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Abstract Binary relation mining has been extensively studied. Nevertheless, many
interesting 0/1 data naturally appear as n-ary relations with n ≥ 3. A timely challenge
is to extend local pattern extraction, e. g., closed pattern mining, to such contexts.
When considering higher arities, faint noise affects more and more the quality of the
extracted patterns. We study a declarative specification of error-tolerant patterns by
means of new primitive constraints and the design of an efficient algorithm to extract
every solution pattern. It exploits the enumeration principles of the state-of-the-art
Data-Peeler algorithm for n-ary relation mining. Efficiently enforcing error-tolerance
crucially depends on innovative strategies to incrementally compute partial informa-
tion on the data. Our prototype is tested on both synthetic and real datasets. It returns
relevant collections of patterns even in the case of noisy ternary or 4-ary relations,
e. g., in the context of pattern discovery from dynamic networks.
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1 Introduction

Closed set mining from Boolean matrices and thus binary relations has been exten-
sively studied since the seminal paper (Pasquier et al. 1999). A closed itemset in a
given Boolean matrix that encodes whether some objects (say transactions) satisfy
or not some properties (say contain or not some items) correspond to maximal sets
of properties that are shared by a given set of objects. For instance if, in a given
dataset, P = {B, C, D} is a closed set associated with the supporting set of objects
O = {1, 2, 3}, it means that we cannot add any property to P which would be true
for all the objects in O . Notice that studying collections of such couples of sets is also
known as Formal Concept Analysis (Ganter et al. 2005).

The closed set mining task has been studied in depth for two main reasons. First,
thanks to the formal properties of closedness, it enables the computation of every fre-
quent itemset in many real-life dense and correlated datasets where other techniques
fail for the selected frequency thresholds. In other terms, the availability of efficient
closed set mining algorithms is a breakthrough with respect to frequent itemset mining
computational feasability (see, e. g., (Bayardo et al 2004; Goethals 2010)). Next, the
intrinsic maximality property of closed sets has been useful for deriving more relevant
patterns. Indeed, thanks to the closedness properties, it is possible to adress impor-
tant issues like, for instance, the non redundancy of association rules (see, e. g., (Zaki
2004)), the computation of a priori relevant local patterns or biclusters with nice appli-
cations to gene expression analysis (see, e. g., (Pan et al. 2003)), or the construction of
better features for supervized classification (see, e. g., (Garriga et al. 2008)). In fact,
closedness provides a lossless condensation (Boulicaut and Bykowski 2000; Calders
et al 2005) of all itemsets by only keeping the most informative ones (Gallo et al.
2007, 2009). In other terms, we know how to compute the exhaustive collection of
the closed sets that hold in a given dataset, possibly enforcing user-defined constraints
(see, e. g., (Stumme et al. 2002; Bonchi and Lucchese 2004; Besson et al. 2005)), and
this has been proved useful across many different 0/1 data mining workflows.

The starting point of our study is that many interesting 0/1 datasets correspond
to n-ary relations with n ≥ 3 and not just binary ones. For instance, we may con-
sider ternary relations that encode whether some objects (first attribute) satisfy some
properties (second attribute) at given timestamps (third attribute). Therefore, a timely
challenge is to extend pattern discovery techniques from binary to arbitrary n-ary
relations and thus to Boolean tensors instead of just Boolean matrices. It makes sense
to look for closed patterns in such an extended setting. Considering that formal con-
cepts correspond to the so-called closed 2-sets in binary relations, recent algorithms
like CubeMiner (Ji et al. 2006) and Trias (Jaschke et al. 2006) extract every closed
pattern when n = 3, i. e., closed 3-sets. Data- Peeler (Cerf et al. 2009a) efficiently
computes closed patterns for an arbitrary arity n, i. e., closed n-sets.

A major bottleneck for the dissemination of data mining methods based on closed
pattern discovery is related to noise and its impact on the computed collections. Real
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n-ary relations suffer from noise that can have several causes (e. g., intrinsic noise
in the studied system, measurement errors, chosen discretization thresholds, etc.). As
a result, some n-tuples present in (resp. absent from) the relation should, in fact, be
absent (resp. present). Minimal size constraints (i. e., looking for large enough pat-
terns) allow to avoid the n-tuples present in the relation because of noise. On the
contrary, when noise drops some n-tuples, not only the number of closed patterns
increases but their relevancy is affected too. For example, assume a binary relation
in which {B, C, D} is a closed itemset whose support (i. e., all transactions sharing
the items B, C and D) is {1, 2, 3}. By definition, ({1, 2, 3}, {B, C, D}) is a closed
2-set. Let us now assume that, because of noise, (2, C) is absent from the relation.
Instead of ({1, 2, 3}, {B, C, D}), two other patterns, namely ({1, 3}, {B, C, D}) and
({1, 2, 3}, {B, D}), are extracted. In fact, an exponential growth of the number of
patterns occurs and the extracted closed 2-sets are less relevant since they only are
logarithmic-size fragments of the “real” patterns (Liu et al. 2006). To extract them,
there is a need to relax the minimal size constraints and some other patterns, that are
really too small to be relevant (e. g., including 2-tuples that are present in the relation
because of noise), are found as well. These phenomena are dramatically aggravated
when mining relations of higher arities. Indeed, since the number of n-tuples inside a
closed n-set exponentially increases with n, noise has a greater probability to damage
one (or several) of its n-tuples. To address such problems, we generalize the definition
of a closed n-set to let it encompass, within user-defined bounds, some absent n-tuples
considered as noise. Different definitions were proposed for itemset mining in binary
relations (see Gupta et al. (2008) for a survey). Such a declarative specification for a
closed ET-n-set1 remains open.

We present a definition of noise tolerance that is applicable to patterns in arbitrary
n-ary relations. It relies on upper-bounded quantities of noise that are tolerated per
element in the pattern. For instance, in our running example, ({1, 2, 3}, {B, C, D})
would be discovered, despite the absence of (2, C) from the relation, if the analyst
decides to tolerate one error per element (2 and C reach this bound, 1, 3, B and D
do not encompass any noise). Unlike most of the literature on noise-tolerant mining
in binary relations, our definition of a noise tolerant pattern includes a closedness
constraint. In this way, redundant patterns are avoided. More precisely, the closedness
constraint filters the most informative patterns without any loss of information w.r.t.
the collection that would be obtained without this constraint. Designing an algorithm
to extract every such pattern (completeness) while remaining scalable is challenging.
This article describes such an algorithm, namely Fenster2. Part of its efficiency can
be attributed to enumeration principles that it largely borrows from the state-of-the-art
closed n-set extractor Data- Peeler (Cerf et al. 2009a). These same principles also
allow the efficient enforcement of additional constraints (instances of one of the most
expressive class defined so far) that makes Fenster able to discover specific patterns

1 Like in Yang et al. (2000), ET stands for Error-Tolerant. In the text, the more general term “noise” is
preferred to “error”. Indeed, the noise is not necessarily caused by errors and it can be intrinsic to the studied
system, for instance in life sciences.
2 Fenster stands for Fenster Extracts N-Sets Tolerating Errors in the Relation.
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in large datasets. The discovery of maximal quasi-cliques in a labeled, dynamic and
directed transportation network is a real-life example detailed in Sect. 6.

Although the enumeration principles are essential, tolerating noise significantly
harden the algorithmic challenge. To remain scalable, Fenster incrementally updates
counts of absent n-tuples in various subspaces of the data. Thanks to these aggregates,
the same regions of the relation are not browsed again and again to check whether the
recursively refined search space still contains a pattern satisfying the definition. In fact,
we theoretically show that Fenster’s enforcement of the definition is as fast as a naive
one in a relation with the same number of elements per dimension but one dimension
less. An empirical comparison with DCE, the only other algorithm able to extract
noise tolerant patterns in arbitrary n-ary relation3, confirms the good performance of
Fenster. Indeed, our proposal turns out to be orders of magnitude faster. This com-
parison validates empirically Fenster’s per-element tolerance to noise: the quality of
the patterns extracted under DCE’s per-pattern tolerance to noise is both lower than
that of Fenster and less robust, i. e., more sensitive to the chosen parametrization.

The next section introduces the closed ET-n-set mining task. The enumeration prin-
ciples of Fenster are sketched in Sect. 3. The crucial implementation details are given
in Sect. 4, which discusses as well the time and space complexities. Section 5 deals
with an empirical validation on synthetic datasets, whereas Sect. 6 presents results on
a real graph evolving in two temporal dimensions. Section 7 is dedicated to related
work and Sect. 8 briefly concludes.

2 Definitions and problem setting

2.1 N -ary relations as data

Given an arity n ∈ N and n finite sets (Di )i=1..n , let R ⊆ ×i=1..nDi (×i=1..nDi

stands for D1 × D2 × · · · × Dn) the n-ary relation where patterns are to be discov-
ered. All along this article, R denotes this dataset. Table 1 represents an example of
such a relation RE ⊆ {α, β, γ } × {1, 2, 3, 4} × {A, B, C}, hence a ternary relation.
In this table, every ‘1’ at the intersection of three elements stands for the presence
of the related triplet in RE . For example the bold ‘1’ at the intersection of the ele-
ments α, 1 and A means (α, 1, A) ∈ RE . On the contrary a ‘0’ in Table 1 is at
the intersection of three elements that form a triplet absent from RE . For example
the bold ‘0’means (α, 2, C) /∈ RE . N -ary relations are available in many applica-
tion domains. For instance, RE could represent customers (1, 2, 3 and 4) buying
items (A, B and C) along three months (α, β and γ ). In this context, the bold ‘1’
in Table 1 would mean that “Customer 1 bought Item A during the first month”. The
bold ‘0’ would be understood as “Customer 2 did not buy Item C during the first
month”.

More generally, binary relation mining has been quite popular in the many applica-
tion domains where we can record Boolean properties of sets of Objects, i. e., mining

3 DCE actually is applicable in even more general contexts where the n-tuples can be associated with
degrees of certainty.
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Table 1 RE ⊆ {α, β, γ } × {1, 2, 3, 4} × {A, B, C}

an Objects × Properties relation. A generic though common context can be to add
spatial and/or time information to get an Objects × Properties × Dates and/or an
Objects × Properties × Dates × Places relations. Among others, we are interested
by dynamic graph description by means of n-ary relations. The idea is that the two
first dimensions correspond to the vertices such that we encode the graph incidence
matrix. Given RE could represent vertices (1, 2, 3 and 4) which can be linked or not
to the vertices (A, B and C) along three time-stamps (α, β and γ ). In this context,
the bold ‘1’ in Table 1 would mean Vertex 1 is connected to Vertex A at the first
time-stamps. Section 6 is a case study on a real graph which evolves in two temporal
dimensions.

2.2 Closed n-sets as patterns

The patterns in ×i=1..n2Di
are called n-sets. They associate n subsets of elements

from the n domains of the relation. For the sake of clarity, an n-set (Si )i=1..n will
often be represented by ∪i=1..n Si (without loss of generality, the attribute domains Di

are considered disjoint). For example, given an n-set S = (Si )i=1..n and an element
e ∈ ∪i=1..nDi , we write:

- e ∈ S instead of e ∈ ∪i=1..n Si ;

- S \ {e} instead of

⎧
⎪⎪⎨

⎪⎪⎩

(S1 \ {e}, S2, . . . , Sn) if e ∈ D1

...

(S1, . . . , Sn−1, Sn \ {e}) if e ∈ Dn

.

Let us formalize the union and the inclusion on n-sets.

Definition 1 (n-set union �) Given two n-sets S = (Si )i=1..n ∈ ×i=1..n2Di
and

T = (T j ) j=1..n ∈ × j=1..n2D j
, S � T = (S1 ∪ T 1, . . . , Sn ∪ T n).

Definition 2 (n-set inclusion �) Given two n-sets S = (Si )i=1..n ∈ ×i=1..n2Di
and

T = (T j ) j=1..n ∈ × j=1..n2D j
, S � T ⇔ S1 ⊆ T 1 ∧ · · · ∧ Sn ⊆ T n .

Notice that, by definition, the union of two n-sets is the n-set with the minimal enve-
lope enclosing both of them. The inclusion of n-sets is useful to define a closedness
constraint. Closed n-sets in n-ary relations (n ≥ 2) generalize closed itemsets in binary
relations: the closed 2-sets are the closed itemsets associated to their supporting sets
of transactions or objects, i. e., the so-called formal concepts (Ganter et al. 2005). The
generalization of the definition towards n-ary relations is natural. Considering the 0/1
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representation of the n-ary relation (such as RE in Table 1), a closed n-set is a max-
imal hyper-rectangle of ‘1’s modulo arbitrary permutations of the hyperplanes (i. e.,
the hyperplanes of a pattern need not be contiguous).

