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2 Université de Lyon, CNRS, Univ. Lyon1, LIRIS UMR5205,

69622 Villeurbanne, France
marc.plantevit@univ-lyon1.fr

Abstract. We propose to mine the topology of a large attributed graph
by finding regularities among vertex descriptors. Such descriptors are of
two types: (1) the vertex attributes that convey the information of the
vertices themselves and (2) some topological properties used to describe
the connectivity of the vertices. These descriptors are mostly of numerical
or ordinal types and their similarity can be captured by quantifying
their co-variation. Mining topological patterns relies on frequent pattern
mining and graph topology analysis to reveal the links that exist between
the relation encoded by the graph and the vertex attributes. In this
paper, we study the network of authors who have cooperated at some
time with Katharina Morik according to the data available in DBLP
database. This is a nice occasion for formalizing different questions that
can be considered when an attributed graph describes both a type of
interaction and node descriptors.
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1 Introduction

A timely challenge concerns enriched graph mining to support knowledge discov-
ery. We recently proposed the topological pattern domain [25], a kind of gradual
pattern that extends the rank-correlated sets from [6] to support attributed
graph analysis. In such graphs, the binary relation encoded by the graph is
enriched by vertex numerical attributes. However, existing methods that sup-
port the discovery of local patterns in graphs mainly focus on the topological
structure of the patterns, by extracting specific subgraphs while ignoring the
vertex attributes (cliques [21], quasi-cliques [20,29]), or compute frequent rela-
tionships between vertex attribute values (frequent subgraphs in a collection of
graphs [16] or in a single graph [5]), while ignoring the topological status of the
vertices within the whole graph, e.g., the vertex connectivity or centrality. The
same limitation holds for the methods proposed in [18,24,27,28], which identify
sets of vertices that have similar attribute values and that are close neighbors.
Such approaches only focus on a local neighborhood of the vertices and do not
consider the connectivity of the vertex in the whole graph.
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To investigate the relations that may exist between the position of the vertices
within the graph and their attribute values, we proposed to extract topological
patterns that are sets made of vertex attributes and topological measures. Such
measures quantify the topological status of each vertex within the graph. Some
of these measures are based on the close neighborhood of the vertices (e.g., the
vertex degree), while others describe the connectivity of a vertex by considering
its relationship with all other vertices (e.g., the centrality measures). Combining
such microscopic and macroscopic properties characterizes the connectivity of
the vertices and it may be a sound basis to explain why some vertices have
similar attribute values.

Topological patterns of interest are composed of vertex properties that behave
similarly over the vertices of the graph. The similarity among vertex properties
can be captured by quantifying their correlation, which may be positive or neg-
ative. To that end, we extend the Kendall rank correlation coefficient to any
number of variables, as well as to negative correlation. Whereas this measure
is rather theoretically sounded, its evaluation is computationally demanding as
it requires to consider all vertex pairs to estimate the proportion of which that
supports the pattern. The well known optimization techniques that are used for
evaluating the correlation between two variables (and that leads to a theoreti-
cal complexity in O(n log n)) do not extend directly when a higher number of
variables is considered. We tackled this issue and proposed several optimiza-
tion and pruning strategies that makes it possible to use this approach on large
graphs. We also introduced several interestingness measures of topological pat-
terns that differ by the pairs of vertices that are considered while evaluating the
correlation between descriptors: (1) While all the vertex pairs are considered,
patterns that are true all over the graph are extracted; (2) When including only
the vertex pairs that are in a specific order regarding to a selected numerical
or ordinal attribute reveals the topological patterns that emerge with respect to
this attribute; (3) Examining the vertex pairs that are connected in the graph
makes it possible to identify patterns that are structurally correlated to the rela-
tionship encoded by the graph. Besides, we designed an operator that identifies
the top k representative vertices of a topological pattern.

