clustering framework (i.e., a method that
provides a partition of objects and a linked partition of features) for bi-
nary data sets. So far, constrained co-clustering has been seldomly explored.
First, we consider straightforward extensions of the classical instance level
constraints (Must-link, Cannot-link) to express relationships on both objects
and features. Furthermore, we study constraints that exploit sequential or-
ders on objects and/or features. The idea is that we can specify whether
the extracted co-clusters should involve or not contiguous elements (Interval
and non-Interval constraints). Instead of designing constraint processing in-
tegration within a co-clustering scheme, we propose a Local-to-Global (L2G)
framework. It consists in postprocessing a collection of (constrained) local
patterns that have been computed beforehand (e.g., closed feature sets and
their supporting sets of objects) to build a global pattern like a co-clustering.
Roughly speaking, the algorithmic scheme is a K-Means-like approach that
groups the local patterns. We show that it is possible to push local counter-
parts of the global constraints on the co-clusters during the local pattern min-
ing phase itself. A large part of the chapter is dedicated to experiments that
demonstrate the added-value of our approach. Considering both synthetic
data and real gene expression data sets, we discuss the use of constraints to
get not only more stable but also more relevant co-clusters.
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1.1 Introduction

Many data mining techniques have been proposed to support knowledge
discovery from large 0/1 data sets, i.e., Boolean matrices whose rows denote
objects and columns denote Boolean attributes recording object properties.
Tab. 1.1(a) gives an example of such a matrix where, for instance, object t2
only satisfies properties g2 and g5. In fact, many application domains provide
such data sets: beside data sets that are intrinsically Boolean, they can be
applied on categorical or numerical data sets as well. Indeed, a categorical
feature that can have n different values can be transformed into n Boolean
attributes, and continuous attributes can also be transformed into a set of
Boolean attributes using discretization methods [14]. Just to name a few
interesting application domains, objects can denote commercial transactions,
WWW sessions, digital documents, or biological samples. Properties could
then denote purchased items (i.e., a product belongs to the transaction or
not), WWW resources (i.e., a resource has been uploaded or not during a
session), keywords (i.e., a keyword is considered as a descriptor or not for the
content of a document), or gene expression properties (e.g., a given gene has
been found over-expressed or not in a biological sample).

Exploratory data analysis processes often make use of clustering techniques.
This can be used to look for groups of similar objects according to some met-
rics. Properties can be considered as well. Many methods can provide rele-
vant partitions on one dimension (say objects or properties) but they suffer
from the lack of explicit cluster characterization, i.e., what are the proper-
ties that are shared by the objects of a same cluster. This has motivated
the research on conceptual clustering and, among others, the design of co-
clustering algorithms [24, 13, 9, 3]. The goal of a co-clustering task is to clus-
ter simultaneously the rows and columns of the data matrix such that there
is a one to one mapping that associates to a cluster of objects the cluster of
properties that are mostly supported by these objects. An example of a co-
clustering result on the data of Tab. 1.1(a) would be {{{t1, t3, t4}, {g1, g3, g4}},
{{t2, t5, t6, t7}, {g2, g5}}}. The first co-cluster indicates that the objects from
cluster {t1, t3, t4} almost always share properties from cluster {g1, g3, g4}.
Also, properties in {g2, g5} are characteristic of objects in {t2, t5, t6, t7} (see
Tab. 1.1(b)).

In the context of, for instance, WWW usage mining, this kind of pattern
may help to identify communities, i.e., groups of users whose sessions give
rise to almost the same uploading behavior. This is also useful in the context
of gene expression data analysis where such co-clusters may provide putative
synexpression groups of genes [5].

As clustering algorithms, co-clustering methods heuristically optimize an
objective function (e.g., Goodman-Kruskal’s τ coefficient [24] or the loss of
mutual information [13]), the search space being too large to enable exhaustive
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TABLE 1.1: A Boolean matrix r (a) and its associated
co-clustering (b).

g1 g2 g3 g4 g5 g1 g3 g4 g2 g5

t1 1 0 1 1 0 t1 1 1 1 0 0
t2 0 1 0 0 1 t3 1 1 1 0 0
t3 1 0 1 1 0 t4 0 1 1 0 0
t4 0 0 1 1 0 t2 0 0 0 1 1
t5 1 1 0 0 1 t5 1 0 0 1 1
t6 0 1 0 0 1 t6 0 0 0 1 1
t7 0 0 0 0 1 t7 0 0 0 0 1

(a) (b)

computation. In such a context, it is mandatory to take advantage of any
available information to guide the search. Thus, a timely challenge is to
support constrained co-clustering, where user-defined constraints can be used
to reduce the search space. .

Our contribution is twofold. First, we are not aware of previous work
related to constrained co-clustering. Not only we extend the use of Must-
link and Cannot-link constraints [27, 16, 4, 11, 10, 26] within a co-clustering
task, but also we introduce new constraints that are useful when the object
and/or property dimensions are ordered (e.g., when properties are measured at
several time steps giving rise to objects that are ordered w.r.t. time). Thanks
to our Interval and Non-interval constraints, it is possible to specify whether
a collection of co-clusters has to be consistent w.r.t. such an a priori order. In
this chapter, we will briefly describe an application of such constraints for gene
expression data analysis. Our second contribution concerns the framework for
computing the co-clusters. We recently proposed a generic method to compute
co-clusters based on collections of local patterns which capture locally strong
associations [21]. Such local patterns are obtained thanks to exhaustive search
algorithms. Then, co-clustering is performed as an heuristic combination of
these patterns using a k-means approach. We have shown that using this
2-phases process leads to more robust co-clusters. We now exploit this idea
within a constrained co-clustering setting, and we show that the local pattern
identification step can guide the computation of constrained co-clusters. This
chapter extends the preliminary results from [22]. Not only we provide more
technical details on constraint processing but also the experimental validation
has been considerably extended.