In the following, when X denotes an n-set, we assume X = (Xi )i=1..n ∈ ×i=1..n2Di
.

Definition 3 (Closed n-set) Given an n-set X , X is a closed n-set iff it satisfies the
two following constraints:

- Cconnected(X) ≡ ×i=1..n Xi ⊆ R;
- Cclosed(X) ≡ ∀X ′ ∈ × j=1..n2D j

,
(
X � X ′ ∧ Cconnected(X ′)

) ⇒ X ′ = X .

According to the first constraint, Cconnected, taking one element from each of the
subsets constituting a closed n-set is constructing an n-tuple that is in R. The second
constraint, Cclosed, tells that X is closed if any strictly larger pattern (more elements
from any domains) violates Cconnected. It is, for Cconnected, a closure property on the
n subsets of D1, D2, . . . and Dn altogether. It can easily be proved that an equiva-
lent closedness constraint only forces the patterns with one more element (from any
domain) to break Cconnected. Furthermore, because Cconnected ensures the presence in
R of every n-tuple in ×i=1..n Xi , checking the closedness constraint can be reduced
to searching for absent n-tuples involving this additional element only.

Definition 4 (Closed n-set (equivalent definition)) Given an n-set X , X is a closed
n-set iff it satisfies the two following constraints:

- Cconnected(X) ≡ ×i=1..n Xi ⊆ R;
- Cclosed(X) ≡ ∀i = 1..n,∀s ∈ Di \ Xi ,

¬Cconnected(X1, . . . , {s}, . . . , Xn), i. e., X1×· · ·×{s}×· · ·×Xn �⊆ R.

Example 1 In RE , represented in Table 1, ({α, γ }, {1, 2}, {A, B}) is a closed 3-set:

{α, γ } × {1, 2} × {A, B} ⊆ RE (in Table 1 there are ‘1’s at the intersection of all
the related hyperplanes);
Every pattern with one more element violates Cconnected:
- ¬Cconnected({β}, {1, 2}, {A, B}), i. e., {β} × {1, 2} × {A, B} �⊆ RE ;
- ¬Cconnected({α, γ }, {3}, {A, B}), i. e., {α, γ } × {3} × {A, B} �⊆ RE ;
- ¬Cconnected({α, γ }, {4}, {A, B}), i. e., {α, γ } × {4} × {A, B} �⊆ RE ;
- ¬Cconnected({α, γ }, {1, 2}, {C}), i. e., {α, γ } × {1, 2} × {C} �⊆ RE .

({α, β, γ }, {1, 2}, {A}) and ({α, β, γ }, {1, 2, 3, 4},∅) are two other examples of closed
3-sets in RE .

Considering, again, a ternary relation that stands for customers buying items along
months, a closed 3-set is a maximal subset of customers buying the same maximal
subset of items during a maximal subset of months. Such a pattern is useful for ana-
lyzing buying behaviors. The closedness constraint filters out all strict “sub-patterns”
(i. e., patterns where some elements are removed and none are added) of the largest
ones that are extracted. The justification for this constraint is the same as with item-
set mining: a lossless (Boulicaut and Bykowski 2000) reduction of the output, which
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keeps the most informative pattern of every equivalence class (Gallo et al. 2009). With
collections of n-sets, a “lossless condensation” means that, whatever j = 1..n and
given any (n − 1)-set X ∈ ×i=1..n∧i �= j 2Di

, all elements in D j that relate with every
combination of n − 1 elements taken from the n − 1 subsets of X can be derived
from the closed n-sets only. They are the largest set of elements in D j a closed n-set
associates with an (n − 1)-set larger than X (w.r.t. the � order).

2.3 Absolute noise-tolerance

The definition of a closed n-set is too strict to enable the discovery of relevant patterns
in noisy n-ary relations. The definition of a closed ET-n-set relaxes that of a closed
n-set. It is based on absolute noise-tolerance parameters ε = (εi )i=1..n ∈ N

n . Given
ε, the type of pattern that is to be mined is defined by a conjunction of two constraints,
namely Cε-connected and Cε-closed.

Definition 5 (Cε-connected) Given an n-set X , Cε-connected(X) ≡ ∀i = 1..n, ∀e ∈ Xi ,
|(X1 × · · · × {e} × · · · × Xn) \ R| ≤ εi .

Definition 6 (Cε-closed) Given an n-set X , Cε-closed(X) ≡ ∀X ′ ∈ × j=1..n2D j
,(

X � X ′ ∧ Cε-connected(X ′)
) ⇒ X = X ′.

Definition 7 (Closed ET-n-set) Given an n-set X , X is a closed ET-n-set iffCε-connected
(X) ∧ Cε-closed(X).

Let us discuss the meaning of the noise-tolerance parameters on a closed ET-n-set
(X1, . . . , Xn). The parameter εi quantifies, on any element in Xi , the maximal number
of n-tuples that are allowed to be absent from R. In other terms, with a spatial vision of
a pattern (an n-dimensional rectangle in R modulo permutations of the hyperplanes),
εi is the maximal number of ‘0’s on any hyperplane of the i th dimension. Furthermore
Cε-closed forces (X1, . . . , Xn) to be closed, i. e., any extension of it violates Cε-connected.
If ∀i = 1..n, εi = 0 then Cε-connected ≡ Cconnected and Cε-closed ≡ Cclosed. The closed
ET-n-set is a generalization of the closed n-set.

It is said that the definition of a closed ET-n-set uses an absolute noise-tolerance
because it considers numbers rather than proportions of ‘0’s. The following function
helps in referring to counts of n-tuples absent from R on any element of an n-set.

Definition 8 (Function 0) Given an n-set X , ∀i = 1..n, ∀e ∈ Di , 0(X, e) = |(X1 ×
· · · × {e} × · · · × Xn) \ R|.
Example 2 Table 2 shows the hyperplane of the 3-set X = ({α, γ }, {1, 2, 3}, {B})
related to the element B in the third attribute domain of RE (Table 1). It contains only
one absent 3-tuple, (γ, 3, B), i. e., 0(X, B) = 1.

The following property states that the function 0(., e) is increasing w.r.t. � and its
proof is straightforward.

Property 1 (0(., e) is increasing) ∀i = 1..n, ∀e ∈ Di , ∀(X, X ′) ∈ (× j=1..n2D j
)2,

X � X ′ ⇒ 0(X, e) ≤ 0(X ′, e).
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Table 2 Hyperplane of ({α, γ }, {1, 2, 3}, {B}) related to the element B

Let us use the 0 function to rewrite Definitions 5 and 6:

Definition 9 (Cε-connected) Given an n-set X , Cε-connected(X) ≡ ∀i = 1..n, ∀e ∈ Xi ,
0(X, e) ≤ εi .

Definition 10 (Cε-closed) Given an n-set X , Cε-closed(X) ≡ ∀i = 1..n, ∀e ∈ Di \ Xi ,⎧
⎪⎨

⎪⎩

0(X, e) > εi

or

∃ j �= i , ∃ f ∈ X j s.t. 0((X1, . . . , Xi ∪ {e}, . . . , Xn), f ) > ε j

.

Definition 9 is a direct rewriting of Definition 5. Definition 10 is more than that. It
is equivalent to Definition 6 because if a pattern can be extended without violating
Cε-connected, then there is such an extension with one element only (and the reverse obvi-
ously is true too). Furthermore, Definition 10 details the two ways to break Cε-connected.
Either the element to extend the closed ET-n-set gathers, when projected on the pattern,
too many n-tuples absent from R or this additional element makes the number of ‘0’s
on an orthogonal element (an element from another domain of the relation) exceed
the related noise-tolerance parameter.

Example 3 Let ε = (1, 1, 1). X = ({α, γ }, {1, 2, 3}, {B}) is a closed ET-3-set in RE .
X satisfies Cε-connected since each of its hyperplanes contains, at most, one 3-tuple
absent from RE : 0(X, α) = 0, 0(X, γ ) = 1, 0(X, 1) = 0, 0(X, 2) = 0, 0(X, 3) = 1
and 0(X, B) = 1. X satisfies Cε-closed because extending it with any additional ele-
ment either means that the hyperplane of X on this element contains strictly more than
one 3-tuple absent from RE (e. g., 0(X, β) = 2) or at least one of the hyperplanes
on an orthogonal element in X would contain strictly more than one 3-tuple absent
from RE (e. g., 4 cannot extend X because 0(({α, γ }, {1, 2, 3, 4}, {B}), B) = 2).
(α, β, γ }, {1, 2}, {A, B}) is another closed ET-3-set in RE .

If a pattern is not ε-connected then none of its super-patterns (w.r.t. �) is:

Property 2 (Anti-monotonicity of Cε-connected) ∀(X, X ′) ∈ (× j=1..n2D j
)2,

(
X � X ′ ∧ ¬Cε-connected(X)

) ⇒ ¬Cε-connected(X ′).

Proof By Definition 9, ¬Cε-connected(X) means that ∃i = 1..n, ∃e ∈ Xi s.t. 0(X, e) >

εi . By Definition 2, (e ∈ Xi ∧ X � X ′) ⇒ e ∈ X ′i . Finally, by Property 1, 0(X ′, e) ≥
0(X, e) > εi , i. e., ¬Cε-connected(X ′). ��

If a pattern is not ε-closed then none of its sub-patterns (w.r.t. �) is:
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Property 3 (Monotonicity of Cε-closed) ∀(X, X ′) ∈ (× j=1..n2D j
)2,

(
X � X ′ ∧ ¬Cε-closed(X ′)

) ⇒ ¬Cε-closed(X).

Proof By Definition 10, ¬Cε-closed(X ′) means that ∃i = 1..n, ∃e ∈ Di \ X ′i such that
0(X ′, e) ≤ εi ∧ ∀ j �= i , ∀ f ∈ X ′ j , 0((X ′1, . . . , X ′i ∪ {e}, . . . , X ′n), f ) ≤ ε j . By
Definition 2, (e ∈ Di \ X ′i ∧ X � X ′) ⇒ e ∈ Di \ Xi . By Property 1, 0(X, e) ≤
0(X ′, e) ≤ εi (1). By Definition 2, ∀ j �= i , ∀ f ∈ X ′ j , ( f ∈ X j ∧ X � X ′) ⇒
f ∈ X ′ j and, by Property 1, 0((X1, . . . , Xi ∪ {e}, . . . , Xn), f ) ≤ 0((X ′1, . . . , X ′i ∪
{e}, . . . , X ′n), f ) ≤ ε j (2). Together, (1) and (2) mean ¬Cε-closed(X). ��

2.4 Relative noise-tolerance

Intuitively, one can imagine that taking into account the sizes of the various dimen-
sions of a pattern should help to identify more relevant error-tolerant ones. Yet our
definition of a closed ET-n-set is based on absolute parameters and not relative ones.
This section will actually conclude on the significant issues raised by a relative toler-
ance to noise, hence our choice of an absolute one. Nevertheless, let us first show that
our closed ET-n-set extractor, named Fenster, can be adapted to enumerate patterns
with a relative tolerance to noise. This adaptation restricts the pattern search space
to a region where a chosen relative tolerance to noise can be converted into an abso-
lute one. This restriction is possible and efficient because Fenster can enforce any
piecewise (anti)-monotone constraint along the extraction (search space pruning). A
constraint simply is a predicate taking in argument an n-set, i. e., every dimension of a
pattern. That constraint complements Definition 7, i. e., it defines additional properties
the closed ET-n-sets must have. A constraint is piecewise (anti)-monotone if fixing all
occurrences of all variables but one (occurrence) always provides a constraint that is
monotone (if the constraint is satisfied and the free occurrence grows, w.r.t. ⊆, then
it keeps on being satisfied) or anti-monotone (if the constraint is violated and the free
occurrence grows, w.r.t. ⊆, then it keeps on being violated) Cerf et al. (2009a).