In this paper, we study the network of authors who have cooperated at
some time with Katharina Morik according to the data available in the DBLP
database. Doing so, we emphasize powerful mechanisms for detecting new types
of local patterns in interaction graphs. Indeed, we formalize different questions
that can be considered when an attributed graph describes both interactions
and vertex descriptors. This has not yet been studied systematically. It enables
also to discuss the need for new post-processing techniques that exploit both the
patterns and the graph data. Finally, detecting local patterns in various data
types has motivated a lot of research in our group and writing a chapter at this
Festschrift occasion is also an implied reference to the domain that gave us the
first occasion to spend time and work with our smart colleague [22].
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2 Related Work

Graph mining is an active topic in Data Mining. In the literature, there exist
two main trends to analyze graphs. On the one hand, graphs are studied at
a macroscopic level by considering statistical graph properties (e.g., diameter,
degree distribution) [2,7]. On the other hand, sophisticated graph properties are
discovered by using a local pattern mining approach. Recent approaches mine
attributed graphs which convey more information. In such graphs, information
is locally available on vertices by means of attribute values. As argued by Moser
et al. [23], “often features and edges contain complementary information, i.e.,
neither the relationships can be derived from the feature vectors nor vice versa”.

Attributed graphs are extensively studied by means of clustering techniques
(see e.g., [1,8,13,15,19,32]) whereas pattern mining techniques in such graphs
have been less investigated. The pioneering work [23] proposes a method to find
dense homogeneous subgraphs (i.e., subgraphs whose vertices share a large set
of attributes). Similar to this work, Günnemann et al. [14] propose a method
based on subspace clustering and dense subgraph mining to extract non redun-
dant subgraphs that are homogenous with respect to vertex attributes. Silva
et al. [28] extract pairs of dense subgraphs and Boolean attribute sets such
that the Boolean attributes are strongly associated with the dense subgraphs.
In [24], the authors propose the task of finding the collections of homogeneous
k-clique percolated components (i.e., components made of overlapping cliques
sharing a common set of true valued attributes) in Boolean attributed graphs.
Another approach is presented in [18], where a larger neighborhood is consid-
ered. This pattern type relies on a relaxation of the accurate structure constraint
on subgraphs. Roughly speaking, they propose a probabilistic approach to both
construct the neighborhood of a vertex and propagate information into this
neighborhood. Following the same motivation, Sese et al. [26] extract (not nec-
essarily dense) subgraphs with common itemsets. Note that these approaches use
a single type of topological information based on the neighborhood of the ver-
tices. Furthermore, they do not handle numerical attributes as in our proposal.
However, global statistical analysis [11] of a single graph considers several mea-
sures to describe the graph topology, but does not benefit from vertex attributes.
Besides, current local pattern mining techniques on attributed graphs do not con-
sider numerical attributes nor macroscopic topological properties. To the best
of our knowledge, our paper represents a first attempt to combine both micro-
scopic and macroscopic analysis on graphs by means of (emerging) topological
pattern mining. Indeed, several approaches aim at building global models from
local patterns [12], but none of them tries to combine information from different
graph granularity levels.

Co-variation patterns are also known as gradual patterns [9] or rank-
correlated itemsets [6]. Do et al. [9] use a support measure based on the length
of the longest path between ordered objects. This measure has some drawbacks
w.r.t. computational and semantics aspects. Calders et al. [6] introduce a support
measure based on the Kendall’s τ statistical measure. However, their approach
is not defined to simultaneously discover up and down co-variation patterns as
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does our approach. Another novelty of our work is the definition of other inter-
estingness measures to capture emerging co-variations. Finally, this work is also
the first attempt to use co-variation pattern mining in attributed graphs.

3 Topological Vertex Properties

Let us consider a non-directed attributed graph G = (V,E, L), where V is a set of
n vertices, E a set of m edges, and L = {l1, · · · , lp} a set of p numerical or ordinal
attributes associated with each vertex of V . Important properties of the vertices
are encoded by the edges of the graph. From this relation, we can compute some
topological properties that synthesize the role played by each vertex in the graph.
The topological properties we are interested in range from a microscopic level –
those that described a vertex based on its direct neighborhood – to a macroscopic
level – those that characterize a vertex by considering its relationship to all other
vertices in the graph. Statistical distributions of these properties are generally
used to depict large graphs (see, e.g., [2,17]). We propose here to use them as
vertex descriptors.