The rest of the paper is organized as follows. Section 1.2 provides the
problem setting, including the definition of the considered constraints. Sec-
tion 1.3 recalls the framework from [21] and it introduces its extension towards
constrained co-clustering. Section 1.4 concerns our experimental validation,
including applications on real gene expression data sets. Section 1.5 concludes.
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1.2 Problem setting

The Boolean context to be mined is r ⊆ T ×G, where T = {t1, . . . , tm} is a
set of objects and G = {g1, . . . , gn} is a set of Boolean properties. We assume
that rij = 1 if property gj is satisfied by object ti. For the sake of clarity, D
will denote either T or G. Let us now define the co-clustering task.

DEFINITION 1.1 Co-clustering task A co-clustering task delivers
a partition ΠT of k clusters of objects {πT 1, . . . , πT k} and a partition ΠG
of k clusters of properties {πG1, . . . , πGk} with a bijective mapping denoted σ
between both partitions:

σ : ΠT → ΠG

The computed co-clustering, denoted Π, is composed of k co-clusters {π1, . . . , πk}
with πi = (πT i, σ(πT i)).

Example 1.1
An example of co-clustering is presented in Tab. 1.1(b). It is composed of the
two partitions:

ΠT = {{t1, t3, t4}, {t2, t5, t6, t7}}
ΠG = {{g1, g3, g4}, {g2, g5}}

The associated function σ is defined as:

σ ({t1, t3, t4}) = {g1, g3, g4}
σ ({t2, t5, t6, t7}) = {g2, g5}

In such a framework, it makes sense to apply the standard Must-link and
Cannot-link constraints on both object and property sets.

DEFINITION 1.2 Extended Must-link and Cannot-link constraints
An extended Must-link constraint, denoted ce=(xi, xj ,Π,D), specifies that two
elements xi and xj of D have to belong to a same co-cluster from Π. An
extended Cannot-link constraint, denoted ce 6=(xi, xj , Π,D), specifies that xi

and xj can not belong to the same co-cluster of Π.

Assume now there exists a function s : D → R that associates a real value
s(xi) to each element xi ∈ D. For instance, s(xi) can be a temporal or spatial
measure related to xi. For instance, in microarray data, where T is a set of
DNA chips corresponding to biological experiments, and G is a set of genes,
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s(ti) might be the time stamp for the experiment ti. Such a function s enables
to define an order ¹ on dimension D where xi ¹ xj iff s(xi) ≤ s(xj). For
the sake of simplicity, we consider that if a function s exists on dimension D,
then all its elements xi are ordered. We can now introduce constraints that
exploit an ordered set D.

DEFINITION 1.3 Interval and Non-interval constraints Given an
order (¹) on D, an Interval constraint on this dimension, denoted cint(D, Π),
enforces each cluster on D to be an interval: ∀` = 1 . . . k, if xi, xj ∈ πD`

then ∀x s.t. xi ¹ x ¹ xj, x ∈ πD`. A Non-interval constraint denoted
cnon−int(D,Π) specifies that clusters on D should not be intervals: ∀` = 1 . . . k,
∃xi, xj ∈ πD`, ∃x ∈ D s.t. xi ¹ x ¹ xj, x 6∈ πD`.

An Interval constraints can be used to find clusters which are continuous
intervals, while a Non-interval constraints can be used to find clusters which
are not intervals.

Example 1.2

Suppose that G is ordered such that g1 ¹ g2 ¹ g3 ¹ g4 ¹ g5. Partition ΠG =
{{g1, g3, g4}, {g2, g5}} does not satisfy cint(D,ΠG) since g2 and g5 belongs to
πG2 but g3 (g2 ¹ g3 ¹ g5) does not belong to πG2.

cnon−int(D, ΠG) is an example of a satisfied constraint.

One of the typical application domains which motivates the use of these
constraints is temporal gene expression data analysis: objects are a given
organism considered at several developmental steps and properties encode,
for instance, the over-expression of genes. In such a context (see, e.g., [2, 8]),
using Interval constraints enables to capture conjunctions of properties which
characterize any single developmental period, while the use of Non-interval
constraints might point out interactions which are somehow time-independent.

1.3 A constrained co-clustering algorithms based on a
Local-to-Global approach

In [21], we have proposed a generic co-clustering framework. The main idea
is to compute a co-clustering not starting from the raw data but from local
patterns that capture locally strong associations between sets of objects and
sets of properties. Let us first consider the Local-to-Global (L2G) aspect of
our proposal. We use the simple formalization introduced in [12] to support
the discussion.
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1.3.1 A Local-to-Global approach

Many local pattern mining techniques (e.g., looking for frequent patterns,
data dependencies) have been studied extensively the last decade (see, e.g.,
[20] for a recent survey on local pattern detection issues). Many mining tasks
can be formalized as the computation of the theory Th(L, r, q) = {φ ∈ L |
q(φ, r) is true} where r is the data, L is a language of patterns, and q(φ, r)
denotes the selection predicate of interesting patterns [19]. One crucial obser-
vation with this simple formalization is that the interestingness of a pattern
can be tested independently of the other patterns (e.g., testing that a pattern
is frequent enough can be done without looking at other solution patterns).
For us, in such a context, it justifies that instances of this framework are called
local pattern mining tasks.

However, many useful mining tasks are looking for models or global patterns
(e.g., classifiers, clusterings) and can be formalized as the computation of sets
of patterns that satisfy constraints. Let us assume that lower case letters such
as φ denote individual patterns and that upper case ones as Φ denote sets of
patterns, a Local-to-Global mining task can be defined by the two following
steps:

1. L = Th(L, r, q)

2. M = Th(f(L), r, p) where f(L) is a transformation of L,

Th(f(L), r, p) = {Φ ⊆ f(L) | p(Φ, r) is true}

In this context, the constraint q is said to be local as it applies on indi-
vidual pattern, whereas the constraint p is said global as it has to hold for
a set of patterns. The popular association-based classification approach [17]
is an obvious example of a L2G scheme: standard association rules are the
local patterns (i.e., local constraints are the minimal frequency and minimal
confidence constraints). The various proposals for building classifiers from
them are then based on different global constraints on these collections of
association rules. Clustering can be considered within a L2G framework as
well.