Many popular constraints deal with the “geometry” of the patterns, i. e., disregard
the actual elements in it and only consider the cardinalities of its dimensions: the
famous minimal size constraint forces one of the dimension to contain at least μ ∈ N

elements (where μ is a parameter fixed by the analyst), the minimal area constraint
forces the product of the dimension sizes to exceed a threshold ν ∈ N, etc. An n-dimen-
sional Cartesian coordinate system allows to depict the pattern selection imposed by
such a constraint. The coordinates of a pattern are its numbers of elements in each
attribute domain of the n-ary relation. For instance, a pattern (X1, X2) ∈ 2D1 × 2D2

in a binary relation R ⊆ D1 ×D2 is represented by the point (|X1|, |X2|) in the Carte-
sian plane. The patterns satisfying a minimal area constraint relate to points above the
curve whose equation is xy = ν (ν ∈ N being the minimal area chosen by the analyst).

A specific piecewise (anti)-monotone constraint allows to force the “geometry” of
a pattern to be in a region of the n-dimensional Cartesian coordinate system where its
absolute tolerance to noise corresponds to a relative one. In other words, instead of an
absolute tolerance to noise, the analyst can specify a relative one (r i )i=1..n ∈ [0, 1]n
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Fig. 1 Conversion from a relative noise tolerance (r1, r2) to an absolute one (ε1, ε2) depending on the
region of interest

and a region of interest. The relative parametrization is converted into the correspond-
ing absolute one (parameters (εi )i=1..n ∈ N

n) and Fenster extracts the desired closed
ET-n-sets in the chosen region. Here is the constraint defining such a region:

Cin-region-of-interest(X) ≡
n∧

i=1

⎛

⎝εi ≤ r i
∏

j �=i

|X j | < εi + 1

⎞

⎠ .

The proof of the piecewise (anti)-monotonicity of Cin-region-of-interest is based on, first,
splitting the double inequalities, then, showing that the left ones are anti-monotone
and the right ones monotone.

The regions of interest derive from the relative parameters (r i )i=1..n and it is easy
to compute the absolute parameters (εi )i=1..n matching, in a given region, the desired
patterns. Figure 1 depicts these regions in the case of a binary relation, i. e., it plots
their contour lines in the Cartesian plane whose coordinate system was described ear-
lier. The couple of integers inside a region are the absolute parameters Fenster uses.
When n ≥ 3, analog regions can be drawn in the n-dimensional coordinate system
(|X1|, . . . , |Xn|) but they are not rectangular anymore.

If the analyst is interested in (relatively defined) closed ET-n-sets scattered across
several regions, Fenster has to be run several times. Each run is performed under
the constraint Cin-region-of-interest corresponding to the region and with the associated
absolute tolerance to noise. The union of the closed ET-n-sets listed at each run is the
collection the analyst queried. Because the regions do not overlap, this union actually is
a concatenation, i. e., every desired pattern is discovered only once. Nevertheless, there
may be patterns that are included into each other (according to �). This is expected
with a relative tolerance to noise: there may exist a small pattern tolerating about the
same proportion of noise as a larger one. The larger one would encompass a greater
absolute quantity of noise on at least one of its elements. Only keeping the largest
patterns (i. e., those that are not including in another output pattern) does not provide
a lossless condensation of all patterns. In other terms, given an n-set tolerating pro-
portions of noise, some sub-patterns of it (according to �) gather greater proportions
of noise. That is why the closed ET-itemset miners, tolerating proportions of noise, do
not enforce a closedness constraint and extract huge collections of redundant patterns.
To the best of our knowledge, the only exception to this rule is AC-Close (Cheng
et al. 2008) and the closed patterns it outputs are not a lossless condensation of all
(closed and unclosed) patterns.
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By complementing Definition 7 with Cin-region-of-interest, Fenster discovers patterns
that are closed in the region. However, this closedness is not lossless either. To avoid
this issue, all ET-n-sets, tolerating noise in a relative way, could be enumerated. In
other terms, Cin-region-of-interest would only complement Definition 9. As a consequence,
the algorithm detailed in the next section would be simpler (no need of for the S n-set).
Its execution would require far more time though. Indeed, no closedness constraint
means far more patterns to list. Anyway, with or without the closedness constraint, a
relative tolerance to noise entails significantly increased time requirements (in com-
parison with an absolute tolerance to noise). Indeed, it offers far less opportunities of
search space pruning. When defined in an absolute way (as in Definition 9), Cε-connected
is anti-monotone, i. e., it allows the extractor to ignore the super-patterns of any n-set
exceeding the authorized εi absent n-tuples per element. Indeed, the violated absolute
thresholds are violated as well by the larger patterns. In the same situation (enu-
meration of a pattern violating the ε-connectedness) but with relative noise-tolerance
thresholds, the extractor often has to enumerate these super-patterns. Like the state
of the Art, it takes Fenster far more time to list patterns tolerating proportions of
noise in a large number of regions of interest (hence, many extractions) than patterns
tolerating a comparable amount of noise but in an absolute way.

Both the absence of a lossless condensation of the patterns (hence, much redun-
dant patterns) and the absence of an anti-monotone connectedness constraint (hence,
the practical impossibility to mine large datasets) justify our choice to mine n-sets
tolerating absolute quantities of noise.

3 Introducing the FENSTER algorithm

3.1 Search space recursive partitioning

Like many complete algorithms for constraint-based local pattern mining (including
Cerf et al. (2009a), the state-of-the-art algorithm for n-ary relation mining), Fenster
is based on enumerating candidates in a way that can be represented by a binary tree
where (a) at every node, an element e is enumerated; (b) every pattern extracted from
the left child does contain e; (c) every pattern extracted from the right child does not
contain e. This provides a partition of the search space, i. e., the union of the closed
ET-n-sets found in both enumeration sub-trees are exactly the closed ET-n-sets to be
extracted from the parent node (correctness) and each of these closed n-sets is found
only once (unicity). In the case of Fenster, the enumerated element e can always be
freely chosen among all the elements (from all attribute domains D1, D2, . . ., Dn)
remaining in the search space.

Each node N in the enumeration tree is a pair (U, V ) where U and V are two n-sets.
N represents all the n-sets containing every element in U and a subset of the elements
in V . In other words, N defines the search space region that contains every n-set X s.t.
U � X � U � V . The root node, ((∅, . . . ,∅), (D1, . . . ,Dn)), represents all possible
n-sets. On the contrary, any node of the form (U, (∅, . . . ,∅)) represents a single n-set:
U . More generally, a node (U, V ) represents 2

∑n
i=1 |V i | n-sets.
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Fig. 2 Enumeration of any element e ∈ V

Fig. 3 Enumeration of the element A ∈ V 3 from node N (Example 5)

Example 4 The enumeration node N = (U, V ) where U = ({α, γ },∅, {B}) and V =
(∅, {1, 2, 3, 4}, {A}) represents 25 (i. e., 32) 3-sets. E. g., it represents ({α, γ },∅, {B})
and ({α, γ }, {1, 2}, {B}). On the contrary, it represents neither ({α, γ }, {1, 2},∅) (B
must be in the 3-set) nor ({α, β, γ }, {1, 2}, {B}) (β must not be in the 3-set).

At a node N = (U, V ), Fenster chooses an element e from V (the selection
criterion is discussed in Sect. 4.2) and generates two new nodes, NL = (UL , VL) =
(U ∪{e}, V \{e}) and NR = (UR, VR) = (U, V \{e}). NL (resp. NR) represents the n-
sets of N that contain (resp. do not contain) e. Figure 2 depicts this simple partitioning
of the search space.

Example 5 Considering the node N of Example 4, the selection of the element A ∈ V 3

leads to the two nodes NL = (({α, γ },∅, {A, B}), (∅, {1, 2, 3, 4},∅)) and NR =
(({α, γ },∅, {B}), (∅, {1, 2, 3, 4},∅)) (see Fig. 3).

3.2 Efficient enforcement of Cε-connected

Property 2 allows to reduce the search space of the left child, i. e., the number of ele-
ments in VL . Indeed, by Property 2, if an element v ∈ VL is such that ¬Cε-connected(UL ∪
{v}), then ∀X � UL ∪ {v}, ¬Cε-connected(X). In other terms, among the n-sets repre-
sented by (UL , VL), those involving such an element v necessarily violate Cε-connected.
As a consequence, all such elements (i. e., {v ∈ VL | ¬Cε-connected(UL ∪ {v})}) are
safely removed from the search space VL . Figure 4 depicts this process, which also
guarantees that, at any node (U, V ) of the enumeration tree, U can be “augmented”
with any element e ∈ V and necessarily remains ε-connected. In this way, and ignor-
ing the enforcement of Cε-closed detailed in the next section, every n-set satisfying
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Fig. 4 Enumeration of any element e ∈ V . Cε-connected removes elements from V

Fig. 5 Illustration of Example 6

Cε-connected is considered once (and only once) along the enumeration. The performance
costs pertaining to the verification of Cε-connected are fundamental and are detailed in
Sect. 4.1.

Example 6 Let ε = (1, 1, 1). In our running example, and according to Table 1, nei-
ther the element 3 nor the element 4 can be added to UL = ({α, γ },∅, {A, B}) to
form a 3-set satisfying Cε-connected. Indeed, neither Cε-connected({α, γ }, {3}, {B}) nor
Cε-connected({α, γ }, {4}, {B}) is true (see Fig. 5).

Until now, we discussed how to extract all n-sets satisfying Cε-connected in n-ary
relations. We now need to enforce the closedness property.

3.3 Efficient enforcement of Cε-closed

For better performances, the closedness constraint must be handled during the enu-
meration process (safe pruning) rather than in a post-processing phase. Property 3
supports this achievement. At any enumeration node N = (U, V ), if there exists an
element s ∈ (∪i=1..nDi ) \ (∪i=1..nUi ∪ V i ) such that Cε-connected(U � V ∪ {s}) is
satisfied, then, by Definition 6, U � V is not ε-closed and, by Property 3, neither is
an n-set X � U � V . Because N represents n-sets that are all sub-patterns of U � V ,
the whole enumeration sub-tree rooted by N is safely pruned. Fenster does not miss
the closed ET-n-sets “containing” U (according to �): they are found in the parts of
the enumeration tree where s ∈ U .

One of the most interesting advantages of our enumeration strategy is that there is
actually no need to check whether every element in (∪i=1..nDi ) \ (∪i=1..nUi ∪ V i )

may prevent U � V from being ε-connected. Any element that has been removed from
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Fig. 6 Enumeration of any element e ∈ V . Cε-connected removes elements from V . Cε-closed is checked on
U � V extended with every element in S

Fig. 7 Illustration of Example 7

V thanks to Cε-connected (see Sect. 3.2) cannot. Indeed, the reason of the removal of
such an element f from V is that Cε-connected(U ∪{ f }) is false. In such circumstances,
and whatever V , Property 2 guarantees that Cε-connected(U � V ∪ { f }) cannot be true
either. When checking Cε-closed the only elements that need to be tried as extensions are
those that were previously chosen to be enumerated but refused (right child). These
elements are stored in an n-set that will always be denoted S. Figure 6 complements
Fig. 4 with this n-set S.

Example 7 Still using the running example, where ε = (1, 1, 1), assume that S =
({β},∅, {C}) is tied to the enumeration node N . At NR , the enumerated element, A,
is appended to its S 3-set. In this example, NL violates Cε-closed. Indeed, β ∈ S can
extend U � V , i. e., Cε-connected({α, β, γ }, {1, 2}, {B, A}) is true. Cε-closed prunes the
enumeration sub-tree that NL would root. In Fig. 7, illustrating this example, this node
is framed with dots.

3.4 Two performance improvements

Every n-set X represented by a node N = (U, V ) is such that U � X . By Prop-
erty 2, if an element s ∈ S is such that ¬Cε-connected(U ∪ {s}), then ∀X � U ∪ {s},
¬Cε-connected(X). As a consequence, s cannot prevent any n-set represented by N
from being ε-closed. All such elements (i. e., {s ∈ S | ¬Cε-connected(U ∪ {s})}) are
safely removed from S, whose only purpose precisely is the enforcement of Cε-closed.
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Fig. 8 Fenster enumerating any element e ∈ V

Fig. 9 Illustration of Example 8

The involved process is similar to the enforcement of Cε-connected (see Sect. 3.2) but
applied on S instead of V (the fundamental implementation details are described in
Sect. 4.1). This optimization speeds up the enforcement of Cε-closed for all the nodes
deriving from N . This slight modification of enumeration is reported in Fig. 8.

In general, and contrary to the extraction of exact patterns, several closed ET-n-sets
can be made by moving some elements from V to U . However, when U � V satisfies
Cε-connected then it is, by Definition 6, the only closed ET-n-set with U “included”
(w.r.t. Definition 2). That is why Cε-connected(U � V ) is tested. If it is satisfied, a direct
jump to the leftmost leaf of the enumeration sub-tree (rooted by the current node) is
performed. This jump is safe,

Because most of the nodes are at the bottom of the enumeration tree (in a complete
binary tree, half of the nodes are leaves), this improvement significantly reduces the
extraction times.