3.1 Microscopic Properties

Let us consider here only three topological properties to describe the direct
neighborhood of a vertex v:

– The degree of v is the number of edges incident to v (deg(v) = |{u ∈ V, {u, v} ∈
E}|). When normalized by the maximum number of edges a vertex can have,
it is called the degree centrality coefficient: Degree(v) = deg(v)

n−1
.

– The clustering coefficient evaluates the connectivity of the neighbors of v and
thus its local density:

Clust(v) =
2|{{u,w} ∈ E, {u, v} ∈ E ∧ {v, w} ∈ E}|

deg(v)(deg(v) − 1)

3.2 Mesoscopic Property

We also consider the position of each vertex to the center of the graph, that is
the distance – the number of edges of a shortest path – to a peculiar vertex.
In the following, we call this property the Morik number(v) as we consider
the relative position of the vertices to the vertex that corresponds to Katharina
Morik.

3.3 Macroscopic Properties

We consider five macroscopic topological properties to characterize a vertex while
taking into account its connectivity to all other vertices of the graph.
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– The relative importance of vertices in a graph can be obtained through cen-
trality measures [11]. Closeness centrality Close(v) is defined as the inverse of
the average distance between v and all other vertices that are reachable from
it. The distance between two vertices is defined as the number of edges of the
shortest path between them: Close(v) = n∑

u∈V |shortest path(u,v)| .
– The betweenness centrality Betw(v) of v is equal to the number of times

a vertex appears on a shortest path in the graph. It is evaluated by first
computing all the shortest paths between every pair of vertices, and then
counting the number of times a vertex appears on these paths: Betw(v) =
∑

u,w 1shortest path(u,w)(v).
– The eigenvector centrality measure (EgVect) favours vertices that are con-

nected to vertices with high eigenvector centrality. This recursive definition can
be expressed by the following eigenvector equation Ax = λx which is solved
by the eigenvector x associated to the largest eigenvalue λ of the adjacency
matrix A of the graph.

– The PageRank index [4] is based on a random walk on the vertices of the
graph, where the probability to go from one vertex to another is modelled as
a Markov chain in which the states are vertices and the transition probabil-
ities are computed based on the edges of the graph. This index reflects the
probability that the random walk ends at the vertex itself:

PageRank(v) = α
∑

u

1E({u, v})
PageRank(u)

deg(u)
+

1 − α

n

where the parameter α is the probability that a random jump to vertex v
occurs.

– Network constraint [30] evaluates to what extent person’s contacts are redun-
dant

Network(v) =
∑

u|(u,v)∈E
[

1
deg(v)

+
∑

w|(u,w) and (v,w)∈E
(

1
deg(v)

1
deg(u)

)]2

When its value is low, the contacts are rather disconnected, whereas when it
is high, the contacts are close or strongly tied.

These 9 topological properties characterizes the graph relationship encoded
by E. These properties, along with the set of vertex attributes L, constitutes
the set of vertex descriptors D used in this paper.

4 Topological Patterns

Let us now consider topological patterns as a set of vertex attributes and topo-
logical properties that behave similarly over a large part of the vertices of the
graph. We assume that all topological properties and vertex attributes are of
numerical or ordinal type, and we propose to capture their similarity by quanti-
fying their co-variation over the vertices of the graph. Topological patterns are



Local Pattern Detection in Attributed Graphs 173

defined as P = {D1
s1 , · · · ,D�

s�}, where Dj , j = 1 . . . �, is a vertex descriptor
from D and sj ∈ {+,−} is its co-variation sign. In the following, we propose three
pattern interestingness measures that differ in the pairs of vertices considered
for their evaluation.