1.3.2 The CDK-Means proposal

The CDK-Means algorithm is our L2G proposal for co-clustering 0/1 data.
It is closely related to subspace clustering and it exploits the many results that
are available for local pattern extraction from large Boolean matrices.

Our language of patterns is the language of bi-sets and it is denoted B:

B ≡ {(T,G) | T ⊆ T and G ⊆ G}
A bi-set b = (T, G) is thus a couple made of a set of objects and a set of

properties. Clearly, many interesting classes of bi-sets can be computed from a
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data set r given a selection predicate q. For instance, the selection predicate
can enforce that the set of properties is a frequent itemset because the set
of objects that share these properties has a size greater than a user-defined
threshold [1]. We can use a more selective predicate and, for instance, restrict
the bi-sets to the ones whose sets of properties are closed sets. In that case,
we are looking for the well known formal concepts (see, e.g., [7]). Many other
interesting types of bi-sets could be considered, e.g., support envelopes [25] or
the dense and relevant bi-sets [6]. Discussing the pros and cons of each type of
local pattern is however out of the scope of such a chapter. Let us notice that
we find in the literature (see the survey in [18]) various local pattern mining
tasks that are named bi-clustering tasks as soon as both dimensions (objects
and properties) are involved. In our case, we prefer to talk about a clustering
only in the context of unsupervised classification and thus the computation of
collections of clusters, not collections of local patterns whose interestingness
can be evaluated based on individuals only.

The CDK-Means algorithm introduced in [21] computes

Th(B, r, pCDK) = {Φ ⊆ B | pCDK(Φ, r) is true}
with Φ being a partition ΠB of a bi-set collection B (ΠB : B → {1 · · · k}) and

pCDK(ΠB , r) ≡ ΠB = argmin
∑

bj∈B

d(bj , µΠB(bj))

The constraint pCDK is the one used in the K-Means algorithm with d being
a distance and µΠB(bj) being the centroid of the cluster that contains the bi-set
bj . Let us now introduce some notations to formally define these quantities.

First, we describe each bi-set bj by its characteristic vector as follows:

< tj >,< gj >=< tj1, . . . , tjm >,< gj1, . . . , gjn >

where tji = 1 if ti ∈ Tj (0 otherwise) and gji = 1 if gi ∈ Gj (0 otherwise).
We are looking for k clusters of bi-sets {πB1, . . . , πBk} (πB` ⊆ B). Let

us define the centroid of a cluster of bi-sets πB` as µ` =< τ` >,< γ` >=<
τ`1, . . . , τ`m >, < γ`1, . . . , γ`n > where τ and γ are the usual centroid compo-
nents:

τ`i =
1

|πB`|
∑

bj∈πB`

tji, γ`i =
1

|πB`|
∑

bj∈πB`

gji

We now define the distance used between a bi-set bj and a centroid µ`:

d(bj , µ`) =
1
2

( |tj ∪ τ `| − |tj ∩ τ `|
|tj ∪ τ `| +

|gj ∪ γ`| − |gj ∩ γ`|
|gj ∪ γ`|

)

It is the mean of the weighted symmetrical differences of the set components.
We assume |tj ∩ τ `| =

∑m
i=1 ai

tji+τ`i

2 and |tj ∪ τ `| =
∑m

i=1
tji+τ`i

2 where
ai = 1 if tji · τ`i 6= 0, 0 otherwise. Intuitively, the intersection is equal to the
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TABLE 1.2: CDK-Means pseudo-code.
CDK-Means (r is a Boolean context, B is a collection of bi-sets in r, k is
the number of clusters, MI is the maximal iteration number.)

1. Let µ1 . . . µk be the initial cluster centroids. it := 0.

2. Repeat

(a) For each bi-set bj ∈ B, assign it to cluster πB` s.t. d(bj , µ`) is
minimal.

(b) For each cluster πB`, compute τ` and γ`.

(c) it := it + 1.

3. Until centroids are unchanged or it = MI.

4. For each ti ∈ T (resp. gi ∈ G), assign it to the first cluster πT ` (resp.
πG`) s.t. τ`i = 1

|πB`|
∑

bj∈πB`
tji (resp. γ`i = 1

|πB`|
∑

bj∈πB`
gji) is

maximum.

5. Return {πT 1 . . . πT k} and {πG1 . . . πGk}

mean between the number of common objects and the sum of their centroid
weights. The union is the mean between the number of objects and the sum
of their centroid weights. These measures are defined similarly on properties.

Objects ti (resp. properties gi) are assigned to one of the k clusters (say
cluster `) for which τ`i (resp. γ`i) is maximum. We can enable that a number
of objects and/or properties belong to more than one cluster by controlling
the size of the overlapping part of each cluster. Thanks to our definition of
cluster membership determined by the values of τ ` and γ`, we just need to
adapt the cluster assignment step given some user-defined thresholds.

A simplified algorithm CDK-Means is given in Tab. 1.2: for the sake of
brevity, we do not consider further cluster overlapping. It computes a co-
clustering of r given a collection of bi-sets B extracted from r beforehand
(e.g., collections of formal concepts). CDK-Means can provide the example
co-clustering given in Section 1.

1.3.3 Constraint-driven co-clustering

Let us now consider the L2G framework when some of the co-clustering
constraints defined in Section 1.2 have been specified (i.e., beside the specifi-
cation of the number of co-clusters and the implicit optimization constraint
on the objective function, the global constraint might also contain Must-link,
Cannot-link, Interval or Non-interval constraints).