Example 8 In the enumeration node NL of Example 6,U�V = ({α, γ }, {1, 2}, {B, A})
and Cε-connected({α, γ }, {1, 2}, {B, A}) is true. The improvement is applied (see Fig. 9)
before the actual enforcement of Cε-closed. Of course, the obtained node is not ε-
closed for the same reason as the intermediary node (see Example 6): β ∈ S1 can
extend it.
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Fig. 10 The Fenster algorithm

3.5 Algorithm

Fenster is a depth-first search algorithm. It takes three arguments: U , V and S. It
starts with U0 = (∅, . . . ,∅), V0 = (D1, . . . ,Dn) and S0 = (∅, . . . ,∅). Its major steps
are presented in the pseudo-code of Fig. 10, which can be seen as a translation of the
diagram in Fig. 8. First of all, the closedness pro is checked (see Sect. 3.3). If it is
satisfied and no element remains to be enumerated, the n-set U is output. Otherwise
an element e of V is chosen (Sect. 4.2 discusses this step) and the search space is
split between the n-sets that contain e and those that do not (see Sect. 3.1 and 3.2).
Finally, Fenster is recursively called on the two related enumeration nodes. More-
over, any user-defined relevancy constraint C can be additionally enforced as long as
it is piecewise (anti)-monotone (Cerf et al. 2009a).

4 Implementation

4.1 Exploiting Cε-connected and Cε-closed

4.1.1 Performance issue

Although the enumeration of Fenster is inspired by that of Data- Peeler (Cerf et al.
2009a), Fenster is not a trivial extension of Data- Peeler. A naive enforcement of
the new constraints Cε-connected and Cε-closed would lead to disastrous running times.
Contrary to Data- Peeler, Fenster cannot traverse small subspaces of the dataset
in search of one n-tuple absent from R. When an element e is chosen, the absence in
R of one n-tuple with e (i. e., on the hyperplane related to e) is not enough to enforce
Cε-connected, whereas it is when enforcing Cconnected. Searching for several n-tuples
absent from R in this hyperplane is not enough either. Fenster needs to know the
other n-tuples absent from R that were previously tolerated in every n-set represented
by the current node, i. e., the n-tuples in (×i=1..nUi ) \ R. It needs to know where,
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i. e., on which hyperplanes, they are and how many of them are found on each of these
hyperplanes. The enforcement of Cε-closed raises the same trouble: given U , V and
S, the ε-closedness of some n-set represented by (U, V ) cannot be proved by only
consulting with the n-tuples in ×i=1..nUi ∪ V i involving the elements in S. As a con-
sequence, a naive enforcement of Cε-connected (resp. Cε-closed) would, at every iteration,
count the numbers of n-tuples absent from R in every hyperplane of U (resp. U � V )
and on each of its projections on the elements in V (resp. S). Such an implementation
would be intractable even on rather small relations.

4.1.2 Noise counters in relevant subspaces of the relation

To remain tractable on large relations, Fenster relies on the following observation:
from a parent enumeration node to its children, U and U � V do not change much. U
only grows by one element in the left child and is left unchanged in the right child.
U � V loses one element in the right child; potentially more in the left child. To avoid
repetitive scans of the same parts of R, Fenster updates counters of absent n-tuples
that are relevant to the verification of Definitions 9 and 10 on the recursively consid-
ered patterns. In this way, at every recursive call, Fenster only needs to access the
parts of R related to the symmetric differences between the n-sets UP and VP of the
parent node and the respective n-sets U and V of the child node. This means much
better time performances (than the naive approach) to the cost of a worse memory
consumption (to store the counters). Later, it will be formally shown that the time gain
is huge while the space complexity usually is dominated by the dataset when n ≥ 4.

Let us finally list the counters that are relevant when enforcing Cε-connected and
Cε-closed. Keeping in mind their definitions (i. e., Definitions 9 and 10) while looking
at Fig. 10 provides the following list:

To check Cε-closed(U � V ):
- ∀s ∈ S, 0(U � V, s);
- ∀s ∈ S,∀u ∈ U, 0(U � V ∪ {s}, u).
Given e ∈ V and UL = U ∪ {e} (the elements that are present in every n-set
descendant of the left child), to compute {v ∈ V \ {e} | Cε-connected(UL ∪ {v})}:
- ∀v ∈ V, 0(UL , v);
- ∀v ∈ V,∀u ∈ UL , 0(UL ∪ {v}, u).
Given e ∈ V and UL = U ∪ {e} (the elements that are present in every n-set
descendant of the left child), to compute {s ∈ S | Cε-connected(UL ∪ {s})}:
- ∀s ∈ S, 0(UL , s);
- ∀s ∈ S,∀u ∈ UL , 0(UL ∪ {s}, u).

By factorizing the last two points, four families of counters are useful:

- ∀ f ∈ S, 0(U � V, f );
- ∀ f ∈ S,∀u ∈ U, 0(U � V ∪ { f }, u);
- ∀ f ∈ V � S, 0(UL , f );
- ∀ f ∈ V � S,∀u ∈ UL , 0(UL ∪ { f }, u).

During the recursion, any element in V may, in the descendant nodes, belong to a U
or a S n-set. By keeping updated every type of counter (0(U �V, f ), 0(U �V ∪{ f }, u),
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0(UL , f ) and 0(UL ∪ { f }, u)) for every ( f, u) ∈ (U � V � S)2 \ U 2, their computa-
tion is always performed incrementally. In this way, some counters are only used when
the element defining the hyperplane is in a specific set (e. g., a counter 0(U � V, f )

is not used until f ∈ S). Anyway, it is advantageous to maintain them updated for
every element that may reach a state where they would be useful (e. g., 0(U � V, f )

is maintained updated even if f ∈ V ). An alternative strategy would be to initialize
a counter when required. It would be less efficient because, along the enumeration
tree, there are exponentially many states where a given counter is useful. As a con-
sequence, the cost of an on-demand initialization of the counter (scan of part of the
dataset) multiplied by this number of states exceeds the cost of maintaining them all
updated until used or useless. Thus, all counters are initialized while storing the dataset
and, whenever elements are moved or removed from V , the counters are updated by
only traversing the symmetric differences between the n-sets UP and VP of the parent
node and the respective n-sets U and V of a child node. These updates can be further
improved for the counters of the types 0(UL ∪ { f }, u) and 0(U � V ∪ { f }, u) (where
( f, u) ∈ (U � V � S)2 \ U 2). To do so, they are replaced by:

- 0 (UL , f, u) = | (U 1
L × · · · × { f } × · · · × {u} × · · · × U n

L

) \ R|;
- 0 (U � V, f, u) = | (U 1 ∪ V 1 × · · · × { f } × · · · × {u} × · · · × U n ∪ V n

) \ R|.
The desired quantities 0(UL ∪ { f }, u) and 0(U � V ∪ { f }, u) can be computed, still
without any access to the relation:

- 0 (UL ∪ { f }, u) = 0 (UL , u) + 0 (UL , f, u);
- 0 (U � V ∪ { f }, u) = 0 (U � V, u) + 0 (U � V, f, u).

The two new types of counter involve much smaller subspaces (one dimension less)
than the ones they replace. Thus, they do not need to be updated as often, hence the
additional time gain.

Example 9 Consider that Fenster, working on the relation RE , reaches the enu-
meration node where U = ({α, γ }, {1, 2}, {B}) and V = (∅, {3, 4},∅). Consider,
moreover, that S = ({β},∅, {A}). Although this enumeration node is rather small, it
is associated with too many counters to list them all here. Among them, 0(U, α) = 0,
0(U � V, α) = 1, 0(U, 3) = 1, 0(U � V, 3) = 1, 0(U, A) = 0, 0(U � V, A) = 2,
0(U, α, 3) = 0, 0(U�V, α, 3) = 0, 0(U, α, A) = 0, 0(U�V, α, A) = 2, 0(U, 3, A) =
1, 0(U � V, 3, A) = 1, etc.

4.1.3 Time gain

Consider an enumeration node (U, V ), its n-set S and the enumerated element e ∈ V .
With the naive enforcement of Cε-connected and Cε-closed (verifying Definitions 9 and 10
without the help of any counter), the n-tuples in ∪n

i=1(U
i ∪V i ∪S i )×(× j �=iU j ∪V j )

would be traversed at any child of (U, V ). This set of n-tuples relates to the enforce-
ment of Cε-closed only but it includes ×i=1..nUi that is accessed to verify Cε-connected (at
the left child only). Updating the counters, described in the previous section, requires
accessing far less n-tuples. Assuming e was chosen in the dth dimension, Fenster
traverses ∪i �=d(Ui ∪ V i ∪ S i ) × (× j /∈{d,i}U j ∪ V j ) at any child of (U, V ). The enu-
meration strategy, hence the number of enumeration nodes, being the same in both
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cases, it could be written that Fenster is as fast as the naive approach running on a
dataset with one dimension less (and the same number of elements per dimension).

However, this statement only holds when the time spent using the counters (to
enforce Cε-connected and Cε-closed) does not dominate the time spent accessing the
n-tuples (to update the counters). To verify it, the number of counters accessed at every
node must be studied. To enforce Cε-connected, it is, at worst (none of the elements in
V are removed), |V | + 2

∑
i=1..n |V i | ∑ j �=i |U j |. To enforce Cε-closed, it is, at worst

(none of the elements in S extends U � V ), |S| + 2
∑

i=1..n |S i | ∑ j �=i |U j ∪ V j |.
In both cases, the first term relates to checking whether every hyperplane v ∈ V
(resp. s ∈ S) contains too many (resp. enough) n-tuples absent from R to satisfy
Cε-connected (resp. Cε-closed) and the second term relates to checking whether an hyper-
plane v ∈ V (resp. s ∈ S), if added to U (resp. U � V ) would make any orthogonal
element exceed its noise tolerance threshold. As explained at the end of the previ-
ous section, two counters are summed to obtain the number of absent n-tuples on an
orthogonal hyperplane, hence the factor. Overall, the time spent using the counters is
O(

∑
i=1..n |S i | ∑ j �=i |U j ∪ V j |).

This number is now compared to the time spent updating the counters, i. e., O(|∪i �=d

(Ui ∪ V i ∪ S i ) × (× j /∈{d,i}U j ∪ V j )|), which can be rewritten O(
∑

i �=d |Ui ∪
V i ∪ S i | ∏ j /∈{d,i} |U j ∪ V j |). When n = 2, the time spent accessing the counters,

O(|({S1}× (U 2 ∪ V 2))∪ ({S2}× (U 1 ∪ V 1))|), is dominant. It is, however, below the
time required by the naive enforcement of Cε-connected and Cε-closed. When n ≥ 3, the
comparison depends on the actual cardinalities of the sets Ui , V i and S i (i = 1..n).
In the worst case scenario we consider, Cconnected never removes any element from V .
As a consequence, every element that is not in U � V was moved to S and, carrying
on with our pessimistic view, the first improvement presented in Sect. 3.4 has not
removed it from there. We therefore have ∀i = 1..n, Ui ∪ V i ∪ S i = Di and:

- O
(∑

i �=d |Di | ∏ j /∈{d,i} |D j \ S j |
)

accesses to n-tuples;

- O
(∑

i=1..n |S i | ∑ j �=i |D j \ S j |
)

accesses to counters.

For a clearer view of how large theses quantities are, let us assume that both the dataset
and the pattern are perfectly cubic, i. e., ∃(D, S) ∈ N

2 | ∀i = 1..n, |Di | = D and
|S i | = S. Under this assumption, we have:

- O
(
(n − 1)D(D − S)n−2

)
accesses to n-tuples;

- O (nS(n − 1)(D − S)) accesses to counters.

After a simplification by (n − 1)(D − S), we end up comparing O(D(D − S)n−3)

with O(nS). When n = 3, the accesses to the counters and the n-tuples are on the
same order, whereas the cost of traversing the relation dominates when n ≥ 4. Here
is a more intuitive way to understand it: at every enumeration node, the n-tuples that
are accessed to update the counters are on an hyperplane (related to e in Fig. 10). It is
an (n − 1)-dimensional subspace. In contrast, the number of used counters, whatever
the arity of R, is on the order of a 2-dimensional subspace of the dataset (the finest
counters are numbers of n-tuples absent from R at the intersection of two orthogonal
hyperplanes). To conclude, it can indeed be written that, searching for closed patterns
in an n-ary relation with n ≥ 3, Fenster is as fast as the naive approach (with no
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counter) processing a relation on domains of the same sizes but with an arity of n − 1.
When n = 2, a gain exists but is not as impressive.