4.1 Topological Patterns over the Whole Graph

Several signed vertex descriptors co-vary if the orders induced by each of them
on the set of vertices are consistent. This consistency is evaluated by the number
of vertex pairs ordered the same way by all descriptors. The number of such pairs
constitutes the so-called support of the pattern. This measure can be seen as a
generalization of the Kendall’s τ measure. When we consider all possible vertex
pairs, this interestingness measure is defined as follows:

Definition 1 (Suppall). The support of a topological pattern P over all possible
pairs of vertices is:

Suppall(P ) =
|{(u, v) ∈ V 2 | ∀D

sj

j ∈ P : Dj(u) �sj
Dj(v)}|

(
n
2

)

where �sj
denotes < when sj is equal to +, and �sj

denotes > when sj is equal
to −.

This measure gives the number of vertex pairs (u, v) such that u is strictly
lower than v on all descriptors with sign +, and u is strictly higher than v on
descriptors with sign −.

As mentioned in [6], Suppall is an anti-monotonic measure for positively
signed descriptors. This is still true when considering negatively signed ones:
adding D−

l+1 to a pattern P leads to a support lower than or equal to that of
P since the pairs (u, v) that support P must also satisfy Dl+1(u) > Dl+1(v).
Besides, when adding descriptors with negative sign, the support of some pat-
terns can be deduced from others, the latter referred to as symmetrical patterns.

Property 1 (Support of symmetrical patterns). Let P be a topological pattern
and P be its symmetrical, that is, ∀D

sj

j ∈ P , D
sj

j ∈ P , with sj = {+,−}\{sj}. If
a pair (u, v) of V 2 contributes to the support of P , then the pair (v, u) contributes
to the support of P . Thus, we have Suppall(P ) = Suppall(P ).

Topological patterns and their symmetrical patterns are semantically equiv-
alent. To avoid the irrelevant computation of duplicate topological patterns, we
exploit Property 1 and enforce the first descriptor of a pattern P to be signed
by +.

Mining frequent topological patterns consists in computing all sets of signed
descriptors P , but not their symmetrical ones, such that Suppall(P ) ≥ minsup,
where minsup is a user-defined minimum support threshold.
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4.2 Other Interestingness Measures

To identify most interesting topological patterns, we propose to give to the end-
user the possibility of guiding its data mining process by querying the patterns
with respect to their correlation with the relationship encoded by the graph
or with a selected descriptor. Therefore, we revisit the notion of emerging pat-
terns [10] by identifying the patterns whose support is significantly greater (i.e.,
according to a growth-rate threshold) in a specific subset of vertex pairs than in
the remaining ones. This subset can be defined in different ways according to the
end-user’s motivations: either it is defined by the vertex pairs that are ordered
with respect to a selected descriptor called the class descriptor, or it is equal to
E, the set of edges. Whereas the former highlights the correlation of a pattern
with the class descriptor, the latter enables to characterize the importance of
the graph structure within the support of the topological pattern.

Emerging Patterns w.r.t. a Selected Descriptor. Let us consider a selected
descriptor C ∈ D and a sign r ∈ {+,−}. The set of pairs of vertices that are
ordered by Cr is

CCr = {(u, v) ∈ V 2 | C(u) �r C(v)}
The support measure based on the vertex pairs of CCr is defined below.

Definition 2 (SuppCr). The support of a topological pattern P over Cr is:

SuppCr (P ) =
|{(u, v) ∈ CCr | ∀D

sj

j ∈ P : Dj(u) �sj
Dj(v)}|

|CCr |
Analogously, the support of P over the pairs of vertices that do not belong to
CCr is denoted SuppCr (P ). To evaluate the impact of Cr on the support of P ,
we consider the growth rate of the support of P over the partition of vertex pairs
{CCr , CCr}: Gr(P,Cr) = SuppCr (P )

SuppCr (P )

If Gr(P,Cr) is greater than a minimum growth-rate threshold, then P is
referred to as emerging with respect to Cr. If Gr(P,Cr) ≈ 1, P is as frequent in
CCr as in CCr . If gr(P,Cr) � 1, P is much more frequent in CCr than in CCr . For
example, Gr({h+, i−,Betw+}, t+) = 2.31. The intuition behind this definition is
to identify the topological patterns that are mostly supported by pairs of vertices
that are also ordered by the selected descriptor.

