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Abstract. Given a large collection of transactions containing items, a basic common data mining problem is to
extract the so-called frequent itemsets (i.e., sets of items appearing in at least a given number of transactions).
In this paper, we propose a structure called free-sets, from which we can approximate any itemset support (i.e.,
the number of transactions containing the itemset) and we formalize this notion in the framework of ε-adequate
representations (H. Mannila and H. Toivonen, 1996. In Proc. of the Second International Conference on Knowledge
Discovery and Data Mining (KDD’96), pp. 189–194). We show that frequent free-sets can be efficiently extracted
using pruning strategies developed for frequent itemset discovery, and that they can be used to approximate the
support of any frequent itemset. Experiments on real dense data sets show a significant reduction of the size of
the output when compared with standard frequent itemset extraction. Furthermore, the experiments show that the
extraction of frequent free-sets is still possible when the extraction of frequent itemsets becomes intractable, and
that the supports of the frequent free-sets can be used to approximate very closely the supports of the frequent
itemsets. Finally, we consider the effect of this approximation on association rules (a popular kind of patterns that
can be derived from frequent itemsets) and show that the corresponding errors remain very low in practice.
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1. Introduction

Several data mining tasks (e.g., association rule mining (Agrawal et al., 1993)) are based
on the evaluation of frequency queries to determine how often a particular pattern occurs in
a large data set. We consider the problem of frequency query evaluation, when patterns are
itemsets or conjunctions of properties, in dense data sets1 like, for instance in the context
of census data analysis (Bayardo, 1998) or log analysis (Bykowski and Gomez-Chantada,
2000). In these important but difficult cases, there is a combinatorial explosion of the
number of frequent itemsets and computing the frequency of all of them turns out to be
intractable. In this paper, we present an efficient technique to approximate closely the result
of the frequency queries, and formalize it within the ε-adequate representation framework
(Mannila and Toivonen, 1996). Intuitively, an ε-adequate representation is a representation
of data that can be substituted to another representation to answer the same kind of queries,
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Table 1. A relational table over four binary attributes.

A B C D

1 1 0 0

1 0 0 1

0 1 1 1

1 1 1 0

1 0 0 0

1 0 0 0

0 1 0 0

0 1 0 0

0 0 1 0

0 0 1 0

0 0 0 1

0 0 0 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

but eventually with some lost of precision (bounded by the ε parameter). First evidences of
the practical interest of such representations have been given in Boulicaut and Bykowski
(2000) and Mannila and Toivonen (1996).

In this paper, we propose a new ε-adequate representation for the frequency queries.
This representation, called free-sets, is more condensed than the ε-adequate representation
based on itemsets Mannila and Toivonen (1996). The key intuition of the free-set represen-
tation is illustrated on the following example. Consider the binary attributes A, B, C, D in
the relational table r depicted in Table 1 and suppose we are interested in the support of
{A, B, C} in r (i.e., the number of rows in r in which A, B and C are true). If we know
that the rule A, B ⇒ C nearly holds in r (i.e., when A and B are true in a row then,
excepted in a few cases, C is also true) then we can approximate the support of itemset
{A, B, C} using the support of {A, B}. In Table 1 the rule A, B ⇒ C has only one ex-
ception. So, we can use the support of {A, B} as a value for the support of {A, B, C}.
Moreover, we can approximate the support of any itemset X such that {A, B, C} ⊆ X
by the support of X\{C} because the rule (X\{C}) ⇒ C also holds with at most a few
exceptions. For instance, the support of {A, B, C, D} can be approximated by the support
of {A, B, D} since the rule A, B, D ⇒ C can not have more exceptions than A, B ⇒ C .
Furthermore, the support of {A, B, D} does not need to be known directly, but can also be
approximated itself. For example, the rule A, D ⇒ B holds in Table 1 with one exception,
so the support of {A, D} can be used as an approximation of the support of {A, B, D}
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and then also of the support of {A, B, C, D}. It should be noticed that the framework pre-
sented in this paper can be restricted to rules with no exceptions. In this case, we still
benefit of a significant condensation and speed-up when compared with frequent itemset
extraction.

In the representation proposed in this paper, we call free-set an itemset Y such that the
items in Y can not be used to form a nearly exact rule. For example, if we consider only
rules having at most one exception, then the free-sets in Table 1 are {∅, {A}, {B}, {C}, {D},
{A, B}, {A, C}, {A, D}, {B, C}, {B, D}, {C, D}}. All other subsets of {A, B, C, D} contain
items that can be used to form rules with zero or one exception (e.g., A, B ⇒ C for
{A, B, C}, B, D ⇒ A for {A, B, D}, A, C ⇒ D for {A, C, D}, B, C ⇒ D for {B, C, D},
and A, B, C ⇒ D for {A, B, C, D}) and thus are not free.

The freeness of itemsets is anti-monotonic in that sense that if a set is not a free-set then
none of its supersets can be a free-set. The algorithm proposed to extract the free-sets takes
advantage of this property. It first considers sets of size 0 (i.e., the empty itemset), then
sets of size 1, and so on. When it determines that a set X is not free then it prunes the
search space since there is no need to consider any of the supersets of X . For example, if the
algorithm is executed on Table 1 and takes into account rules having at most one exception,
then it will never consider the set {A, B, C, D} because several sets among its subsets are
not free (e.g., {A, B, C}).