The key idea is that, to compute a co-clustering that satisfies the specified
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global constraints, we can exploit local counterparts of them, i.e., constraints
that apply on local patterns (here, bi-sets) to select only part of them. For
some constraints (e.g., Must-link), the satisfaction of the local counterpart is
sufficient to guarantee that the co-clusters satisfy the global constraint. In
such cases, we say that the local constraint is automatically propagated to
the global level. For other constraints, it happens that a new global con-
straint must be used in addition to the local counterpart. In such cases how-
ever, we consider new global constraints that are easier to check. Notice also
that, given the state-of-the-art, evaluating local constraints can be extremely
more efficient than checking for global ones, and quite efficient algorithms are
available to compute bi-sets that satisfy, e.g., monotonic constraints (see Sec-
tion 1.3.4). For instance, we use here D-Miner [7] to computate collections of
formal concepts that satisfy size constraints on both object and property sets.
Let us now provide more details on how we manage to process the different
constraints.

• The local counterpart of a Must-link constraint ce=(xi, xj ,Π,D) consists
in selecting bi-sets that contains either both xi and xj or none of them:

qMust−link(b, r) ≡ (xi ∈ b ∧ xj ∈ b) ∨ ((xi /∈ b ∧ xj /∈ b)

As the coefficients of each object/property in each centroid µ` depends
on the number of bi-sets containing this object/property, the coefficients
corresponding to xi and xj are equal in each centroid. Consequently, xi

and xj are assigned to the same cluster and thus the local counterpart of
the Must-link constraint is automatically propagated to the computed
co-clusters.

• A necessary condition for the extended Cannot-link constraint, is that
B does not contain any bi-set violating the constraint. Indeed, the
local counterpart of a Cannot-link constraint ce 6=(xi, xj ,Π,D) consists
in selecting bi-sets that do not contain both xi and xj :

qCannot−link(b, r) ≡ ¬(xi ∈ b ∧ xj ∈ b)

This condition does not ensure that the global Cannot-link constraint is
satisfied in the final co-clustering (it is not automatically propagated)
and a further control is needed. In particular, in Step (2a) of CDK-
Means algorithm (see Tab. 1.2), before adding a bi-set containing xi

(resp. xj) to a cluster, we should ensure that no bi-set containing xj

(resp. xi) has been assigned to it earlier.

• For the Interval and Non-interval constraints, it is possible to directly
use these constraints on each bi-set independently, i.e., as a local con-
straint. However, for the Interval constraint, it might be too stringent
in practice (i.e., too few bi-sets would satisfy the constraint), whereas
for the Non-interval one, it will not be selective enough (almost all the
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bi-sets would satisfy the constraint). For these reasons, we propose to
relax the Interval constraint and to strengthen the Non-interval con-
straints as local counterparts of the global ones. These two new local
constraints, respectively called Max-gap and Min-gap, are now defined.

DEFINITION 1.4 Max-gap and Min-gap constraints Given
an order on D, a Max-gap constraint on D, denoted cmaxgap(D, σ, b), is
satisfied by b w.r.t threshold σ iff, for each pair of consecutive elements
xi, xj ∈ b s.t. xi ≺ xj, |{xh 6∈ b, with xi ≺ xh ≺ xj}| ≤ σ. A Min-
gap constraint, denoted cmingap(D, σ, b), is satisfied by b w.r.t threshold
σ iff, for each pair of consecutive elements xi, xj ∈ b s.t. xi ≺ xj,
|{xh 6∈ b, with xi ≺ xh ≺ xj}| ≥ σ.

Max-gap is used as a local counterpart of the Interval constraint and
Min-gap as the Non-interval one. Clearly, these local constraints do
not ensure the satisfaction of cint and cnon−int, but it supports the
computation of more relevant co-clusters (see the experimental section).

Example 1.3
Suppose that G is ordered such that g1 ¹ g2 ¹ g3 ¹ g4 ¹ g5. The bi-set
b = {{t1, t3, t4}, {g1, g3, g4}} satisfies cmaxgap(G, 1, b) but not cmaxgap(G, 0, b).
It does not satisfy cmingap(G, 1, b).

The modified version of the algorithm is sketched in Tab. 1.3 (modifications
in bold). It uses the same greedy strategy than COP-KMeans [27]. A slight
difference is that, as we process local patterns (bi-sets), then it concerns only
the sets of objects and properties that belong to the local patterns.

1.3.4 Discussion on constraint processing

To summarize, we can classify the constraints w.r.t. propagation issues.

1. Constraints that are automatically propagated from the local level to
the global one (extended Must-link).

2. Constraints that need for a control to be propagated from the local level
to the global one (extended Cannot-link).

3. Constraint whose propagation to the local level to the global one is not
ensured (Interval and Non-interval constraints).

Even if we cannot ensure the ultimate satisfaction for the Interval and Non-
interval constraints, we show in our experimental validation (see Section 1.4)
that using Max-gap and Min-gap local constraints enables to produce clusters
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TABLE 1.3: Constrained CDK-Means pseudo-code.
CDK-Means (r is a Boolean context, B is a collection of local patterns in
r, k is the number of clusters, MI is the maximal iteration number, C a
set of constraints.)

1. Let B′ ⊆ B be the sub-collection satisfying all the local coun-
terparts of the constraints in C (extended Must-link and
Cannot-link, Max-gap and Min-gap).

2. Let µ1 . . . µk be the initial cluster centroids. it := 0.

3. Repeat

(a) For each local pattern bj ∈ B′, assign it to cluster πB` s.t.
d(bj , µ`) is minimum and no Cannot-link constraint is vio-
lated.

(b) For each cluster πB`, compute τ` and γ`.

(c) it := it + 1.