Emerging Patterns w.r.t. the Graph Structure. It is interesting to mea-
sure if the graph structure plays an important role in the support of a topological
pattern P . To this end, we define a similar support measure based on pairs that
belongs to E, the set of edges of the graph:

CE = {(u, v) ∈ V 2 | {u, v} ∈ E}
Based on this set of pairs, we define the support of P as:
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Definition 3 (SuppE). The support of a topological pattern P over the pairs
of vertices that are linked in G is:

SuppE(P ) =
2|{(u, v) ∈ CE | ∀D

sj

j ∈ P : Dj(u) �sj
Dj(v)}|

|CE |

The maximum value of the numerator is |CE |
2 since: (1) if (u, v) ∈ CE then

(v, u) ∈ CE , and (2) it is not possible that ∀D
sj

j ∈ P , Dj(u) �sj
Dj(v) and

Dj(v)�sj
Dj(u) at the same time. For instance, the pattern {h+, i−} is supported

by all the twenty possible pairs that are edges, its support is thus equal to 1.
The support of P over the pairs of vertices that do not belong to CE is denoted
SuppE(P ).

As before, to evaluate the impact of E on the support of P , we consider
the growth rate of the support of P over the partition of vertex pairs {CE , CE}:
Gr(P,E) = SuppE(P )

Supp
E
(P )

.

Gr(P,E) enables to assess the impact of the graph structure on the pattern.
Therefore, ifGr(P,E) � 1,P is said tobe structurally correlated. IfGr(P,E) � 1,
the graph structure tends to inhibit the support of P .

5 Top k Representative Vertices

The user may be interested in identifying the vertices that are the most rep-
resentative of a given topological pattern, thus enabling the projection of the
patterns back into the graph. For example, the representative vertices of the
pattern {t+, Betw−} would be researchers with a relatively large number of
IEEE TKDE papers and a low betweenness centrality measure.

We denote by S(P ) the set of vertex pairs (u, v) that constitutes the support
of a topological pattern P :

S(P ) = {(u, v) ∈ V 2 | ∀D
sj

j ∈ P : Dj(u) �sj
Dj(v)}

which forms, with V , a directed graph GP = (V, S(P )). This graph satisfies the
following property.

Property 2. The graph GP = (V, S(P )) is transitive and acyclic.

Proof. Let us consider (u, v) ∈ V 2 and (v, w) ∈ V 2 such that, ∀D
sj

j ∈ P :
Dj(u)�sj

Dj(v) and Dj(v)�sj
Dj(w). Thus, Dj(u)�sj

Dj(w) and (u,w) ∈ S(P ).
Therefore, GP is transitive.

As �s ∈ {<,>}, it stands for a strict inequality. Thus, if (u, v) ∈ S(P ),
(v, u) 	∈ S(P ). Furthermore, as GP is transitive, if there exists a path between
u and v, there is also an arc (u, v) ∈ S(P ). Therefore, (v, u) 	∈ S(P ) and we can
conclude that GP is acyclic.

As GP is acyclic, it admits a topological ordering of its vertices, which is, in
the general case, not unique. The top k representative vertices of a topological



176 J.-F. Boulicaut et al.

pattern P are identified on the basis of such a topological ordering of V and
are the k last vertices with respect to this ordering. Considering that an arc
(u, v) ∈ S(P ) is such that v dominates u on P , this vertex set contains the most
dominant vertices on P . The top k representative vertices of P can be easily
identified by ordering the vertices by their incoming degree.

Although the support of topological patterns is an anti-monotonic measure,
its computation is quadratic in the number of vertices of the graph which pre-
vents the extraction of such patterns on large graph using classical pattern min-
ing algorithms. To overcome this problem, we proposed in [25] an upper bound
on this measure that can be computed linearly in the number of vertices. This
upper bound takes advantages of the presence of ties in the descriptor values. By
pre-computing some indexes on the descriptors, almost all non frequent patterns
are pruned without computing their support when the minimum support is high.