The experiments show that frequent free-sets are an ε-adequate representation for fre-
quency queries that can be extracted efficiently, even on dense data sets. They also show
that the error made when approximating itemset support using frequent free-sets remains
very low in practice.

Finally, we consider a popular application of frequent itemset discovery: the production
of the so-called association rules (Agrawal et al., 1993). We determine bounds for the errors
propagated on association rule characteristics when we use frequent free-sets to approximate
the support of frequent itemsets, and we show that these bounds are very tight in practice.

This paper is a significant extension of a preliminary work presented in Boulicaut et al.
(to appear). It includes proofs of the theorems, an in-depth error evaluation.

Organization of the paper. In the next section we introduce preliminary definitions used in
this paper. In Section 3, we present the notion of free-set, and show that it can be used as an
ε-adequate representation for the frequency queries. In Section 4, we present an algorithm
to extract the frequent free-sets. In Section 5, we give practical evidences that frequent
free-sets can be extracted efficiently and that the estimation of the supports of frequent
itemsets using frequent free-sets leads in practice to very low errors. In Section 6, we show
that these errors are propagated in a very favorable way when we produce association rules.
We review related work in Section 7. Finally, we conclude with a summary and directions
for future work.

2. Preliminary definitions

When applicable, we use the notational conventions and definitions from Mannila and
Toivonen (1996, 1997).
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2.1. Frequent sets

In this section, we recall standard definitions.

Definition 1 (binary database). Let R be a set of symbols called items. A row (also called
transaction) is a subset of R. A binary database r over R is a multiset of transactions.

Definition 2 (support and frequency). We note M(r, X ) = {t ∈ r | X ⊆ t} the multiset
of rows matched by the itemset X and Sup(r, X ) = |M(r, X )| the support of X in r , i.e.,
the number of rows matched by X . The frequency of X in r is Sup(r, X )/|r |. Let σ be a
frequency threshold, Freq(r, σ ) = {X | X ⊆ R and Sup(r, X )/|r | ≥ σ } is the set of all
σ -frequent itemsets in r .

For notational convenience, we also need the following specific definition.

Definition 3 (frequent sets). FreqSup(r, σ ) is the set of all pairs containing a frequent
itemset and its support, i.e., FreqSup(r, σ ) = {〈X, Sup(r, X )〉 | X ⊆ R and Sup(r, X )/
|r | ≥ σ }.

2.2. ε-adequate representation

Definition 4 (ε-adequate representation (Mannila and Toivonen, 1996)). Let S be a class
of structures. Let Q be a class of queries for S. The value of a query Q ∈ Q on a structure
s ∈ S is assumed to be a real number in [0, 1] and is denoted by Q(s). An ε-adequate
representation for S w.r.t. a class of queries Q, is a class of structures C, a representation
mapping rep : S → C and a query evaluation function m : Q × C → [0, 1] such that
∀Q ∈ Q, ∀s ∈ S, |Q(s) − m(Q, rep(s))| ≤ ε.

Example 1. An example of a class of structures is the set noted DBR of all possible binary
databases over a set of items R. An interesting query class is QR , the set of all queries
retrieving the frequency of an itemset ⊆ R. If we denote Q X the query in QR asking for
the frequency of itemset X then QR = {Q X | X ⊆ R} and the value of Q X on a database
instance r ∈ DBR is defined by Q X (r ) = Sup(r, X )/|r |.

An example of ε-adequate representation for DBR w.r.t. QR is the representation of
r ∈ DBR by means of Freq(r, ε). The corresponding rep, C and m are as follows. ∀r ∈
DBR, rep(r ) = FreqSup(r, ε), C = {rep(r ) | r ∈ DBR}, ∀Q X ∈ QR, ∀c ∈ C, if ∃〈X, α〉 ∈
rep(r ) then m(Q X , c) = α/|r | else m(Q X , c) = 0. It is straightforward to see that this is
an ε-adequate representation for DBR w.r.t. QR since ∀Q X ∈ QR, ∀r ∈ DBR, |Q X (r ) −
m(Q X , rep(r ))| ≤ ε.

Interesting ε-adequate representations are condensed representations, i.e., ε-adequate
representations where structures have a smaller size than the original structures.
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3. The free-sets as a condensed representation

First, we recall the notion of association rule, and then define a class of rules called δ-strong
rules in order to introduce the concept of free-set in a concise way.

Definition 5 (association rule). Let R be a set of items, an association rule based on R is
an expression of the form X ⇒ Y , where X, Y ⊆ R, Y �= ∅ and X ∩ Y = ∅.

Definition 6 (δ-strong rule). A δ-strong rule2 in a binary database r over R is an association
rule X ⇒ Y such that Sup(r, X ) − Sup(r, X ∪ Y ) ≤ δ, i.e., the rule is violated in no more
than δ rows.

In this definition, δ is supposed to have a small value, so a δ-strong rule is intended to be
a rule with very few exceptions.