4. Until centroids are unchanged or it = MI.

5. For each ti ∈ T (resp. gi ∈ G), assign it to the first cluster πT ` (resp.
πG`) s.t. τ`i (resp. γ`i) is maximum.

6. Return {πT 1 . . . πT k} and {πG1 . . . πGk}

that tend to be intervals. One of the perspectives of this work is clearly
to enforce the propagation of these two constraints by introducing a control
step in the iterative part of the algorithm (as for the extended Cannot-link
constraint).

When a constraint is too selective (too many bi-sets violate such a con-
straint), some objects and/or properties could not be represented in the col-
lection used by our algorithm. The solution of a garbage cluster for each
unclustered object/property is not always possible, specially when they are
involved in Cannot-link constraints. In fact, if a Cannot-link constraint in-
volving xi and xj is not satisfied by any bi-set (i.e., each time a bi-set contains
xi, it also contains xj), the two objects/properties will not be contained in the
final co-clustering. But they cannot be assigned to a garbage co-cluster, since
a Cannot-link constraint prevents this situation. If such a situation happens,
our approach returns no solution. We say that the co-clustering is unfeasible.
Notice that in this work we do not address the problem of the feasibility of
conjunctions of Must-link and Cannot-link constraints (see [11] for a complete
overview of the constraint feasibility problem).
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As discussed earlier, the local counterpart of a global constraint is easier
to check, especially when the local constraint is monotonic w.r.t. some spe-
cialization relation. In such cases, we can use efficient local pattern mining
algorithms. For bi-set mining, we use D-Miner [7] that exploit such con-
straints.

DEFINITION 1.5 D-Miner specialization and monotonicity The
specialization on bi-sets from B used by D-Miner is defined by (T1, G1) ≤
(T2, G2) iff T1 ⊆ T2 and G1 ⊆ G2. A constraint C is said anti-monotonic
w.r.t. ≤ iff ∀α, β ∈ B such that α ≤ β, C(β) ⇒ C(α). C is said monotonic
w.r.t. ≤ iff ∀α, β ∈ B such that α ≤ β, C(α) ⇒ C(β).

D-Miner efficiently exploits both monotonic and anti-monotonic constraints.
Consequently, if the local constraints used are conjunctions or disjunctions of
monotonic constraints, they can be directly pushed during the local pattern
mining step.

Let us now summarize how the local counterparts of the co-clustering con-
straints can be directly used during our bi-set mining step.

• The local counterparts of the extended Must-link and Cannot-link con-
straints require that some elements are included or not in bi-sets (see
qMust−link(b, r) and qCannot−link(b, r) constraints). Such constraints are
monotonic while considering the specialization relation of Definition 1.5.
Consequently, the local counterparts of these constraints can be repre-
sented by a conjunction and/or a disjunction of monotonic constraints
that can be exploited by D-Miner.

• The Min-gap constraint is anti-monotonic. Let b1 = (X1, Y1) and
b2 = (X2, Y2) be two bi-sets s.t. X1 ⊆ X2. If we define Si = {xh 6∈
Xi|xi ≺ xh ≺ xj}, we have S2 ⊆ S1. Consequently, if |S2| ≥ σ, i.e.,
cmaxgap(D, σ, b2) is satisfied, then |S1| ≥ σ and cmaxgap(D, σ, b1) is sat-
isfied as well.

• The Max-gap constraint has no monotonicity properties. Let us con-
sider the Max-gap constraint cmaxgap(D, 1, b) with D = {x1, x2, . . . , xn}.
It is not satisfied by X1 = {x2, x3, x7} but it is satisfied by X2 =
{x2, x3, x5, x7} and one of its subset X0 = {x2, x3}. Therefore, it is nei-
ther monotonic nor anti-monotonic. This constraint is thus checked after
the execution of the bi-set mining algorithm, i.e., in a post-processing
phase.
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1.4 Experimental validation

Let us first introduce some measures which are to be used in our exper-
iments to evaluate the quality of co-clustering results. In the first batch of
experiments, we show the interest in using pairwise constraints on both di-
mensions thanks to an application to a synthetic data set for which standard
and unconstrained co-clustering approach produce unstable results. Then we
apply our framework on two real temporal gene expression data sets to il-
lustrate the added-value of Interval constraints. Finally, we discuss another
application to another gene expression data set to illustrate how the Interval
and Non-interval constraints can be used to supervise a co-clustering task to
discover more stable co-clusters which are more relevant as well.

1.4.1 Evaluation method

A general criterion to evaluate clustering results consists in comparing the
computed partition with a “correct” one. It means that data instances are
already associated to some correct labels and that we want to quantify the
agreement between computed labels and correct ones. A popular measure is
the Rand index which measures the agreement between two partitions of m
elements. If C = {C1 . . . Cs} is our clustering structure and P = {P1 . . . Pt} is
a predefined partition, each pair of data points is either assigned to the same
cluster in both partitions or to different ones. Let a be the number of pairs
belonging to the same cluster of C and to the same cluster of P. Let b be the
number of pairs whose points belong to different clusters of C and to different
clusters of P. The agreement between C and P can be estimated using

Rand(C,P) =
a + b

m · (m− 1)/2

It takes values between 0 and 1 and it is maximized when s = t [23].
To evaluate the added-value of the Interval constraint, we propose to mea-

sure the number of jumps within a partition.

DEFINITION 1.6 Jump number Given D = {x1, . . . , xn} a set of
ordered points and a cluster πD` on these points, we have a jump given a
number ν > 1, if xi ∈ πD`, xi+ν ∈ πD` and ∀h s.t. i < h < i + ν, xh 6∈ πD`.
Let J` be the number of jumps within a cluster πD`. Given a partition ΠD =
{πD1, . . . , πDk}, the jump number measure denoted NJ is then

NJ =
∑

πD`∈ΠD

J`

.



24 Constrained Clustering: Advances in Algorithms, Theory and Applications

If NJ = 0, clusters are intervals. As the Interval constraint is processed as
a soft constraint, we average the NJ measure on a set of clustering instances
(with random initialization) to measure the efficiency of the approach.