The computation of topological patterns is done in an ECLAT-based way
[31]. More precisely, all the subsets of a pattern P are always evaluated before
P itself. In this way, by storing all frequent patterns in the hash-tree M, the
anti-monotonic frequency constraint is fully-checked on the fly. We compute the
upper bound on the support to prune non-promising topological patterns. When
this upper bound is greater than the minimum threshold, the exact support is
computed. Another optimization is based on the deduction of the support from
already evaluated patterns: A pair of vertices that supports a pattern P can
support pattern PA+ or pattern PA−, or none of them. Thus, another upper
bound on Suppall(PA−) is Suppall(P )−Suppall(PA+). Note that these patterns
have already been considered before the evaluation of PA−. So, to be stringent,
we bound the support by taking the minimum between this value and the upper
bound. When computing the support of the pattern, the top k representative
vertices are also identified.

6 Studying Katharina Morik’s Network

In the following, we propose to use TopGraphMiner to study the scientific co-
authorship network of Katharina Morik. After presenting the attributed graph
we generate from the DBLP digital library1, we provide qualitative results that
show the implication of Katharina in the machine learning community.

6.1 Katharina Morik’s Co-authorship Network

The co-authorship graph is built from the DBLP digital library. Regarding
Katharina’s bibliography, we select all the conference venues and journals in
which Katharina has at least one DBLP entry2. We gather all the publications
in these conference venues and journals since their foundation, and derived a
graph where the vertices stand for the authors and edges link two authors who

1 http://dblp.uni-trier.de/.
2 http://www.dblp.org/search/index.php?query=author:katharina morik.

http://dblp.uni-trier.de/
http://www.dblp.org/search/index.php?query=author:katharina_morik
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co-authored at least one paper in this corpus. To each vertex, we associate the
number of publications in each of these 53 selected conferences or journals as
vertex properties. We then removed isolated vertices, that is to say, authors who
has no co-author in the selected publications. The resulting attributed graphs
involves 81 222 vertices and 466 152 undirected edges. Notice that, even if this
attributed graph is generated based on Katharina’s publications, her co-authors
only represent 0.1% of the vertices of the whole graph, while the vertices whose
distance to Katharina is at most 2 represent less than 2% of the whole set of
vertices. The average Morik number is 4.05 and 4033 authors have no path to
Katharina (infinite Morik number). There are 1428 connected components.

Figure 1 presents this co-authorship graph restricted to the authors that are
at most at a distance of 2 from Katharina and that have a degree value greater
than 20. Applying the community detection Chinese Whisper algorithm [3], we
obtain 68 communities whose most salient are represented on the figure. The pur-
ple community, that gathers 177 authors including Katharina, is very dense (1096
edges). It brings together well identified researchers in data mining, machine
learning and data bases. The other main communities are labeled on the graph.
Our goal is to analyse this graph with regard to several questions:

– Are there any interesting patterns among publications?

Fig. 1. Research domains associated to Katharina’s co-authors. (Color figure online)
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Table 1. Emerging patterns w.r.t. morik number−.

Pattern Top 20

IJCAI+, KI+, GWAI+,
Informatik Spektrum+, morik number−

Katharina Morik, Wolfgang
Wahlster, Bernhard Nebel,
Thomas Christaller, Wolfgang
Hoeppner, Jörg H. Siekmann,
Günther Görz, Frank Puppe,
Udo Hahn, Hans-Hellmut Nagel,
Franz Baader, Christopher
Habel, Bernd Neumann, Ulrich
Furbach, Joachim Hertzberg

IJCAI+, ICML+, Machine Learning+,
Knowl. Inf. Syst.+,
Data Min. Knowl. Discov.+,
morik number−

Katharina Morik, Wray L.
Buntine, Kristian Kersting,
Floriana Esposito, Xindong Wu,
Eamonn J. Keogh, Zhi-Hua
Zhou, Siegfried Nijssen, Hiroshi
Motoda, João Gama, Jie Tang,
Salvatore J. Stolfo, Dacheng
Tao, Michael J. Pazzani, Wei
Liu, Chris H. Q. Ding, Tao Li,
Bin Li

– Are there interesting trends between some authors’ publications and topolog-
ical properties?

– What about Katharina’s role in this graph? Can we characterize the proximity
to Katharina in terms of co-authorship?