3.1. Free-sets

Definition 7 (δ-free-set). Let r be a binary database over R, X ⊆ R is a δ-free-set w.r.t. r
if and only if there is no δ-strong rule based on X in r . The set of all δ-free-sets w.r.t. r is
noted Free(r, δ).

Since δ is supposed to be rather small, informally, a free-set is a set of items such that
its subsets (seen as conjunction of properties) are not related by any very strong positive
correlation.

One of the most interesting properties of freeness is its anti-monotonicity w.r.t. itemset
inclusion.

Definition 8 (anti-monotonicity). A property ρ is anti-monotone if and only if for all
itemsets X and Y , ρ(X ) and Y ⊆ X implies ρ(Y ).

The anti-monotonicity has been identified as a key property for efficient pattern mining
(Mannila and Toivonen, 1997; Ng et al., 1998), since it is the formal basis of a safe pruning
criterion. Indeed, efficient frequent set mining algorithms like apriori (Agrawal et al., 1996)
make use of the (anti-monotone) property “is frequent” for pruning.

The anti-monotonicity of freeness follows directly from the definition of free-set and is
stated by the following theorem.

Theorem 1. Let X be an itemset. For all Y ⊆ X if X ∈ Free(r, δ) then Y ∈ Free(r, δ).

3.2. Free-sets as an ε-adequate representation

We show now that δ-free-sets can be used to answer frequency queries with a bounded error.
The following lemma states that the support of any itemset can be approximated using the
support of one of the free-sets.
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Lemma 1. Let r be a binary database over a set of items R, X ⊆ R and δ ∈ [0, |r |], then
there exists Y ⊆ X such that Y ∈ Free(r, δ) and Sup(r, Y ) ≥ Sup(r, X ) ≥ Sup(r, Y )−δ|X |.

Proof: We show this using a recurrence on |X |. The statement is true for |X | = 0 if we take
Y = ∅. Suppose the statement is true for |X | = i . Let X be a subset of R such that |X | = i+1.
If X ∈ Free(r, δ) then we can simply choose Y = X . If X �∈ Free(r, δ) then by definition of
Free(r, δ) there exists a δ-strong rule Z1 → Z2 based on X . Let A be an item in Z2 and Z3 =
X\{A}. As |Z3| = |X |−1 using the recurrence hypothesis we know that there exists Y ⊆ Z3

such that Y ∈ Free(r, δ) and Sup(r, Z3) ≥ Sup(r, Y ) − δ|Z3|. Since Z1 → Z2 is a δ-strong
rule, then Sup(r, Z1) − Sup(r, Z1 ∪ Z2) ≤ δ. Sup(r, Z1) − Sup(r, Z1 ∪ Z2) is the number of
rows not matched by Z2 but matched by Z1, thus Sup(r, Z1) − Sup(r, Z1 ∪ Z2) is greater or
equal to Sup(r, Z1 ∪ Z3) − Sup(r, Z1 ∪ Z2 ∪ Z3) (i.e., the number of rows not matched by
Z2 but matched by Z1 and Z3). So we have Sup(r, Z1 ∪ Z3) − Sup(r, Z1 ∪ Z2 ∪ Z3) ≤ δ

which simplifies to Sup(r, Z3) − Sup(r, X ) ≤ δ. Since Sup(r, Z3) ≥ Sup(r, Y ) − δ|Z3| and
|Z3| = |X | − 1 we deduce Sup(r, X ) ≥ Sup(r, Y ) − δ|X |. The other inequality Sup(r, Y ) ≥
Sup(r, X ) is straightforward because Y ⊆ Z3 ⊆ X .

This lemma states that the support of an itemset X can be approximated using the support
of one of the free-sets, but it does not determine which free-set to use. We now show that
this can be done by simply choosing among the free-sets included in X any free-set with a
minimal support value. This is stated more formally by the following theorem.

Theorem 2. Let r be a binary database over a set of items R, X ⊆ R and δ ∈ [0, |r |],
then for any Y ⊆ X such that Y ∈ Free(r, δ) and Sup(r, Y ) = min({Sup(r, Z ) | Z ⊆ X and
Z ∈ Free(r, δ)}) we have Sup(r, Y ) ≥ Sup(r, X ) ≥ Sup(r, Y ) − δ|X |.

Proof: Let Y be a subset of X such that Y ∈ Free(r, δ) and satisfying Sup(r, Y ) =
min({Sup(r, Z ) | Z ⊆ X and Z ∈ Free(r, δ)}). Since Y ⊆ X we have immediately that
Sup(r, Y ) ≥ Sup(r, X ). By Lemma 1, there exists Z ⊆ X such that Z ∈ Free(r, δ) and
Sup(r, Z ) ≥ Sup(r, X ) ≥ Sup(r, Z ) − δ|X |. Since Y has the minimal support among all
subsets of X in Free(r, δ), then Sup(Z ) ≥ Sup(Y ). Thus Sup(Z ) − δ|X | ≥ Sup(Y ) − δ|X |.
As Sup(r, X ) ≥ Sup(r, Z ) − δ|X |, we have Sup(r, X ) ≥ Sup(Y ) − δ|X |.