4.2 Choosing the element to enumerate

At every recursive call, any element in V can be enumerated (function Choose in
Fig. 10). Cerf et al. (2009a) empirically showed that the choice of this element, in
particular the choice of the attribute domain it belongs to, is fundamental. Different
sensible strategies produce different enumeration trees whose sizes (hence, the time
required to traverse them) varies between several orders of magnitude. Compared
to this previous work, Fenster profits from more information at its disposal when
it comes to choose an element to enumerate. The counters allow a finer choice and
smaller enumeration trees are built. Fenster chooses the enumerated element in two
stages:

1. The attribute domain, in which the element will be enumerated, is chosen.
2. The element itself is chosen.

The chosen attribute domain Dd maximizes the following expression:

∑

k �=d

⎛

⎝|V k | ×
∏

l /∈{d,k}
|Ul |

⎞

⎠ .

This expression actually counts the n-tuples that are accessed to update the counters
0(UL , f ) and 0(UL , f, u), where f ∈ V k �=d and u ∈ Ul /∈{d,k}. These counters are
those involved in the enforcement of Cε-connected, i. e., in the removal of elements from
V \ {e} to VL . As a consequence, the larger the expression above, the greater the
expected reduction of the search space in the left child.

Then, Fenster takes advantage of the counters 0(UL , f ). It chooses the element
f ∈ V d providing the greatest 0(UL , f ). The justification is simple: the more n-tuples
in U 1 ×· · ·×U n that are absent from R, the less room for others, hence the smaller the
search space of the left child. For the same reason applied to the left grandchild (and
beyond), when V d maximizes 0(U, f ), an element leading to a greater 0(U � V, f )

is preferred.

Example 10 In the Example 6, illustrated by Fig. 5, the choice of enumerating A ∈ V 3

actually follows the heuristics stated above:

Choice of V 3:
∑

k �=d

(
|V k | × ∏

l /∈{d,k} |Ul |
)

is maximized for d = 3:

d = 1:
(|V 2| × |U 3|) + (|V 3| × |U 2|) = (4 × 1) + (1 × 0) = 4;

d = 2:
(|V 1| × |U 3|) + (|V 3| × |U 1|) = (0 × 1) + (1 × 2) = 2;

d = 3:
(|V 1| × |U 2|) + (|V 2| × |U 1|) = (0 × 0) + (4 × 2) = 8.

Choice of A: Among the elements in V 3, e = A maximizes 0(({α, γ },∅, {B}), e)
(this value is 0 but V 3 only contains A).
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4.3 Space complexity

The n-sets U , V and S and all the counters associated with the elements they gather
need to be copied whenever a left child enumeration node is built. When n ∈ {2, 3},
the counters occupy most of the memory. In this case, and since the depth of the
recursion reaches, in the worst case,

∑n
i=1 |Di |, the space complexity of Fenster is

O((
∑n

i=1 |Di |)× (2
∑n

i=1 |Di |+2
∑

i �= j |Di × D j |)) = O(|Di |2 ×|D j |), where Di

is the largest dimension and D j the second largest. When n ≥ 4, the space to store
the relation, O(

∏n
i=1 |Di |), usually dominates that of the counters, which remains

unchanged.
Because the second recursive call of Fenster (construction of a right child) is a

tail call, the variables (U , V , S and the counters) of the parent node can be safely
reused. Not copying these variables reduces both the time and space requirements in
a significant way. Overwriting the parent enumeration nodes with their left children
(i. e., inverting the two recursive calls) would not provide as much gain. Indeed, in a
right child enumeration node, the search space V is only reduced by one element and
U stays unchanged. Because of that, the enumeration sub-tree rooted by a right child
node is far less often pruned (by Cε-closed or C) than that of a left child (where the search
space V may be greatly reduced). As a consequence, the recursive calls of Fenster
(see Fig. 10), down to a leaf, usually involve far more right children than left ones
and, in practical settings, overwriting the parent enumeration nodes with their right
children significantly decreases the average number of nodes to be kept in memory.
It even provides substantial gains in terms of average extraction time because the cost
of copying all counters is taken off.

5 Empirical study on synthetic datasets

Fenster is distributed under the terms of the GNU GPLv34. It was coded in C++ and
compiled with GCC 4.5.2. Most of the following experiments were performed on an
Intel® processor cadenced at 2GHz, 2 GB of RAM and running a GNU/Linux™ oper-
ating system. Because AC-Close only runs on Windows™, the experiment involving
it was performed on another computer equipped with an Intel® processor cadenced
at 2.26GHz and 3 GB of RAM. The implementations of CubeMiner (Ji et al. 2006),
Trias (Jaschke et al. 2006), AC-Close (Cheng et al. 2008) and DCE (Georgii et al.
2011) were kindly provided by their respective authors. DCE’s ability to rank the
patterns was disabled.

5.1 Experimental setting

Four, possibly overlapping, n-sets are randomly placed in a cubic dataset, i. e., all
attribute domains have the same cardinality. The obtained relation is named Rhidden.

4 http://dcc.ufmg.br/~lcerf/en/prototypes#fenster.
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Some noise is added to it5. In this way, we obtain the relation R that is mined. The
noise follows a Bernoulli distribution, i. e., every n-tuple has the same probability
(called “noise level”) to be switched (an n-tuple absent from Rhidden becomes present
in R or vice versa). The experiments are performed with relations whose noise level
varies between 0 and 0.45 (0.5 corresponds to purely random datasets). The min-
ing task being symmetric w.r.t. the attributes, every tested parametrization satisfies
∀i = 1..n, εi = ε ∈ N.

In this experimental section, Fenster is compared to DCE and AC-Close. DCE
(Georgii et al. 2011) is the only other existing approach able to mine noise tolerant-pat-
terns in arbitrary n-ary relations. Contrary to Fenster, its noise tolerance is relative
(rather than absolute) and per-pattern (rather than per-element), i. e., the proportion
of absent n-tuples covered by a whole pattern must exceed a density threshold for this
pattern to be output by DCE. Since most of the extracted patterns barely satisfy the
minimal size constraints, DCE’s density thresholds are chosen so that they relate to
the proportions of absent n-tuples Fenster tolerates in these smallest patterns. For
instance, considering a ternary relation, the extractions performed by Fenster with
ε = 2 and at least four elements per attribute are compared with those performed
by DCE with a minimal density of 1 − 2

4×4 = 0.875 and the same minimal size
constraints.

Several approaches were designed to extract noise-tolerant patterns from binary
relations (see Sect. 7.1). Three main reasons justify our choice of AC-Close as a
competitor in this specific context (w.r.t. what Fenster can achieve). First of all, its
tolerance to noise is, like Fenster’s, per-element, i. e., per-transaction and per-item.
Then, and again like Fenster, AC-Close mines closed ET-patterns, whereas most
of the other approaches do not force the returned itemsets to be closed. Finally, by
constraining the cardinality of the exact support of a pattern to exceed αs (where s is a
minimal size constraint on the ET-pattern and α ∈ [0, 1] is a user-defined parameter),
AC-Close somehow circumvents the performance issues the other approaches go
through when tolerating proportions of noise. Indeed, in their experimental section,
the authors claim that AC-Close runs much faster than AFI, described in Liu et al.
(2006).

As detailed in Sect. 7, the numerous other ET-itemset miners are less comparable to
Fenster. Notice, in particular, that the works of Ardian K. Poernomo and Vivekanand
Gopalkrishnan allow the discovery of 1-dimensional patterns in binary relations, i. e.,
return subsets of items for which there exists at least one support so that the chosen def-
inition of the pattern is verified. Because several 2-dimensional patterns may involve
a same set of items, less patterns are listed and the tuples they cover are not directly
accessible. This prevents the use of a post-process such as Cerf et al. (2009b), which
heuristically agglomerates the patterns to tolerate more noise than what is possible, in
a reasonable time, with complete approaches. Indeed, when listing every noise-toler-
ant pattern verifying the definition, the hidden patterns usually are unreachable in a
reasonable time and heuristics are required to “finish the work”. More precisely, the

5 The commands generating the noisy relations and the Bash scripts we have run for these experiments are
distributed under the terms of the GNU GPLv3. They are available athttp://dcc.ufmg.br/~lcerf/en/utilities.
html#noisy.

123

http://dcc.ufmg.br/~lcerf/en/utilities.html#noisy
http://dcc.ufmg.br/~lcerf/en/utilities.html#noisy


596 Loïc Cerf et al.

complete approaches can, in a real-life context, only list multiple fragments of the
hidden patterns. If these fragments cover the same tuples as the hidden patterns (and
only them), agglomerating the fragments allow to recover the hidden patterns. This
explains our choice of a tuple-based measure to assess, in this section, the quality of
the patterns extracted in a complete way:

Definition 11 (Quality) Given E the set of n-tuples covered by the extracted patterns
and Rhidden the relation before the addition of noise, the quality of the extraction is
|Rhidden∩E |
|Rhidden∪E | .

The other criteria used to evaluate the performances of Fenster and its competitors
are the number of patterns they list (the smaller, the faster the subsequent agglomera-
tion) and the running time.

5.2 Quality results

The qualities obtained with ternary relations are plotted in Fig. 11. In this setting, the
hidden patterns contain eight elements in every attribute domain (of 32 elements) and
the patterns are constrained to have at least four elements per attribute. According to
Fig. 11a, the best parametrization for Fenster is ε = 2 when the level of noise is
below 0.15. At this point, the quality of the extracted collection of closed ET-3-sets
is almost perfect, whereas the collection of exact closed patterns shows a quality of
0.25. The noisiest settings are advantageously mined with ε = 3. This confirms that
greater noise tolerances are preferred to mine relations suffering from higher levels of
noise.

Comparing these quality results with those of DCE allows to defend our choice
of a per-element tolerance to noise. In Fig. 11b, DCE considers the noise covered by
whole patterns and, doing so, the quality results are both worse and more sensitive to
the choice of the noise tolerance threshold. In particular, tolerating a little more noise
than necessary provides poor results. This is explained by the fact that an extracted
pattern is somehow allowed to “go beyond” an hidden pattern if the covered part of
the hidden pattern has not been altered by much noise. If this is the case, the toler-
ated proportion of absent tuples is far enough from being reached to accept additional
elements outside the hidden pattern. Understanding this problem, the authors of DCE
have proposed a post-process that additionally forces each element of the pattern to
cover at most the chosen proportion of noise. With this post-process the only dif-
ference with Fenster’s tolerance to noise relates to the absolute/relative dilemma.
Nevertheless, the ability to tolerate a greater number of absent tuples in larger patterns
does not affect the quality in this experiment, i. e., Fenster (see Fig. 11a) and DCE +
post-process (see Fig. 11c) extract patterns that cover the exact same tuples.

Fenster and DCE are tested on 4-ary relations. The experimental protocol still
follows what Sect. 5.1 details. The hidden patterns contain four elements in every
attribute domain (of 16 elements) and the patterns are forced to have at least two ele-
ments per attribute. Figure 12 plots the qualities obtained in this setting. Whatever the
level of noise, Fenster (see Fig. 12a) outputs better collections of closed ET-4-sets
with ε = 1 than without any tolerance to noise (i. e., ε = 0). With a noise level of 0.25,
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Fig. 11 Quality of the extracted collections of patterns with at least four elements per attribute in the
32 × 32 × 32 datasets
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the quality of the collection of exact closed 4-sets is below 0.3, whereas it reaches 0.65
when ε = 1. Furthermore, because of the loose minimal size constraints, ε = 2 is
too high. Comparing Fenster’s results with those of DCE with (Fig. 12c) and with-
out (Fig. 12b) the filtering post-process leads to similar conclusions as those drawn
from the 3-dimensional case: the quality of the patterns globally tolerating noise is
far beneath that of the patterns tolerating noise per element and, in this latter context,
DCE’s relative tolerance to noise has almost no effect on the quality w.r.t. Fenster’s
absolute tolerance.