We also want to evaluate co-clustering quality by means of an internal cri-
terion. An interesting measure for this purpose is the symmetrical Goodman
and Kruskal’s τ coefficient [15] which evaluates the proportional reduction in
error given by the knowledge of ΠT on the prediction of ΠG and vice versa.
Another measure is the loss in mutual information [13], which is the objective
function that Cocluster tries to minimize. Both coefficients are evaluated
on a contingency table p. Let pij be the frequency of relations between an
object of a cluster πT i and a property of a cluster πGj . Furthermore, we have
pi. =

∑
j pij and p.j =

∑
i pij . The Goodman-Kruskal’s τ coefficient is defined

as follows:

τ =
1
2

∑
i

∑
j (pij − pi.p.j)

2 pi.+p.j

pi.p.j

1− 1
2

∑
i p2

i. − 1
2

∑
j p2

.j

The mutual information, which computes the amount of information ΠT
contains about ΠG is:

I(ΠT , ΠG) =
∑

i

∑

j

pij log
pij

pi.p.j

Then, given two different co-clusterings (ΠT , ΠG) and (Π̂T , Π̂G), the loss in
mutual information is given by:

I(ΠT , ΠG)− I(Π̂T , Π̂G)

Finally, to evaluate the performances of our method, we use a comparison
coefficient which is the mean of the products between the number of needed
iterations and the number of processed bi-sets, i.e.:

CC =
∑N

i |B| ·NIi

N

where, N is the number of executions, |B| is the size of the local pattern
collection computed beforehand, and NIi is the number of iterations for the
i-th execution.

1.4.2 Using extended Must-link and Cannot-link constraints

Let us use a synthetic data set which intrinsically leads to unstable cluster-
ing. The goal is here to show how using Must-link and Cannot-link constraints
can support the discovery of different co-clustering structures. This synthetic
data set is some kind of idealized abstraction of temporal gene expression data
(see Fig. 1.1 where the gray zones denote true values in the matrix). In this
data set, the expression level of 20 genes changes during the 105 time points
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FIGURE 1.1: A synthetic data set.

of the sampling period. It is easy to capture some cyclic behavior, since the
first and the last time periods gives rise to similar patterns. Such a situation
should produce quite unstable clustering results.

We have extracted a collection of formal concepts using D-Miner [7]. This
collection (containing 85 formal concepts) has been used for all the exper-
iments described in this section. When using the unconstrained version of
CDK-Means or Cocluster [13] (with k = 3), the results clearly point
out two kinds of co-clustering results (see Fig. 1.2(a) and Fig. 1.2(b) for
co-clusterings a and b). The second co-clustering (Fig. 1.2(b)) emphasizes
some cyclic behavior, since the first and the last groups of samples are in the
same co-cluster. Such a structure is clearly missing in the first co-clustering
(Fig. 1.2(a)). Notice that all the results produced by the random instances
of the two algorithms are similar to one of these two co-clusterings. Tab. 1.4
provide the various results concerning the τ and I values, and the Rand co-
efficient values computed w.r.t. the two co-clusterings for both objects and
properties.

Let us assume that we want to supervise the co-clustering process to dis-
cover co-clustering a or co-clustering b. For this purpose, we can use some
extended Must-link or/and Cannot-link constraints to control the search. If
we look at the two targeted co-clusterings, there are objects which always be-
long to the same cluster, while other objects and properties “change” clusters
when moving from co-clustering a to co-clustering b. For instance, objects 1 to
21 are always in the same cluster (we say they are “stable”), while objects 22
to 35 change cluster in the second co-clustering (we say they are “unstable”).
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(a) (b)

FIGURE 1.2: Two co-clusterings for the synthetic data from Fig. 1.1.

We list all possible pairs which are composed by one object belonging to the
“stable” set and one object belonging to the “unstable” set. We construct a
similar list for properties. Then, we pick a fixed number of pairs randomly and
we compare the class labels (which are inferred from co-clusterings a and a)
of each object (resp. property) inside the co-clustering we want to discover.
If the objects (resp. properties) share the same class label, we construct a
Must-link constraint. Otherwise, we construct a Cannot-link constraint. In
our experiments, we have computed the results for 100 randomly generated
sets of 1 and 2 constraints for both objects and properties. For each set of
constraints, we executed 25 randomly initialized instances of CDK-Means.
Results are in Tab. 1.5 (for sets of 1 constraint) and Tab. 1.6 (for sets of 2
constraints). All the average Rand indexes are 1% to 9% better than the same
indexes obtained by the unconstrained versions, for both our CDK-Means
algorithm or Cocluster. It works for generated constraints over both the
set of objects and the set of properties. Results are also slightly more stable
w.r.t. unconstrained instances. It shows that even a few number of constraints
enables to obtain a co-clustering which is more stable w.r.t. initialization but
also more relevant w.r.t. user expectation.

User-defined constraints can be derived from domain knowledge. Looking
at the two co-clusterings (see Fig. 1.2(a) and Fig. 1.2(b), we see that the
first object is clustered together with the first property in b but not in a.
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TABLE 1.4: Co-clustering synthetic
data without constraints (25 trials).

Cocluster CDK-Means

τ 0.29±0.03 0.34±0.02
I 0.90±0.07 0.96±0.02
a-Rand(T ) 0.74±0.07 0.78±0.11
a-Rand(G) 0.74±0.08 0.77±0.11
b-Rand(T ) 0.75±0.07 0.77±0.10
b-Rand(G) 0.74±0.08 0.78±0.11

Then, we can introduce an extended Cannot-link constraint between the first
object and the first property to drive CDK-Means towards the first type of
co-clustering. In this case, the average Rand indexes w.r.t. to a, computed on
both objects and properties, are both equal to 0.83 (i.e., 8% better than the
one obtained by unconstrained co-clustering). Now, if we add an extended
Cannot-link constraint between the last object and the last property, then the
two scores rise respectively to 0.87 and 0.88.