In practice, computing the whole collection of δ-free-sets is often intractable. We show
now that such an exhaustive mining can be avoided since an ε-adequate representation to
answer frequency queries can be obtained if we extract only frequent free-sets together with
a subset of the corresponding negative border (Mannila and Toivonen, 1997).

Definition 9 (frequent free-set). Let r be a binary database over a set of items R, we denote
FreqFree(r, σ, δ) = Freq(r, σ ) ∩ Free(r, δ) the set of σ -frequent δ-free-sets w.r.t. r .

Let us adapt the concept of negative border from Mannila and Toivonen (1997) to our
context.

Definition 10 (negative border of frequent free-sets). Let r be a binary database over a
set of items R, the negative border of FreqFree(r, σ, δ) is denoted by Bd−(r, σ, δ) and is
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defined as follows: Bd−(r, σ, δ) = {X | X ⊆ R, X �∈ FreqFree(r, σ, δ) ∧ (∀Y ⊂ X, Y ∈
FreqFree(r, σ, δ))}.

Informally, the negative border Bd−(r, σ, δ) consists of the smallest itemsets (w.r.t. set
inclusion) that are not σ -frequent δ-free. Our approximation technique only needs a subset
of the negative border Bd−(r, σ, δ). This subset, denoted by FreeBd−(r, σ, δ), is the set of
all free-sets in Bd−(r, σ, δ).

Definition 11. FreeBd−(r, σ, δ) = Bd−(r, σ, δ) ∩ Free(r, δ)

As in the case of an ε-adequate representation for DBR w.r.t. QR using frequent itemsets
(see Section 2.2), we need the free-sets and their supports.

Definition 12. FreqFreeSup(r, σ, δ) is the set of all pairs containing a frequent free-set and
its support, i.e., FreqFreeSup(r, σ, δ) = {〈X, Sup(r, X )〉 | X ∈ FreqFree(r, σ, δ)}.

We can now define the ε-adequate representation w.r.t. the frequency queries.

Definition 13. The frequent free-sets representation w.r.t. σ , δ and a query class Q ⊆ QR ,
is defined by a class of structures C, a representation mapping rep and a query evaluation
function m, where ∀r ∈ DBR, rep(r ) = 〈FreqFreeSup(r, σ, δ), FreeBd−(r, σ, δ)〉, C =
{rep(r ) | r ∈ DBR}, ∀Q X ∈ Q, ∀c ∈ C, if ∃Y ∈ FreeBd−(r, σ, δ), Y ⊆ X then m(Q X , c) =
0 else m(Q X , c) = min({α | ∃Z ⊆ X, 〈Z , α〉 ∈ FreqFreeSup(r, σ, δ)})/|r |.

Using this representation, the frequency of an itemset X is approximated as follows. If
X has a subset Y which is free but not frequent then the frequency of X is considered to
be 0. Otherwise we take the smallest support value among the supports of the subsets of X
that are free and frequent.

We now establish that this representation is an ε-adequate representation for the following
database class and query class.

Definition 14. DBR,s = {r | r ∈ DBR and |r | ≥ s}, i.e., the set of all binary databases
having at least s rows. QR,n = {Q X | X ⊆ R and |X | ≤ n}, i.e., the set of frequency queries
on itemsets having no more than n items.

Theorem 3. A frequent free-sets representation w.r.t. σ, δ and a query class QR,n is an
ε-adequate representation for DBR,s w.r.t. QR,n where ε = max(σ, nδ/s).

Proof: Let Q X be a query in QR,n and r an database in DBR,s . If there exists Y ∈
FreeBd−(r, σ, δ) such that Y ⊆ X then X is not σ -frequent so Q X (r ) ≤ σ . Since
m(Q X , c) = 0 we have |Q X (r ) − m(Q X , rep(r )| ≤ σ .

In the case where no Y ∈ FreeBd−(r, σ, δ) is a subset of X , this means that all δ-free-set
included in X are σ -frequent. Whence min({Sup(r, Z ) | Z ⊆ X and Z ∈ Free(r, δ)}) =
min({α | ∃Z ⊆ X, 〈Z , α〉 ∈ FreqFreeSup(r, σ, δ)}) which is equal to m(Q X , rep(r )). Thus,
by Theorem 2, m(Q X , rep(r )) ≥ Q X (r ) ≥ m(Q X , rep(r ))−δ|X |/|r |. So we have |Q X (r )−
m(Q X , rep(r ))| ≤ nδ/s.
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4. Discovering all frequent free-sets

In this section, we describe an algorithm, called MINEX, that generates all frequent free-sets.
For clarity, we omit the fact that it outputs their supports as well. Implementation issues are
presented in Section 4.2.

4.1. The algorithm—an abstract version

MINEX can be seen as an instance of the levelwise search algorithm presented in Mannila
and Toivonen (1997). It explores the itemset lattice (w.r.t. set inclusion) levelwise, starting
from the empty set and stopping at the level of the largest frequent free-sets. More precisely,
the collection of candidates is initialized with the empty set as single member (the only
set of size 0) and then the algorithm iterates on candidate evaluation and larger candidate
generation. At each iteration of this loop, it scans the database to find out which candidates
of size i are frequent free-sets. Then, it generates candidates for the next iteration, taking
every set of size i + 1 such that all proper subsets are frequent free-sets. The algorithm
finishes when there is no more candidate. The algorithm is given below as Algorithm 1.