The worse quality results of a per-pattern tolerance to noise were explained by the
possibility for those patterns to “go beyond” the hidden patterns. The mere quality
measure is not enough to justify this explanation. That is why Fig. 13 plots the propor-
tion of the covered tuples that is outside the hidden patterns, i. e., |E\Rhidden|

|E | . When the
noise is tolerated per-pattern (Fig. 13b) instead of per-element (Fig. 13a), as Fenster
does, this quantity of incorrectly covered tuples clearly is higher. These results relate
to the experiment on 4-ary relations but a same conclusion is drawn from the analysis
of the patterns extracted in the ternary relations.

Fenster and DCE are now seen as binary classifiers of tuples (in the classes “being
covered by the hidden patterns” and “not being covered by the hidden patterns”) so
that ROC curves can be plotted.6 For a given noise level, such a curve represents
the proportion of correctly covered tuples, |E∩Rhidden|

|Rhidden| , in function of the proportion

of incorrectly covered tuples, |E\Rhidden|
|(×n

i=1Di )\Rhidden| . Figure 14 shows the results obtained

from the experiment on 4-ary relations. For more clarity, the curves related to noise
levels up to 0.15 were omitted: they all coincide with the leftmost and topmost axises
of the plots, i. e., the hidden patterns are entirely covered before any false positive tuple
is ever covered. Every number written next to a point corresponds to the related noise
tolerance threshold. The ROC curves obtained with a per-element tolerance to noise
are similar to those obtained with a per-pattern tolerance to noise. This means that
the correctly and incorrectly covered tuples are “ranked” in about the same way when
moving from no tolerance to noise (where, obviously, the way to tolerate noise has no
influence on the output patterns) to tolerating much noise. Nevertheless, with DCE’s
per-pattern tolerance, increasing the density threshold more quickly leads to the upper-
right corner of the ROC space (one can, for instance, compare the positions of DCE’s
points relating to a minimal density of 0.875 with those obtained by Fenster and an
absolute tolerance of 1). This reflects the greater sensitivity to parametrization that has
already been commented from the quality results. This difference is quite important in
practice because, contrary to a standard classification problem, the pattern extraction
is unsupervised and the analyst usually has no way to precisely know the level of noise
affecting the data, hence the optimal noise tolerance thresholds. The analog analysis
of the patterns extracted in the ternary relations leads to the same conclusions.

To limit the false-negative rate, stronger minimal size constraints can be used. By
requiring at least five (respectively three) elements per attribute of the ternary (respec-
tively 4-ary) relations, none of the false-positive tuples are ever covered, i. e., the
ROC curves coincide with the leftmost axis of the ROC space. Unfortunately, many

6 We would like to thank an anonymous reviewer for this original idea.
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Fig. 12 Quality of the extracted collections of patterns with at least two elements per attribute in the
16 × 16 × 16 × 16 datasets
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Fig. 13 Proportion of covered 4-tuples outside the hidden patterns for the extractions with at least two
elements per attribute in the 16 × 16 × 16 × 16 datasets

true-positive tuples end up not being covered as well and the quality is worse. In fact,
from a noise level of 0.3 (respectively 0.25) and with the greatest noise tolerance
we have tested (ε = 4), no closed ET-3-set (respectively closed ET-4-set) satisfy the
minimal size constraints.

5.3 Size of the output collection of patterns

Figure 15 shows the number of patterns Fenster and DCE + post-process extract in
the synthetic ternary relations. In both cases, these quantities are huge in comparison
with the actual number of hidden patterns (4). This confirms what was written to justify
the choice of a per-tuple quality measure: numerous fragments of the hidden patterns
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Fig. 14 ROC curves for the extractions with at least two elements per attribute in the 16 × 16 × 16 × 16
datasets

are discovered. Because these fragments must be agglomerated with a method such
as Cerf et al. (2009b) (which has a time complexity that is quadratic in the number
of fragments to agglomerate), a smaller number of patterns is preferable so that the
agglomeration can be achieved in a reasonable time. In this regard, Fenster (Fig. 15)
appears far preferable to DCE (Fig. 15b) especially in the contexts where little noise
affects the data. The reason to this difference is the use (or, for DCE, the lack thereof) of
the closedness constraint, which condenses the collection of patterns without any loss
of information (see Sect. 2.2). DCE cannot efficiently enforce this constraint because
the patterns tolerating noise in a relative way do not satisfy a downward closure pro
(stated with our terminology: DCE’s sub-patterns of a connected closed patterns are
not necessarily connected). For instance, when no noise affects the data, DCE not only
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(b) DCE with post-process.
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Fig. 15 Number of extracted patterns with at least four elements per attribute in the 32 × 32 × 32 datasets

outputs the four hidden patterns (like Fenster does) but also all their sub-patterns as
long as they have at least four elements per attribute (the minimal size constraints).
Naturally, not using DCE’s filtering post-process provides even more patterns.

The evolution of the number of closed ET-3-sets when the noise varies is explained
by the increasing fragmentation which, at some points makes the patterns so small
that they do not satisfy the minimal size constraints. In the very noisy relations, tol-
erating too much noise (ε ∈ {3, 4}) leads to the extraction of patterns covering the
false-positive 3-tuples, hence a new increase in the size of the extracted collections.
With the 4-ary relations, the results are similar but the latter increase of the number
of closed ET-4-sets occurs at lower levels of noise and with less tolerance to noise
because the number of 4-tuples outside the hidden (hence, the number of false-positive
tuples) is greater.
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Fig. 16 Running times for the extractions with at least four elements per attribute in the 32 × 32 × 32
datasets

5.4 Time performances

The attentive reader has probably noticed that, in the reported results, DCE’s tolerance
to noise is not “pushed” as much as Fenster’s. In fact, DCE cannot, in a reasonable
time (timeout set to 12 h per extraction), complete those extractions. The fastness of
Fenster is its most significant advantage over DCE. Figure 16 plots the running times
of these two algorithms running on the synthetic ternary relations. We recall that, at
comparable thresholds of noise tolerance, the tuples covered by the patterns are exactly
the same when DCE’s filtering post-processing is used (see Sect. 5.2). Depending on
the setting, Fenster is between one and four orders of magnitude faster than DCE.
DCE’s running times without the post-process almost are identical to those with the
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post-process. They actually are slightly worse (probably because of the cost of out-
putting many more patterns on disk). The reason for Fenster being much faster than
DCE relates to the choice of an absolute tolerance to noise. DCE’s relative tolerance
to noise does not allow to prune the search space as much because encountering a
pattern with a density below the required threshold does mean that none its super-pat-
terns violates this constraint as well. Despite the significant improvement over DCE’s
efficiency, it must be observed that increasing Fenster’s tolerance to noise leads to
an exponential growth of the time it takes to achieve the extraction. This justifies what
was previously written about the practical impossibility to tolerate, in a complete way,
enough noise to recover the hidden patterns.

The good efficiency of Fenster is observed in 2-dimensional contexts too. To estab-
lish a comparison with AC-Close, we could not consider the extraction of patterns
with at least four elements per attribute in 32×32 datasets becauseAC-Close (param-
etrized with α = 0.75, i. e., the exact support of the patterns must exceed 0.75 × 4 =
3 elements) could not terminate in a reasonable time. That is why the subsequent
experiments deal with 16 × 16 datasets containing four overlapping 4 × 4 patterns.
The closed patterns extracted by both Fenster and AC-Close are constrained to
contain at least two elements per attribute7. α is set to 0.5 and various (relative)
noise tolerance levels ε are tested. Like with Fenster, such a level is applied to both
attributes.

Figure 17 plots the quality results of Fenster and AC-Close. Because the hidden
patterns are small, the best results are obtained with no tolerance to noise. In this set-
ting, AC-Close and Fenster compute the same collections of patterns. It is notice-
able that a relative tolerance to noise allows more subtle variations of the returned
collections. Figure 18 compares the time performances of Fenster (with ε = 0,
Fenster’s extractions take less than 0.01 s and are not reported) and AC-Close.
On this small relation, Fenster already runs up to three orders of magnitude faster
than AC-Close. As mentioned earlier, this difference increases with the size of the
dataset (even if the same ratio size of an attribute domain / minimal
size constraint is kept). The reason why Fenster runs significantly faster than
AC-Close is again related to the choice for an absolute tolerance to noise. The steep
increase of AC-Close’s running times when the noise level grows indicates a poor
scalability w.r.t. the number of tuples (the hidden patterns only cover a small part of the
16×16 = 256 tuples, therefore the noise mainly is false-positive and its level roughly
is the density of the dataset). Interestingly, AC-Close’s performances do not seem to
be affected by the chosen tolerance to noise (the curves for ε ∈ {0, 0.1, 0.2, 0.3, 0.4}
all coincide).

To further study the scalability of Fenster, Fig. 19 shows its running times when
one of the attribute domain grows (real datasets rarely are cubic). The considered
datasets are 32 × 32 × 32r large and r varies from 10 to 100 by increments of 10.
The rightmost point therefore relates to an extraction in a 32 × 32 × 3200 relation.
There always are four patterns of size 8 × 8 × 8 affected by 10 of noise. The false-

7 AC-Close cannot enforce a minimal size constraint on both attributes. As a consequence the minimal
size constraint on one of them is enforced in a post-processing step. Without this post-process, worse quality
measures are obtained.
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Fig. 17 Quality of the extracted collections of patterns with at least two elements per attribute in the 16×16
datasets

positive noise therefore becomes more and more problematic when r increases. Even
like that, all the extracted closed ET-3-sets with ε = 2 exactly cover the hidden pat-
terns, i. e., the quality always is 1. Fenster’s running time exponentially increases
with r . This is expected since the minimal size constraint on the growing attribute
domain is kept constant, hence weaker and weaker (with patterns that grow in pro-
portion with the dataset, one can simply rely on random sampling to decrease the
workload).

Fairly testing the scalability w.r.t. the arity of the relation is a hard task because
some other characteristics of the relations cannot be kept constant. Using cubic data-
sets, we decided to fix the number of (absent and present) tuples to 4,096 and to extract,
with ε = 2, closed ET-n-sets containing at least one fourth of the number of elements
per attribute. For instance, the 2-dimensional relations have 64 elements per attribute
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Fig. 18 Running times for the extractions with at least two elements per attribute in the 16 × 16 datasets

(64 × 64 = 4096) and the extracted closed ET-2-sets must contain at least 16 of them
( 16

64 = 1
4 ). The relations are only composed of false-positive noise to not introduce

more parameters that cannot be kept constant when the arity changes. Figure 20 shows
Fenster’s running times when the noise level (in this experiment, it is as well the den-
sity of the relations) varies from 0.05 to 0.45 in 2, 3, 4 and 6-ary relations. The worst
results are obtained with the 2-dimensional and 6-dimensional datasets. However, it
is hard to draw conclusions given the unavoidable imperfections of the setting: the
2-dimensional case appears harder because only two minimal size constraints prune
the search space, whereas the 6-dimensional setting leads to the extraction of tens
of thousands of patterns that cover every present tuple (one element per attribute is
sufficient for a pattern to be considered large enough).
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Fig. 19 Fenster’s running times for the extractions, with ε = 2, in 32 × 32 × 32r datasets
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Fig. 20 Fenster’s running times for the extractions, with ε = 2, in 2, 3, 4 and 6-dimensional datasets
with 4,096 (absent and present) tuples

6 Mining a real graph evolving in two temporal dimensions

Vélo’v is a bicycle rental service run by the urban community of Lyon, France. Vélo’v
stations are spread over Lyon and its environment. At any of these stations, the users
can take a bicycle and return it to any other station. Whenever a bicycle is rented or
returned, this event is logged. We obtained parts of these logs (e. g., no user iden-
tification to preserve privacy) recorded between May 27th 2005 (when the system
was opened to the public) and December 17th 2007. They represent more than 13.1
millions rides. The earliest records relate to the users discovering Vélo’v. To study
the network usage in “normal” conditions, these earliest records, until December 17th
2005, were ignored. Doing so, two full years are kept and aggregations do not favor
any part of the year (along which the network usage evolves). Many records stand for
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rides from a station to itself. These rides usually last a few seconds. Among others,
they can be explained by users who are not satisfied by the quality of the bicycle they
have just rent (e. g., a flat tire). Because, from a given station, the most frequent rides
are to itself, keeping these records influence a lot any normalization procedure. That is
why these records are removed but, after the post-processing steps, the related routes
are all claimed frequent, i. e., appended to the relation. A few more abnormal records
(with incoherent dates or with stations that are closed to the public) are removed as
well. About 10.2 million records remain after these first steps.