Notice however that our framework has to be considered as an unsupervised
method that is useful when we lack from detailed information about the data.
When a large number of constraints is introduced, some conjunctions can
remove an important number of local patterns. In this case, some objects and
properties might disappear from the co-clustering process.

1.4.3 Time interval cluster discovery

We have studied the impact of the Interval constraint in two microarray data
sets called malaria and drosophila. The first one [8] concerns the transcriptome
of the intraerythrocytic developmental cycle of Plasmodium Falciparum, i.e.,
a causative agent of human malaria. The data provide the expression profile
of 3 719 genes in 46 biological samples. Each sample corresponds to a time
point of the developmental cycle: it begins with merozoite invasion of the red
blood cells, and it is divided into three main phases, the ring, trophozoite and
schizont stages. The second data set is described in [2]. It concerns the gene
expression of the Drosophila melanogaster during its life cycle. The expression
levels of 3 944 genes are evaluated for 57 sequential time periods divided into
embryonic, larval and pupal stages. The numerical gene expression data from
[8] has been discretized by using one of the encoding methods described in
[5]: for each gene g, we assigned the Boolean value 1 to those samples whose
expression level was greater than X% of its max expression level. X was set
to 25% for malaria and 35% for drosophila. The two matrices have been mined
for formal concepts by using D-Miner [7].

We applied Cocluster algorithm [13] and the unconstrained version of
CDK-Means with k = 3 to identify the three developmental stages. Since the
initialization of both algorithms is randomized, we average all the measures
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TABLE 1.5: Co-clustering synthetic data (1 pair-wise
constraint, 100 random constraint sets, 25 trials).

A B

T G T G
τ 0.32±0.03 0.33±0.03 0.33±0.03 0.30±0.02
I 0.97±0.04 0.96±0.03 0.97±0.03 0.96±0.03
Rand(T ) 0.81±0.10 0.80±0.10 0.83±0.10 0.80±0.09
Rand(G) 0.78±0.10 0.78±0.10 0.84±0.11 0.80±0.08

TABLE 1.6: Co-clustering synthetic data (2 pair-wise
constraint, 100 random constraint sets, 25 trials).

A B

T G T G
τ 0.31±0.05 0.31±0.04 0.31±0.05 0.29±0.02
I 0.98±0.05 0.98±0.05 0.99±0.06 0.96±0.03
Rand(T ) 0.82±0.10 0.80±0.10 0.83±0.10 0.80±0.08
Rand(G) 0.78±0.10 0.77±0.10 0.82±0.11 0.81±0.06

obtained after 100 executions. We have measured the NJ coefficient, the Rand
index w.r.t. to the correct partition that has been inferred from the literature,
and the Goodman-Kruskal’s coefficient to evaluate the co-clustering quality.
Results are in Tab. 1.7.

There is a significant difference between the two data sets. In malaria, the
average number of jumps (NJ) is already small with both algorithms. In par-
ticular, if Cocluster enables to get a good Goodman-Kruskal’s coefficient,
the co-clusters obtained by CDK-Means are more consistent with the bio-
logical knowledge (i.e., the partition has a higher Rand index). We notice
that the number of comparisons is rather high. What we expect here, is that
a constrained approach can obtain the same clustering results by using less
computing resources. Instead, for drosophila, both algorithms fail in finding
the correct partitioning w.r.t. the available biological knowledge. The num-
ber of jumps is in both cases high, while the Rand index is relatively low. In
this case we expect to obtain better results with our constrained co-clustering
approach.

We have defined the Interval constraint on the biological condition dimen-
sion. Different levels of the Max-gap constraint have been applied and we have
studied the impact on the final partition by measuring the NJ coefficient, the
Rand index, the Goodman-Kruskal’s coefficient, and the average number of
comparisons. Results are in Fig. 1.3 and Fig. 1.4, respectively for malaria and
drosophila.

For malaria, the best results in terms of number of jumps (see Fig. 1.3(a))
are for a Max-gap constraint of 1 and 2. When Max-gap=2, the Rand index
(Fig. 1.3(b)) is higher, and the Goodman-Kruskal’s coefficient (Fig. 1.3(c)) is
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TABLE 1.7: Co-clustering without interval constraints (100
trials).

Cocluster CDK-Means
Dataset NJ Rand τS NJ Rand τS CC

malaria 0.85 0.761 0.494 0.3 0.877 0.438 3.063M
drosophila 6.39 0.692 0.513 4.29 0.601 0.424 1.652M

maximum (and similar to the one obtained without constraint, see Tab. 1.7).
An important observation is that the average comparison numbers (Fig. 1.3(d))
for these values of the Max-gap constraint are sensibly reduced (by a factor
of 8, for Max-gap=3, up to 28 for Max-gap=2). When Max-gap is set to 1,
the average comparison number is about 1/1000 of the one obtained without
specifying any constraint. When Max-gap is 5, we obtain a rather bad NJ

index, but the Rand coefficient is max (and similar to the one obtained with-
out constraint). An optimal choice in this context seems to be Max-gap=2:
it sensibly reduces the computational time, and it produces good clustering
results. We notice also that our definition of the Max-gap constraint works
for open time intervals. By setting an open time Interval constraint, we are
always able to obtain a circular sequence of intervals, i.e., capturing typical
developmental life cycles.

For drosophila, the improvements are more obvious. Unconstrained cluster-
ing results have shown that good partitions (with a high Goodman-Kruskal’s
coefficient) contain a lot of jumps. With a Max-gap constraint of 2 or 3, we
can sensibly reduce the number of jumps (Fig. 1.4(a)) and it increases the
quality of the partition (Fig. 1.4(b)) w.r.t. the available biological knowledge.
The fact that for these Max-gap values, the Goodman-Kruskal’s coefficient is
minimum (Fig. 1.4(c)), indicates that the partition which better satisfies the
constraints is not necessarily the “best” one. Moreover, the average number of
comparisons (Fig. 1.4(d)) is reduced by 60 (Max-gap=2) and 30 (Max-gap=3).