Algorithm 1 (MINEX)

Input: r a binary database over a set of items R, σ and δ two thresholds.
Output: FreqFree(r, σ, δ)

1. C0 := {∅};
2. i := 0;
3. while Ci �= ∅ do
4. FreqFreei := {X | X ∈ Ci and X is a σ -frequent δ-free-set in r};
5. Ci+1 := {X | X ⊆ R and ∀ Y ⊂ X, Y ∈ ⋃

j≤i FreqFree j }\
⋃

j≤i C j ;
6. i := i + 1;
7. od;
8. output

⋃
j<i FreqFreej ;

Using the correctness result of the levelwise search algorithm given in Mannila and Toivonen
(1997) the following theorem is straightforward.

Theorem 4 (Correctness). Algorithm MINEX computes the sets of all σ -frequent δ-free-
sets.

4.2. Implementation issues

We used techniques similar to the ones described in Agrawal and Srikant (1994) for frequent
itemset mining. The candidate generation is made using a join-based function, and the
itemset support counters are updated w.r.t. a row of the database using a prefix-tree data
structure.
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The key point that needs a new specific technique is the freeness test in step 4 of the
algorithm. An efficient computation of this test can be done, based on the following remark:
Z is not a δ-free-set if and only if there exist A ∈ Z and X = Z\{A} such that X is not δ-free
or X is δ-free and X ⇒ {A} is a δ-strong rule. Furthermore, the step 5 of the algorithm
guarantees that if Z is a candidate then X must be δ-free since X is a subset of Z . Therefore,
during the i th iteration, we might first compute the δ-strong rules of the form X ⇒ {A},
where X ∈ FreqFreei and A ∈ R\X , and then use them to remove candidates in Ci+1 that
are not δ-free. Thus, at the beginning of an iteration, only free-sets are candidates.

This is incorporated in the algorithm by replacing steps 4 and 5 with the following steps:

4.1 FreqFreei := {X | X ∈ Ci and X is a σ -frequent};
4.2 NotFreei+1 := {Z | Z = X ∪ {A} where X ∈ FreqFreei , A ∈ R\X

and X ⇒ {A} is a δ-strong rule} ;
5.1 Cg

i+1 := {X | X ⊆ R and ∀ Y ⊂ X, Y ∈ ⋃
j≤i FreqFree j }\

⋃
j≤i C j ;

5.2 Ci+1 := Cg
i+1\NotFreei+1;

The steps 4.1 and 4.2 can be computed efficiently within the same database scan as follows.
For each candidate X considered in step 4.1, we maintain a node n (in the prefix-tree)
containing an integer denoted by n.count to count the support of X and a set denoted by
n.rhs to determine the δ-strong rule having a left hand side equal to X . More precisely, n.rhs
is a set of pairs of the form 〈A, e〉. Such a pair 〈A, e〉 means that the rule X ⇒ {A} has e
exceptions.

Steps 4.1 and 4.2 are performed by first initializing for each candidate X ∈ Ci the corre-
sponding node n in the prefix-tree with n.count := 0 and n.rhs := ∅. Then the database r
is scanned, and for each row t the prefix-tree is used to find all candidates matching t . For
each such candidate X , corresponding to a node n in the tree, we call matched(t, X, n, δ)
to update n.count and n.rhs. The description of matched is given below as Algorithm 2.

Algorithm 2 (matched)

Input: a row t, a candidate X, a node n of the prefix-tree and the threshold δ.
Output: n updated.

if n.count ≤ δ then
for all i ∈ t\X do

if � ∃〈 j, e〉 ∈ n.rhs with j = i then
n.rhs := n.rhs ∪ {〈i, n.count〉};

fi
od

fi
for all 〈 j, e〉 ∈ n.rhs do

if j �∈ t then
n.rhs := n.rhs\{〈 j, e〉};
if e < δ then
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n.rhs := n.rhs ∪ {〈 j, e + 1〉};
fi

fi
od
n.count := n.count + 1;
output n;

The key idea is that the set n.rhs is created lazily, in the sense that a pair in n.rhs is
created for an item A only when the algorithm finds A in a transaction t matched by X .
Moreover, when δ rows matched by X have been encountered, there is no need to create
new entries for new items in n.rhs since these items will lead obviously to rules with more
than δ exceptions.

5. Experiments

The running prototype is implemented in C++. We use a PC with 512 MB of memory and
a 500 MHz Pentium III processor under Linux operating system.

For an experimental evaluation, we chose the PUMSB* data set, a PUMS census data
set3 preprocessed by researchers from IBM Almaden Research Center. The particularity
of PUMS data sets is that they are very dense and make the mining of all frequent item-
sets together with their supports intractable for low frequency thresholds, because of the
combinatorial explosion of the number of frequent itemsets (Bayardo, 1998).