We arbitrarily decide to date a ride with the time when the bicycle was returned. To
discover patterns that depend on both this time and the day of the week, the data are
aggregated w.r.t. these two scales. More precisely, one directed graph is built per period
of time (a one-hour period was chosen) and per day of the week. For instance, one
of these graphs presents the rides between nine o’clock and ten o’clock on Mondays.
The vertices correspond to the Vélo’v stations. The edges are labeled with weights: the
total number of rides from the tail vertex (departure station) to the head vertex (arrival
station) during the considered period of time and day of the week. The global activity
of the Vélo’v network varies a lot between the different days of the week. For instance,
there are 51.3 more rides on Fridays than on Sundays. This difference is even greater
between the time periods. For instance, there are about 22 times more rides between
6 and 7 pm than between 5 and 6 am. This global behavior is known. To ignore it,
the weights are normalized so that their sum is the same whatever the graph. In this
way, when the data are binarized, the related Boolean predicate decides whether routes
are frequent w.r.t. the period of time and the day of the week. The distribution of the
rides w.r.t. the stations is far from being constant too. One reason is structural. Some
stations can contain/receive many more bicycles than others. Because no bicycle can
be rented from an empty station and no bicycle can be returned to a full station, the
largest stations imply more rides. Furthermore they are better known by the users,
who want to minimize the risk of finding an empty or a full station. Another reason
is the progressive installation of the stations. In December 17th 2005, there were 172
stations in activity. In December 17th 2007, they were 315. Because some stations
were closed, there are 327 different stations in the dataset. Obviously a station that
opened little before December 17th 2007 cannot be involved in as many records as
another one that has been in activity since the beginning. A local binarization partially
handles these differences. The computation of a p-value inspires the details of this
technique. It considers the vertices one by one, computes the sum S of the weights of
both its incoming and outgoing edges, and claims frequent the routes related to the
edges with the greatest values and whose sum is just beyond 0.1 × S. By definition,
this procedure keeps at least one edge involving each station. In average, 191 edges
per station are kept (still excluding the reflexive routes). The resulting 4-ary relation,
namely RVélo’v, contains 117,411 4-tuples (including the reflexive routes, which were
previously put to one side), hence a 117,411

7×24×327×327 = 0.7% density. Table 3 summa-
rizes some of its characteristics and lists the minimal sizes that the extracted patterns
are constrained to have in the subsequent experiments.

Furthermore, to focus on the most interesting closed ET-4-sets, the specificities of
the dataset are translated to additional constraints. Indeed, RVélo’v is not only a 4-ary
relation but a dynamic graph too. In this context, ET-4-sets which are symmetric w.r.t.
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Table 3 Characteristics of RVèlo’v and minimal sizes of the mined patterns

Number of days of the week 7
Number of 1-h periods of time 24
Number of (departure and arrival) stations 327
Number of present tuples 117, 411
Density 0.7 %
Minimal number of days in a pattern 2
Minimal number of 1-h periods in a pattern 3
Minimal number of departure stations in a pattern 3
Minimal number of arrival stations in a pattern 3

Table 4 Number of patterns, without the almost-contiguity constraint, inRVélo’v.

Number of patterns Running time Symmetry

w/o symm. with symm. w/o symm. with symm. w/o symm. (%)

ε = (0, 0, 0, 0) 13 11 3 min 58 s 3 min 49 s 84.62
ε = (1, 1, 1, 1) 111 63 1:04 min 09 s 23 min 56 s 54.05
ε = (3, 2, 2, 2) 743 342 13:17 min 18 s 2:14 min 24 s 41.05
ε = (4, 3, 3, 3) – 1163 – 3:12 min 34 s –

the two vertex attributes are particularly interesting: they are quasi-cliques. ET-4-sets
that involve contiguous (or almost-contiguous) periods of times are more relevant too.
It turns out that these two constraints are piecewise (anti)-monotone (see Cerf et al.
(2009c, 2010)). As a consequence, Fenster efficiently handles them, i. e., can fur-
ther prune the search space thanks to them. In our experiments, the almost-contiguity
constraint is parametrized with a maximal authorized gap of one hour, i. e., the time
periods involved in a pattern can be browsed in a sequence where at most one hour
separates a period from the next one (e. g., {3–4pm,4–5pm,6–7pm,8–9pm} is a valid
set of time periods, whereas {3–4pm,4–5pm,8–9pm} is not).

Tables 4 and 5 list, with and without the symmetry and/or the almost-contiguity
constraint(s), the number of patterns in RVélo’v and the time to extract them. They sat-
isfy as well the minimal size constraints indicated in Table 3. The parameters for noise
tolerance, given in the first column, follow the order (εday, εtime, εdep, εarr). Although
it is not mandatory, it usually makes sense to tolerate more absent tuples (i. e., to choose
a greater εi parameter) in a hyperplane of the pattern that is constrained to contain
more tuples. In these experiments, for instance, the minimal size constraints force the
hyperplane related to a day of the week to contain at least 3 × 3 × 3 = 27 4-tuples,
whereas any orthogonal hyperplane (i. e., related to any of the three other attributes of
RVélo’v) of a pattern can have as few as 2 × 3 × 3 = 18 4-tuples. That explains our
choice, for a given experiment, of a εday parameter that roughly is 27

18 = 1.5 greater
than the other εi parameters, which are all set to a same value. When much noise is tol-
erated, the symmetry constraint greatly reduces the running times. Notice also that this
gain does not occur to the detriment of the discovery of interesting patterns. Indeed,
the closed 4-sets, in RVélo’v, naturally are symmetric. The last column of Tables 4 and
5 give, among the closed ET-4-sets extracted without the symmetry constraint, the
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Table 5 Number of patterns, with the almost-contiguity constraint, in RVélo’v

Number of patterns Running time Symmetry

w/o symm. with symm. w/o symm. with symm. w/o symm. (%)

ε = (0, 0, 0, 0) 12 10 1 min 52 s 2 min 08 s 83.33
ε = (1, 1, 1, 1) 102 57 38 min 22 s 15 min 24 s 55.88
ε = (3, 2, 2, 2) 649 264 8:40 min 16 s 1:08 min 43 s 40.68
ε = (4, 3, 3, 3) – 798 – 1:18 min 56 s –

proportion of them that actually are symmetric. This high proportion decreases when
noise is tolerated. This actually is a good effect of the constraint. Indeed, when more
noise is tolerated, some “naturally” symmetric patterns are extended with additional
departure or arrival stations that noise affects (false-positive 4-tuples). The symmetry
constraint filters out these poorly relevant patterns. The almost-contiguity constraint
has a same effect on the number of output patterns and the time to extract them.

The symmetry and the almost-contiguity constraints not being implemented in
DCE, this algorithm was only run with the minimal size constraints. Unfortunately, it
does not scale to large relations such as RVélo’v. Without any tolerance to noise, it had
not output any pattern after 72 h of (unterminated) computation. In contrast, Fenster
only requires 3 min 58 s to discover the 13 closed 4-sets. This shows that Fenster
opens up applicative perspectives that are out of reach of DCE for performance rea-
sons.

By only looking at the number of closed ET-4-sets, that Fenster outputs, one could
believe that a higher tolerance to noise means larger collections, hence a tougher inter-
pretation. This is not really the case. First of all, and as discussed earlier, these numer-
ous patterns can be agglomerated with a method such as Cerf et al. (2009b). Then, even
without relying on such a post-process, the analyst can focus on the largest patterns
Fenster outputs. Indeed, the more absent 4-tuples tolerated in the cover of a pattern,
the larger the size of the closed ones. As a consequence, greater size constraints can be
use. E. g., with ε = (4, 3, 3, 3), only 17 symmetric closed ET-4-sets hold during five
days or more. With the same parametrization, only five patterns contain four stations
or more. Figures 21 and 228 depict two patterns respectively corresponding to these
two settings. Larger red dots indicate the geographic positions of the stations involved
in the patterns.

The pattern in Fig. 21 involves three stations. One of them (Station 7034) is at the
east side of the Rhône river (where many floating bars can be found) and near the uni-
versity. The two other stations are the largest ones near two places, which are famous
for their shops and pubs: the “Opéra” (Station 1002) and the “Place Bellecour” (Station
2001). This pattern indicates that, in the evening, from Monday to Friday (i. e., every
working day), many bicycles flow between these three stations. A probable explana-
tion is that most of these rides are done by students who like having a drink after their

8 These figures were created from OpenStreetMap project data.
©2004–2010 OpenStreetMap contributors
These maps are licensed under Creative Commons Attribution ShareAlike 2.0 License.
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Fig. 21 Every working day, between 5 and 8pm

courses. On the contrary, the pattern in Fig. 22 only holds during the week-ends. Again,
the “Opéra” and the “Place Bellecour” are involved. Two other famous places are part
of the pattern: the “Saint Jean” cathedral (Station 5004), in the beautiful “Old Lyon”,
and the main entrance of the largest park in Lyon: the “Parc de la Tête d’Or” (Station
6002). This pattern clearly stands for pleasure trips during the week-end afternoons.

It is interesting to study the effect of a greater tolerance to noise in the discovery of
these two patterns. To do so, their Jaccard distances, to every extracted (symmetric)
closed ET-4-set, are computed. Table 6 lists the closest patterns for every tested toler-
ance to noise. When several patterns are at the same Jaccard distance, every variation
is given. With no tolerance to noise, the closest closed 4-sets are very different from
the ones discovered with ε = (4, 3, 3, 3). The pattern represented in Fig. 21 is missing
many days of the week. More precisely, only two days are part of the closest exact
closed 4-set. This issue is progressively diminished when more noise is tolerated (three
days with ε = (1, 1, 1, 1), four days with ε = (3, 2, 2, 2) and, finally, all five working
days with ε = (4, 3, 3, 3)). With less tolerance to noise, the pattern represented in
Fig. 22 is not only missing elements (in particular the four involved stations are only
discovered with ε = (4, 3, 3, 3)) but also includes additional elements (in bold letters
in Table 6). With no tolerance to noise, the closest discovered pattern actually is not
to be related to the one represented in Fig. 22. It is a fragment of another large closed
ET-4-set, ({Sat., Sun.}, {3–4pm, 4–5pm, 5–6pm, 6–7pm, 7–8pm}, {Stations 1002,
6002, 3044}), that is extracted with ε = (4, 3, 3, 3).
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Fig. 22 During the week-ends, between 4 and 7pm

Table 6 Closest patterns to those depicted in Figs. 21 and 22.

ε = (0, 0, 0, 0) ({Wed., Thu.}, ({Sat., Sun.},
{5–6pm, 6–7pm, 7–8pm}, {5–6pm, 6–7pm, 7–8pm},
{Stations 7034, 1002, 2001}2) {Stations 1002, 6002, 3044}2)

ε = (1, 1, 1, 1) ({Wed., Thu., Mon. (or Tue.)}, ({Sat., Sun.},
{5–6pm, 6–7pm, 7–8pm}, {3-4pm, 4-5pm, 5-6pm (or 6-7pm)},
{Stations 7034, 1002, 2001}2) {Stations 1002, 2001, 5004}2)

ε = (3, 2, 2, 2) ({Wed., Thu. and Mon., Tue.
or Mon., Fri. or Tue., Fri.}, ({Sat., Sun.},
{5–6pm, 6–7pm, 7–8pm}, {3-4pm, 4-5pm, 5-6pm, 6-7pm},
{Stations 7034, 1002, 2001}2) {Stations 1002, 5004, 6002}2)

ε = (4, 3, 3, 3) ({Mon, Tue, Wed., Thu., Fri.}, ({Sat., Sun.},
{5–6pm, 6–7pm, 7–8pm}, {4–5pm, 5–6pm, 6–7pm},
{Stations 7034, 1002, 2001}2) {Stations 1002, 2001, 5004, 6002}2)

7 Related work

7.1 ET-itemset mining

Several research groups have considered the complete extraction of ET-itemsets in
binary relations associating items with transactions (see Gupta et al. (2008) for a
survey). None of them is fully satisfactory. A relative tolerance to noise makes the
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extraction task very hard and a closedness constraint does not provide a lossless con-
densation of the ET-itemsets. As a consequence, the extractors tolerating proportions
of noise, suffer from great scalability issues and they output large collections of ET-
itemsets carrying much redundant information. Furthermore, up to, but not including,
the recent publication of Poernomo and Gopalkrishnan (2009b), every proposal was
either relying on lossy heuristics or imposing additional constraints. Among the extrac-
tors relying on lossy heuristics, AFI (Liu et al. 2006) thoroughly demonstrates the
semantic necessity to bound the noise inside a pattern with one noise tolerance thresh-
old per domain of the relation (in their case, two thresholds). However, Seppänen
and Mannila (2004) pointed earlier the problem of using only one such threshold.
Among the approaches that impose additional constraints, AC-Close (Cheng et al.
2008) is significant. Indeed, it is the only closed ET-itemset extractor with a relative
tolerance to noise. Furthermore the experiments show it runs much faster than AFI.
These results are possible thanks to a frequency constraint on an exact closed itemset
every ET-itemset must contain. Thus, AC-Close requires an awkward minimal num-
ber of transactions exact closed itemsets (by opposition to ET-itemset) must involve.
It extracts them and, in a second step, extends them in closed ET-itemsets. Despite
the performance improvement w.r.t. AFI, Sect. 5.4 empirically shows AC-Close is
intractable on medium-size relations.