6.2 Most Emerging Pattern with Respect to Morik Number

Table 1 presents two interesting patterns that strongly emerge with the Morik
number. The first pattern gathers 4 conferences that are positively signed and
the Morik number that is negatively signed: The more authors are close to
Katharina, the more they publish in IJCAI as well as in three other German
conferences (KI - Künstliche Intelligenz, GWAI - German workshop on artificial
intelligence and Informatik Spektrum) Notice that GWAI changes its name to
KI in 1993. The top 20 supporting authors gathers the German researchers in
Artificial Intelligence. They are close to Katharina who is wellknown in the AI
community research, and she also actively contributes to the animation of her
national community.

The second pattern presented in Table 1 gathers the major conference venues
and journals in Artificial Intelligence, Data Mining and Machine Learning. The
top 20 supporting authors are all well established researchers in these research
areas.

The first pattern with the Morik number positively signed is presented in
Table 2. It gathers the conference ICASSP in signal processing that is positively
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Table 2. Emerging pattern w.r.t. morik number+.

Pattern Top 20

ICASSP+, IJCAI−, KR−, KI−,
morik number+

Gyula Hermann, Victor Lazzarini, Joseph
Timoney, Fred Kitson, Manuel Duarte
Ortigueira, Abbas Mohammadi, Riwal
Lefort, Jean-Marc Boucher, Artur
Przelaskowski, Kenichi Miyamoto, Emiru
Tsunoo, Olaf Schreiner, Murtaza Taj, Salim
Chitroub, Saptarshi Das, Ales Procházka,
Amrane Houacine, Yasuyuki Ichihashi,
Pablo Javier Alsina, Valeri Mladenov

Table 3. Emerging patterns w.r.t. Morik number that mix vertex and topological
attributes.

Pattern Top 20

ICASSP+, IJCAI−, Degree−,
Closeness−, Betweennes−,
NetworkConstraint+,
morik number+

Jacob Ninan, Marc Beacken, Hinrich R.
Martens, Jyun-Jie Wang, William H. Haas,
J. G. Cook, Lawrence J. Ziomek, José R.
Nombela, T. J. Edwards, Judith G.
Claassen, Shigekatsu Irie, Alberto R.
Calero, Takaaki Ueda, Hisham Hassanein,
Peter Strobach, Liubomire G. Iordanov, N.
A. M. Verhoeckx, Guy R. L. Sohie, Sultan
Mahmood, Matt Townsend

KI+, Degree+, Closeness+,
NetworkConstraint−,
morik number−

Bernhard Nebel, Katharina Morik, Deborah L.
McGuinness, Mark A. Musen, Rudi Studer,
Steffen Staab, Hans W. Guesgen, Bamshad
Mobasher, Simon Parsons, Thorsten
Joachims, Alex Waibel, Kristian Kersting,
Matthias Jarke, Manuela M. Veloso,
Wolfgang Nejdl, Alfred Kobsa, Virginia
Dignum, Alessandro Saffiotti, Hans
Uszkoreit, Antonio Krüger

signed and 3 conferences in Machine Learning that are negatively signed: The
farther the authors from Katharina, the more they published at ICASSP and
the less they contribute to AI conferences IJCAI, KI and KR (Principles of
knowledge representation and reasoning). The support of this pattern is rather
low.

The most emerging patterns w.r.t. Morik number that mix vertex and topo-
logical attributes are presented in Table 3. The first pattern is similar to the pat-
tern of Table 2 and the additional topological attributes corroborate the eccen-
tricity of the pattern relative to the graph. The second pattern brings together
confirmed researchers in artificial intelligence and machine learning, who have
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Table 4. Emerging patterns involving the French-speaking data mining conference
EGC.