5.1. Frequent free-set vs. frequent set condensation

Table 2 shows a comparison of the extraction of frequent sets and frequent free-sets for
different frequency thresholds and different values of δ. The collections FreqFree(r, σ, δ)
are significantly smaller than the corresponding Freq(r, σ ). For frequency thresholds of 15%
and 20% Freq(r, σ ) is so large that it is clearly impossible to provide it on our platform, while
the extraction of FreqFree(r, σ, δ) remains tractable. For these two frequency thresholds of
15% and 20%, we use lower-bound estimations of |Freq(r, σ )|. These lower-bounds are
computed using the δ-strong rules collected by MINEX (see Section 4.2) to find the size
of the largest frequent itemset. If this size is m then there are a least 2m frequent itemsets.
Figure 1 (left) emphasizes, using logarithmically scaled axes, the difference of the size of
the various representations. We observe a brutal change between the size of Freq(r, 0.25)
and of Freq(r, 0.20): 1000 times more frequent itemsets than expected by extrapolating the
trend given by Freq(r, 0.25) and Freq(r, 0.30). If we look at the trend of the number of
frequent free-sets it seems to be unchanged. The reason for this, is that between 0.25 and
0.20 we reach a support threshold where the number of strong rules increases significantly
and then leads to the explosion of the number of frequent itemsets, but not to the explosion
of the number of frequent free-sets.

Using also logarithmically scaled axes, figure 1 (right) shows that the extraction time for
MINEX grows up exponentially when the frequency threshold is reduced. This is due to the
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Figure 1. Extraction time and sizes of different representations.

Figure 2. Behavior of MINEX w.r.t. the number of rows and the number of items.

combinatorial explosion of the number of frequent free-sets. Apriori-based algorithms have
a similar exponential evolution of the extraction time, due in this case to the combinatorial
explosion of the number of frequent sets.

5.2. Scale-up experiment

On figure 2, we report the extraction time (for σ = 20%) when changing the number of
rows or the number of items in the data set. We observe an exponential complexity w.r.t. the
number of items and a linear complexity w.r.t. number of rows in the data set if the value of
δ follows the number of tuples (e.g., if we double the number of rows then we double the
value of δ). This is emphasized by a superimposed straight line on figure 2 (left).

5.3. Approximation error in practice

In this section we report the practical error made on σ -frequent itemset supports when
using the approximation based on σ -frequent δ-free-sets. This evaluation is made on the
PUMSB* data set used in the previous experiments and also on a PUMS data set of Kansas
in a less favorable case.

In the PUMSB* data set, for σ = 0.3, there are 432699 σ -frequent sets and the largest has
n = 16 items. We computed the condensed representation FreqFreeSup(r, 0.3, 20) which
contains 11079 elements.
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Table 3. Error observed on σ -frequent itemset supports by itemset size.

Average abs. Average rel. Maximal abs. Maximal rel.
sup. error sup. error (%) sup. error sup. error (%)

Itemset size

1 0 0 0 0

2 0.36 0.002 18 0.11

3 1.17 0.007 20 0.13

4 2.14 0.012 37 0.18

5 3.24 0.019 37 0.22

6 4.33 0.026 39 0.24

7 5.31 0.032 39 0.24

8 6.12 0.038 45 0.29

9 6.80 0.042 45 0.29

10 7.40 0.046 45 0.29

11 7.92 0.050 45 0.29

12 8.39 0.054 44 0.28

13 8.82 0.057 38 0.26

14 9.22 0.060 31 0.19

15 9.58 0.062 24 0.15

16 9.86 0.064 15 0.10

Theoretical error bounds for the frequent set support approximation can be determined
using Theorem 2 as follows. In this experiment, the maximal absolute support error is
δ ∗ n = 20 ∗ 16 = 320 rows. The maximal relative support error can be obtained assuming
that the maximal theoretical absolute error occurs on theσ -frequent set of minimal frequency
(i.e., σ ). The PUMSB* data set contains N = 49046 rows. So, the maximal relative support
error is δ ∗ n/(N ∗ σ ) = 2.18%.

The support of each of the 432699 σ -frequent itemsets is approximated using the collec-
tion FreqFreeSup(r, 0.3, 20) and Theorem 2 and then compared to the exact support. The
maximal observed absolute support error is 45 rows, and the maximal relative support error
is 0.29%. The average absolute support error is 6.01 rows and the average relative support
error is 0.037%. Tables 3 and 4 show that these errors remain very low even for frequent
sets containing a lot of items and for low supports.

In this experiment the value of δ is small w.r.t. the minimal support required. The ratio
is 20/(0.3 ∗ 49046) = 0.136%. We now report another experiment where the value of
δ represents more than 1% of the minimal support required, and thus is likely to greatly
increase the value of the error.

The data set used in this experiment is a PUMS data set of Kansas state.4 We use a
version of this data set that has been preprocessed at the University of Clermont-Ferrand
(France) in Prof. L. Lakhal’s research group. We have reduced this data set to 10000 rows
and 317 items to be able to extract all σ -frequent itemsets at a low frequency threshold. For
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Table 4. Error observed on σ -frequent itemset supports by interval of support.