Other proposals tolerate, like Fenster, absolute quantities of absent tuples and, as
a consequence, demonstrate a better scalability. FT-Apriori (Pei et al. 2001) extracts
every frequent ET-itemset matching a definition where the noise tolerated per trans-
action item is bounded (the noise per item is not). To avoid extracting ET-itemsets
with some items that almost every transaction (in the pattern) misses, each of these
items is forced to hold for at least γ ∈ N transactions in the pattern. This frequency
constraint, restricted to the transactions of the ET-itemset, filters out some of the
least relevant patterns. However, because it deals with couples present in (rather than
absent from) the relation, ET-itemsets with many transactions may still gather items
that many transactions of the pattern do not have. Furthermore, because no closed-
ness constraint is enforced, the extracted collections contain redundant information.
VB-FT-Mine (Koh and Yo 2005) builds upon FT-Apriori and significantly improves
both the running times (thanks to the use of bit vectors) and the space requirements
(thanks to a depth-first enumeration).

Poernomo and Gopalkrishnan (2007) consider different definitions of an ET-item-
set. All of them tolerate noise in an absolute way. To extract them, the BIAS framework
enumerates growing subsets of items and words the noise tolerance w.r.t. every enu-
merated item as an inequality. Integer linear programming allows to derive (one of) the
largest set of transactions that satisfies every inequality. Poernomo and Gopalkrishnan
(2009) optimize this procedure and generalizes the definition of an ET-itemset. Its
transactions are either those that have (or miss) at most, at least, or exactly a given
number of items among those in the pattern. The authors propose a recursive equation
that computes the number of transactions in an ET-itemset from those of the ET-item-
sets with one item less. Beyond the absence of a constraint bounding the noise tolerance
w.r.t. items and the absence of a closedness constraint, this approach requires much
space. Indeed, it stores all subsets of items that were previously considered and the
associated numbers of transactions. On the positive side, the approach can easily be
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implemented in any frequent itemset extractor and its running time does not increase
much w.r.t. the extraction of exact itemsets. Importantly, these two latter contributions
output 1-dimensional patterns, i. e., subsets of items for which there exists at least one
support satisfying the definition. Because several 2-dimensional patterns may involve
a same set of items, less patterns are listed and the tuples they cover are not directly
accessible.

DR-Miner (Besson et al 2006) extracts complete collections of closed ET-itemsets.
Nevertheless, they are differently defined: every transaction (resp. item) “outside” a
closed ET-itemset is forced to gather strictly more couples absent from the mined
relation than any transaction (resp. item) “inside” it. This prevents the discovery of
some ET-itemsets that would be extracted if some additional couples were missing
outside the pattern. As a consequence, when a hidden pattern is affected by more
noise than what DR-Miner can tolerate (while remaining tractable), not only the whole
pattern is not discovered (like any other approach) but also most of (if not all) its frag-
ments. Indeed the elements “inside” these fragments are not much different from those
“outside” it but inside the hidden pattern.

7.2 ET-n-set mining

When it comes to n-ary relations, Data- Peeler (Cerf et al. 2009a) extracts every
exact closed n-set whatever the arity n ≥ 2. Fenster reuses some of Data- Peeler’s
enumeration principles. However, the fundamental implementation issues pertaining
to the enforcement of the newly defined constraints Cε-connected and Cε-closed and the
wiser choice of the element to enumerate at every recursive call make Fenster dif-
fer a lot from Data- Peeler. The other proposals for exact closed set discovery in
the specific and simpler cases of binary and ternary relations are not discussed here
(see Cerf et al. (2009a) for such a discussion). Sim et al. (2011) have recently pro-
posed CGQBminer to completely list noise tolerant closed sets in ternary relations
seen as collections of bi-partite graphs. These patterns were baptized maximal cross-
graph quasi-bicliques by analogy with maximal cross-graph quasi-cliques. Indeed, the
underlying noise tolerance is similar (see Sect. 7.4): in every bi-partite graph involved
in the pattern, every vertex of a quasi-biclique is mostly connected with the others
vertices. The dimension gathering graph labels plays a particular role in this definition
of noise tolerance. Furthermore, the constraints it imposes on the patterns are quite
numerous (one per couple (vertex,bi-partite graph) in the pattern).

DCE (Georgii et al. 2009, 2011) extracts, from real-valued tensors, every dense
n-set. The constraint “having a density greater than α ∈ R” relies on the mean of
the values covered by a pattern. Such a definition suffers from a relevance problem,
which is empirically pointed out in Sect. 5.2: an element can be part of a pattern but
disconnected or very weakly connected with the other attributes of the pattern. That is
why the authors also define balanced clusters in a way that is similar to ET-n-set (bal-
anced clusters tolerate noise in a relative way though) but show that their framework
cannot prune the search space with such a definition (DCE’s per-element tolerance
to noise is enforced in a post-process). Indeed, DCE exploits the (generalized) loose
anti-monotonicity (Bonchi and Lucchese 2005) of the density constraint and a reverse
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search paradigm (Avis and Fukuda 1996): given a dense n-set, there exists a “sub-
pattern” with one element less that is dense. This element, from any attribute domain
(hence, the “generalization”), relates to the hyperplane of the pattern with the smallest
sum of the real values it contains. Thus, DCE is depth-first and, at every recursive
call, enumerates n-sets with such an additional element. In this way, every candidate
pattern is traversed once, the minimal density constraint becomes anti-monotone on
any enumeration branch and prunes the search space. In this respect, it is alike what
Uno (2007) does to list quasi-cliques. These enumerations principles, originating from
the choice of a relative tolerance to noise, do not allow the same efficiency results as
Fenster, which ends up running orders of magnitude faster (see Sect. 5.4). Moreover,
this same choice of a relative tolerance to noise makes a closedness constraint not
provide a lossless condensation of the dense n-sets. Without it, the size of the output
collections is problematic (see Sect. 5.3).

7.3 Subspace clustering

Given an n-ary relation, a subspace cluster is a local pattern (rather than cluster) of the
form (Xi )i=1..m where every Xi is a subset of a different attribute domain and m ≤ n.
It constrains the data restricted to every pair of elements to be strongly connected,
whereas an ET-n-set imposes one test per element (see Definition 5). Furthermore, in a
subspace cluster, every pair of elements (whatever the attribute domain(s) they belong
to) must frequently appear together in the relation and this frequency is defined w.r.t.
the whole relation. More precisely, a subspace cluster is claimed frequent if it exceeds
α times its expected value, which assumes a uniform distribution of the n-tuples in
the relation. CACTUS (Ganti et al. 1999) and Clicks (Zaki et al. 2007) extract maxi-
mal (closedness constraint) subspace clusters from arbitrary n-ary relations. The latter
generalizes the former that only mines a restricted class of subspace clusters.

7.4 Cross-graph closed quasi-clique mining

Collections of large graphs were built to help in understanding genetics. These graphs
commonly have tens of thousands of nodes and are noisy. For about 5 years, extract-
ing knowledge by crossing such graphs has been a hot topic. For example, there is a
need to extract patterns that remain valid across several co-expression graphs obtained
from microarray data or to cross the data pertaining to physical interactions between
molecules (e. g., protein-protein, protein-gene) with more conceptual data (e. g., co-
expression of genes, co-occurrence of proteins in the literature). One of the most
promising pattern helping in these tasks is the closed quasi-3-clique. Crochet+ (Jiang
and Pei 2009) and Cocain* (Zeng et al. 2007) are the state-of-the-art extractors of
closed quasi-3-cliques. They all use the same definition of noise tolerance: every node
implied in a pattern must have, in every graph independently from the others, a degree
exceeding a user-defined proportion of the maximal degree it would reach if the clique
was exact. Thus, a pattern involving a subset T of the graphs and a subset N of the
nodes needs to satisfy |T × N | constraints to be a quasi-3-clique, i. e., one constraint
per couple (timestamp, node). This definition of noise tolerance is different from the
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one involved in the definition of the closed ET-n-sets Fenster extracts. Indeed, in
Definition 5, an upper-bounded number of absent n-tuples (rather than a proportion)
is tolerated per element involved in the pattern, i. e., (T, N tail, N head) is, by definition,
an ET-3-set iff:

- ∀t ∈ T , the dynamic graph contains all 3-tuples in {t}× N tail× N head but εtimestamps

or less.
- ∀ntail ∈ N tail, the dynamic graph contains all 3-tuples in T × {ntail} × N head but

εtail or less.
- ∀nhead ∈ N head, the dynamic graph contains all 3-tuples in T × N tail × {nhead} but

εhead or less.

In this way, (T, N tail, N head) needs to satisfy |T | + |N tail| + |N head| constraints to be
an ET-3-set. If only symmetric patterns are considered, i. e., N tail = N head = N , this
number becomes |T | + 2|N |. In the specific context of undirected graphs (contrary
to Fenster, none of the previously cited approaches can deal with directed graphs),
the constraints Fenster applies on the tails and on the heads are identical. As a con-
sequence, only |T | + |N | constraints defines a symmetric ET-3-set. By comparing
this number to |T × N |, it can be written that it is easier for a pattern to be an ET-
3-set than a quasi-clique in the sense of Crochet+ or Cocain* (the patterns involving
only one timestamp or one node are exceptions to this assertion but they are not very
interesting). As a consequence our approach does not scale well to graphs connecting
thousands of nodes. Nevertheless, because Fenster indifferently enumerates time-
stamps and nodes (no attribute is favored), it can extract closed symmetric ET-3-sets
in large collections of smaller graphs, whereas the other algorithms cannot (or they
must be used with a very strong minimal size constraint on the number of involved
graphs). Finally, (Sim et al. 2011) is a recent proposal that is again less generic than
Fenster (ternary relations only, one particular dimension).

8 Conclusion

Extracting every noise-tolerant itemset in binary relations is a difficult task. Avail-
able approaches usually suffer from scalability issues and no closedness constraint is
enforced, hence much redundancy in the returned collections. With relations of higher
arities, faint noise affects more and more the quality of the patterns. This article pre-
sented an algorithm for the complete extraction of noise-tolerant patterns in arbitrary
n-ary relations. How much noise is tolerated is parameterized by as many integers as
there are attributes in the relation. In every pattern, these integers are upper-bounds
of the number of n-tuples involving an element from the related attribute domain,
encompassed by the patterns, but absent from the relation. This definition allows a
closedness constraint to support a lossless condensation of the extracted collections.
Furthermore, and thanks to the incremental computation of counters of absent n-tuples
in many subspaces of the relation, the proposed algorithm remains tractable on large
relations.

Relevant patterns were discovered in a real-life 4-ary relation involving more
than 100,000 tuples and mined under rather loose minimal size constraints. With
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the possible enforcement of additional relevance constraints, which even more alle-
viate the computational requirements, many applicative perspectives are opened up.
For instance, we are currently working on the analysis of large amounts of user-
generated data on the Web. In such a context, the time is an essential dimension that
n-ary relations can take into consideration without having to drop another one. Syn-
thetic datasets have allowed to quantitatively assess the effectiveness and the efficiency
of the algorithm. By comparison with its main competitor, which tolerates noise in
a different way, this proposal has been shown to extract, orders of magnitude faster,
smaller pattern collections of higher quality. In this regard, this contribution increases
our understanding of the solution to bring to the unwanted alterations of the relation.
Nevertheless a complete approach usually cannot, in a reasonable time, tolerate as
much noise as contained in the data. As a consequence, the returned closed patterns
remain fragments (though larger fragments than without noise tolerance) of the hidden
patterns. To heuristically complement this approach, a hierarchical agglomeration of
the patterns (Cerf et al. 2009b) was developed.
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