1.4.3.1 Using Non-interval constraint

We have shown how Interval constraints can support the discovery of time
interval clusters. Within some data (e.g., malaria), an unconstrained approach
already gives perfect intervals, and then the question is: is it possible to
discover different gene associations which hold between time points belonging
to different intervals? To answer this question, we applied the Non-interval
constraint to the gene expression data concerning adult time samples of the
drosophila melanogaster life cycle. Indeed, time samples from t1 to t10 concern
the first days of male adult individual life cycle while time samples from t11
to t20 concern female individuals.

When we apply CDK-Means (with k = 2) without specifying any con-
straint, the two intervals t1, . . . , t10 and t11, . . . , t20 are well identified in the
100 executions. Then, we obtain almost exactly a co-cluster of males and
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(a) (b)

(c) (d)

FIGURE 1.3: Jump number (a), Rand index (b), Goodman-Kruskal’s co-
efficient (c) and comparison coefficient (d) on malaria.

a co-cluster of females and the average jump number is low. Moreover, the
Goodman-Kruskal’s coefficient and the loss in mutual information appears
rather stable (see cdk:unconst result on Tab. 1.8). We computed these coef-
ficients on the 100 co-clusterings returned by Cocluster and we noticed a
significant instability (see Tab. 1.8). It seems that there are two optimum
points for which the two measures are distant. For 56 runs, we got a high τ
coefficient (mean 0.5605), for the other 44 ones the τ coefficient was sensibly
smaller (mean 0.1156). If we consider each group of results separately, the
standard deviation is significantly smaller. It means that these two results are
two local optima for the Cocluster heuristics. Furthermore, the first group
of solutions reflects the male and female repartition of the individuals, while
in the second group each cluster contains both male and female individuals.
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(a) (b)

(c) (d)

FIGURE 1.4: Jump number (a), Rand index (b), Goodman-Kruskal’s co-
efficient (c) and comparison coefficient (d) on drosophila.

The average Rand value is 0.69 and the standard deviation is 23% of the
mean. Also the jump number has a high and unstable value. Then, we tried
to specify a Min-gap constraint on the collection of formal concepts to enforce
the discovery of non Interval clusters. Even for small values of the Min-gap
constraint, the average Rand value is high, while the standard deviation is
lower (12% of the mean for Min-gap=2, 4% for min-gap=3) w.r.t. Coclus-
ter results. The cdk:nonint row in Tab. 1.8 summarizes the more stable (w.r.t.
the τ coefficient) results obtained with Min-gap=10. We also tested whether
an Interval constraint could influence the stability of the co-clustering. Set-
ting Max-gap=5 enables to get more stable co-clusterings where the Rand
index is always equal to one (see cdk:int results in Tab. 1.8). These results
show that, by specifying an Interval or a Non-interval constraint, the user gets
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TABLE 1.8: Clustering adult drosophila individuals.
τ Rand NJ

bi-part. inst. mean std.dev mean std.dev mean std.dev

co:MF 56 0.5605 0.0381 0.82 0.06 0.25 0.61
co:mixed 44 0.1156 0.0166 0.51 0.02 7.52 2.07
co:overall 100 0.3648 0.2240 0.69 0.16 3.45 3.90
cdk:unconst 100 0.4819 0.0594 0.88 0.04 1.00 0.20
cdk:int 100 0.4609 0.0347 1.00 0.00 0.00 0.00
cdk:nonint 100 0.1262 0.0761 0.53 0.04 6.94 1.93

some control on the shape of the co-clusters. An algorithm like Cocluster
has sometimes found co-clusters where the sex of the individual is the major
discriminative parameter. At some moment, it has captured something else.
Our thesis is that a biologist might be able to have a kind of supervision on
such a process. Moreover, using constraints also speeds up the co-clustering
construction because we have to process a reduced collection of local patterns.

When using a co-clustering approach, it seems natural to consider both
constraints on objects and on properties. In this section we have shown that
even a few number of Must-link and Cannot-link constraints can support the
computation of more stable co-clusterings. When a bijection exists between
a partition of objects and a partition of properties (as for CDK-Means), it
makes sense to set constraints which involve both objects and properties. In
our framework, this extension is quite natural, and it opens new possibilities
in popular applications such as document analysis and gene expression data
analysis. We have also illustrated the added-value of Interval constraints. In
gene expression data analysis, we often have temporal information about data.
With standard (co-)clustering algorithms, there are no simple possibilities
to exploit this temporal information. With a systematic approach in two
different gene expression data, we were able to improve clustering results and
to propose ways to control the clustering results based on domain knowledge.
Here again, we can exploit such facilities for across many other application
domains.

1.5 Conclusion

Co-clustering is an interesting conceptual clustering approach. Improving
co-cluster relevancy remains a difficult task in real-life exploratory data anal-
ysis processes. First, it is hard to capture subjective interestingness aspects,
e.g., the analyst’s expectation given her/his domain knowledge. Next, when
these expectations can be declaratively specified, using them during the com-
putational process is challenging. We have shown that it was possible to use a
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simple but powerful generic co-clustering framework based on local patterns.
Several types of constraints on co-clusters have been considered, including
new constraints when at least one of the dimensions is ordered. Applications
on temporal gene expression data analysis have been sketched. Many other
applications rely on ordered data analysis and might benefit from such con-
strained co-clustering approaches. Notice also that extended Must-link and
Cannot-link constraints can be handled efficiently by our framework. A short-
term perspective is to formalize the properties of the global constraints (i.e.,
constraints on co-clusterings) which can be, more or less automatically, trans-
formed into local level constraints. Looking for propagation strategies that
might enable to enforce Interval constraints on every computed co-cluster is
also on our research agenda.
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