Average abs. Average rel. Maximal abs. Maximal rel.
sup. error sup. error sup. error sup. error (%)

Itemset support (%)

[30,40] 6.20 0.039% 45 0.29

(40,50] 3.29 0.016% 38 0.19

(50,60] 0.07 2.8 × 10−6 9 0.03

(60,70] 0 0 0 0

(70,80] 0 0 0 0

(80,90] 0 0 0 0

(90,100] 0 0 0 0

σ = 0.05 (500 rows), there are 90755 σ -frequent sets and the largest has n = 13 items. We
computed FreqFreeSup(r, 0.05, 6) which contains 4174 elements.

In this experiment, the maximal absolute support error is δ ∗ n = 6 ∗ 13 = 78 rows. The
maximal relative support error is δ∗n/(N ∗σ ) = 15.6% (N = 10000 rows in the experiment).

The supports of the σ -frequent itemsets are approximated using FreqFreeSup(r, 0.05, 6)
and compared to the exact supports. The maximal observed absolute support error is 18
rows, and the maximal relative support error is 3.1%. The average absolute support error is
2.12 rows and the average relative support error is 0.28%. A more detailed distribution of
the error is given in Tables 5 and 6. These results show that the error remains low in practice
even when the value of δ is high w.r.t. the minimal support.

Table 5. Error observed on σ -frequent itemset supports by itemset size.

Average abs. Average rel. Maximal abs. Maximal rel.
sup. error sup. error (%) sup. error sup. error (%)

Itemset size

1 0 0 0 0

2 0.24 0.03 6 1.1

3 0.65 0.07 10 1.3

4 1.10 0.13 12 2.1

5 1.53 0.18 14 2.7

6 1.92 0.24 18 3.1

7 2.31 0.31 18 3.1

8 2.75 0.38 18 3.1

9 3.28 0.47 18 3.1

10 3.90 0.58 18 2.9

11 4.58 0.71 18 2.9

12 5.20 0.83 15 2.9

13 5.50 0.88 11 2.0
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Table 6. Error observed on σ -frequent itemset supports by interval of support.

Average abs. Average rel. Maximal abs. Maximal rel.
sup. error sup. error (%) sup. error sup. error (%)

Itemset support (%)

[5,10] 2.16 0.337 18 3.11

(10,20] 2.03 0.159 14 1.17

(20,30] 2.22 0.089 10 0.47

(30,40] 2.03 0.063 10 0.33

(40,50] 1.25 0.027 5 0.12

(50,60] 1.70 0.031 6 0.10

(60,70] 0.66 0.010 6 0.10

(70,80] 0 0 0 0

(80,90] 0 0 0 0

(90,100] 0 0 0 0

6. Effect of errors on association rules

A popular application of the extraction of frequent itemsets is the discovery of association
rules (Agrawal et al., 1993). In this section, we give bounds for the error made on support
and confidence of association rules when these rules are derived from frequent δ-free-sets
instead of frequent itemsets. The notion of association rules has been recalled in Definition 5.
Support and confidence are the two most widely used objective interestingness measures
for association rules and are commonly defined as follows.

Definition 15 (support and confidence). Let X ⇒ Y be an association rule based on the
set of items R. The support and confidence of this rule in a database r over R are denoted
by Sup(r, X ⇒ Y ) and Conf (r, X ⇒ Y ) and are defined respectively by Sup(r, X ⇒ Y ) =
Sup(r, X ∪ Y ) and Conf (r, X ⇒ Y ) = Sup(r, X ∪ Y )/Sup(r, X ). The rule X ⇒ Y is
frequent in r w.r.t. a frequency threshold σ if X ∪ Y ∈ Freq(r, σ ).

6.1. Error bounds for support approximation

The error on support of association rules is the same as the error on support of itemsets.
For a frequent rule X ⇒ Y , if we use frequent δ-free-sets to determine its support, by
Theorem 2 we always have an overestimate of its support with an error of at most δ|X ∪ Y |.
In practice, we have the same approximation errors as those presented in Section 5.3.

6.2. Error bounds for confidence approximation

Let X ⇒ Y be a frequent rule in r . Suppose we used frequent δ-free-sets to approximate
Sup(r, X ∪ Y ) and Sup(r, X ). These approximations are denoted respectively by Sup(r, X ∪
Y ) and Sup(r, X ). Now, we can approximate Conf (r, X ⇒ Y ) by Conf (r, X ⇒ Y ) =
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Table 7. Bounds for absolute error on rule confidence.

Support

Confidence 0.05 0.1 0.2 0.3 0.4 0.5 0.6

0.99 0.0308 0.0116 0.0047 0.0033 0.0012 0.0010 0.0010

0.95 0.0295 0.0111 0.0045 0.0031 0.0011 0.0010 0.0010

0.9 0.0280 0.0105 0.0042 0.0030 0.0011 0.0009 0.0009

0.85 0.0264 0.0099 0.0040 0.0028 0.0010 0.0008 0.0009

Sup(r, X ∪ Y )/Sup(r, X ). By Theorem 2, and since we have overestimated the supports,
then Sup(r, X ∪ Y )/(Sup(r, X ) + δ|X |) ≤ Conf (r, X ⇒ Y ) ≤ (Sup(r, X ∪ Y ) + δ|X ∪
Y |)/Sup(r, X ).