Pattern Top 20

EGC+,
Data Min. Knowl. Discov.+,
morik number−

Katharina Morik, Bart Goethals, Céline
Robardet, Didier Dubois, Michèle Sebag, Luc
De Raedt, Mohammed Javeed Zaki, Einoshin
Suzuki, Heikki Mannila, Jian Pei, Élisa
Fromont, Toon Calders, Adriana Prado, Gilles
Venturini, Szymon Jaroszewicz, João Gama,
Alice Marascu, Osmar R. Zäıane, Pascal
Poncelet, Jean-François Boulicaut

EGC+, Knowl. Inf. Syst.+,
Data Min. Knowl. Discov.+,
morik number−

Katharina Morik, Bart Goethals, João Gama,
Mohammed Javeed Zaki, Jian Pei, Heikki
Mannila, Osmar R. Zäıane, Toon Calders,
Szymon Jaroszewicz, Einoshin Suzuki, Pascal
Poncelet, Christophe Rigotti, Jean-François
Boulicaut, Marie-Christine Rousset,
Maguelonne Teisseire, Florent Masseglia,
Gregory Piatetsky-Shapiro

EGC+, Knowl. Inf. Syst.+,
morik number−

Katharina Morik, Bart Goethals, Fosca Giannotti,
Mohand-Said Hacid, Toon Calders, Mohammed
Javeed Zaki, Osmar R. Zäıane, Heikki Mannila,
João Gama, Dominique Laurent, Jian Pei,
Szymon Jaroszewicz, Einoshin Suzuki, Patrick
Gallinari, David Genest, Mohand Boughanem,
François Scharffe, Marc Plantevit, Laure
Berti-Equille, Zbigniew W. Ras

published at Künstliche Intelligenz. They are very central in the graph and their
neighborhood is not so much connected.

6.3 Where Are We in Katharina’s Network? An Interactive
Exploration of the Patterns

After considering the patterns that maximize the growth rate w.r.t. Morik num-
ber, we now look for patterns supported by the authors of this paper. Many of
these patterns involve the French-speaking conference EGC (see Table 4) and
journals in data mining. This is due to the fact that Katharina gave a keynote
at EGC in 2009. The top 20 supporting authors are either French or prestigious
invited speakers at this conference.

The first pattern of Table 5 can be interpreted thanks to a Dagstuhl seminar
organized by Katharina called Local Pattern Detection. The goal of this seminar
was to bring together prominent European researchers in the field of local pat-
tern discovery. The Data Mining and Knowledge Discovery journal is the most
important one that publishes results in that area. The second one is around
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Table 5. Patterns related to Dagstuhl seminars.

Pattern Top 20

LocalPatternDetection+,
Data Min. Knowl. Discov.+,
morik number−

Katharina Morik, Stefan Rüping,
Francesco Bonchi, Niall M. Adams,
Marko Grobelnik, David J. Hand,
Dunja Mladenic, Frank Höppner, Saso
Dzeroski, Einoshin Suzuki, Nada
Lavrac, Jean-François Boulicaut,
Myra Spiliopoulou, Ruggero G. Pensa,
Johannes Fürnkranz, Filip Zelezny

Parallel Universes and Local Patterns+,
morik number−

Katharina Morik, Arno Siebes, Michael
R. Berthold, Michael Wurst, David J.
Hand, Bernd Wiswedel, Frank
Höppner, Emmanuel Müller, Élisa
Fromont, Claus Weihs, Niall M.
Adams, Mirko Böttcher, Ralph
Krieger, Bruno Crémilleux, Ira
Assent, Marie-Odile Cordier, Thomas
Seidl, Heike Trautmann, Rene
Quiniou, Arnaud Soulet

the seminar Parallel Universes and Local Patterns that was also organized by
Katharina and colleagues.

7 Conclusion

We have been using an algorithm that supports network analysis by finding reg-
ularities among vertex topological properties and attributes. It mines frequent
topological patterns as up and down co-variations involving both attributes and
topological properties of graph vertices. In addition, we defined two interesting-
ness measures to capture the significance of a pattern with respect to either a
given descriptor, or the relationship encoded by the graph edges. Furthermore,
by identifying the top k representative vertices of a topological pattern, we sup-
port a better interaction with end-users. While [25] has given details about the
whole methodology and has sketched several case studies, we decided in this
chapter to analyze co-authorship network of our colleague Katharina Morik. We
have shown that it supports the discovery of sensible patterns.
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