Thus a bound for the absolute error made on the confidence when we use Conf (r, X ⇒ Y )
instead of Conf (r, X ⇒ Y ) is max(Sup(r, X ∪ Y )/(Sup(r, X ) + δ|X |) − Conf (r, X ⇒
Y ), (Sup(r, X ∪ Y ) + δ|X ∪ Y |)/Sup(r, X ) − Conf (r, X ⇒ Y )).

Now, we derive values of this bound in practice, using the experiments reported in
Section 5.3. We consider the PUMS data set of Kansas state, which is less favorable than
the other (PUMSB*) since the error on the support was larger.

Let ar(s, c) be the set of all association rules in this data set with support s and con-
fidence c. For a given pair 〈s, c〉, we bound the error made on confidence for all rules in
ar(s, c) as follows. The support of the left hand side of any of these rules is s ′ = s/c. Using
the experimental results of Section 5.3, we can find the maximal relative support error made
on s and s ′, denoted respectively by rse and rse′. Then we bound the absolute error made
on the confidence by max(s/(s ′ + s ′ × rse′) − c, (s + s × rse)/s ′ − c).

We consider support s ∈ {0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6} and confidence c ∈ {0.99,

0.95, 0.9, 0.85}. For each pair 〈s, c〉, we used the maximal relative error on support given in
Table 6 to bound the error made on confidence for the set of rule ar (s, c). The corresponding
values are presented in Table 7. For example, if we consider rules with confidence 0.99 and
support 0.05, the maximal absolute error made on confidence is 0.0308. For higher rule
supports the error decreases. This variation corresponds to the reduction of the maximal
relative error for higher supports in Table 7. For lower confidence values the error also
decreases. This is due to the fact that a lower confidence implies a higher support for the
left hand side of the rule and thus a lower error on the left hand side support.

7. Related work

Using incomplete information about itemset frequencies for some mining task, e.g., Boolean
rule mining, has been proposed in Mannila and Toivonen (1996), and formalized in the
general framework of ε-adequate representations. Probabilistic approaches to the problem
of frequency queries have also been investigated (see Pavlov et al., 2000).

Several search space reductions based on nearly exact (or exact) association rules have
been proposed. The use of the nearly exact association rules to estimate the confidence of
other rules and then to prune the search space has been suggested in Bayardo (1997) but
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not investigated nor experimented. Efficient mining of nearly exact rules (more specifically
rules with at most δ exceptions) with a single attribute in both the left and the right hand sides
has been proposed in Fujiwara et al. (2000). Search space pruning using exact association
rules has been experimented in Bayardo (1997) in the context of rule mining and developed
independently in the context of frequent itemset mining in Pasquier et al. (1999). Pasquier
et al. (1999) implicitly proposes a kind of condensed representation called closed itemsets
which is strongly related to the notion of 0-free-sets (δ-free-sets with δ = 0). Mining 0-
free-sets or closed itemsets lead to similar gains, but mining δ-free-sets with δ �= 0 offers
additional search space reductions (at the cost of an uncertainty on supports). It should also
be noticed that by definition exact rules are very sensitive to noise. If we process a noisy data
set (a very common case in practice) a few exceptions to the exact rules can appear easily.
Then the pruning methods based on exact rules will be less effective, while the mining of
δ-free-sets with δ �= 0 can still benefit of an important search space reduction.

The techniques mentioned in this section present important benefits on dense data sets,
but if we consider very sparse data sets, we can hardly expect to have many exact or nearly
exact rules that hold, and thus all these techniques are likely to be less interesting. Moreover,
on very sparse data sets, these techniques may be a little bit slower than the direct extraction
of frequent itemsets without pruning, since they can not take advantage of important search
space reductions, but have to pay for a little overhead due to the tests performed to detect
the rules.

8. Conclusion and future work

We proposed a structure called free-sets that can be extracted efficiently, even on dense
data sets, and that can be used to approximate closely the support of frequent itemsets. We
formalized this approximation in the framework of ε-adequate representations (Mannila
and Toivonen, 1996) and gave a correct extraction algorithm formulated as an instance of
the levelwise search algorithm presented in Mannila and Toivonen (1997).

We reported experiments showing that frequent free-sets can be extracted even when
the extraction of frequent itemsets turns out to be intractable. The experiments also show
that the error made when approximating the support of frequent itemsets using the support
of frequent free-sets remains very low in practice. Finally, we considered the effect of
this approximation on the support and confidence of association rules. We bounded the
corresponding errors and the experiments show that these bounds are very tight in practice.

Interesting future work includes applications of the notion of δ-free-set to the the approx-
imation of the support of general boolean formula as investigated in Mannila and Toivonen
(1996).

Notes

1. E.g., data sets containing many strong correlations.
2. Stemming from the notion of strong rule of Piatetsky-Shapiro (1991).
3. http://www.almaden.ibm.com/cs/quest/data/long 11 patterns.bin.tar
4. ftp://ftp2.cc.ukans.edu/pub/ippbr/census/pums/pums90ks.zip
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