
A Comparison between Query Languages for the
Extraction of Association Rules

Marco Botta1, Jean-Francois Boulicaut2, Cyrille Masson2, and Rosa Meo1

1 Universitá di Torino, Dipartimento di Informatica,
corso Svizzera 185, 10149, Torino, Italy

2 Institut National des Sciences Appliquées de Lyon,
69621 Villeurbanne cedex, France

Abstract. Recently inductive databases (IDBs) have been proposed to
afford the problem of knowledge discovery from huge databases. With
an IDB the user/analyst performs a set of very different operations on
data using a special-purpose language, powerful enough to perform all
the required manipulations, such as data preprocessing, pattern discov-
ery and pattern post-processing. In this paper we present a comparison
between query languages (MSQL, DMQL and MINE RULE) that have
been proposed for association rules extraction in the last years and dis-
cuss their common features and differences. We present them using a set
of examples, taken from the real practice of data mining. This allows us
to define the language design guidelines, with particular attention to the
open issues on IDBs.

1 Introduction

Knowledge Discovery in Databases (KDD) is a complex process which involves
many steps that must be done sequentially. When considering the whole KDD
process, the proposed approaches and querying tools are still unsatisfactory. The
relation among the various proposals is also sometimes unclear because, at the
moment, a general understanding of the fundamental primitives and principles
that are necessary to support the search of knowledge in databases is still lacking.

In the cInQ project1 we want to develop a new generation of databases,
called “inductive databases”, suggested in [2]. This kind of databases integrates
raw data with knowledge extracted from raw data, materialized under the form
of patterns into a common framework that supports the KDD process. In this
way, the KDD process consists essentially in a querying process, enabled by an
ad-hoc, powerful and universal query language that can deal both with raw data
or patterns. A few query languages can be considered as candidates for inductive
databases. Most of the proposals emphasize one of the different phases of the
KDD process. This paper is a critical evaluation of three proposals in the light
of the IDBs’ requirements: MSQL [3,4], DMQL [6,7] and MINE RULE [8,9].

The paper is organized as follows. Section 2 summarizes the desired proper-
ties of a language for mining inside an inductive database. Section 3 introduces
1 Project (IST 2000-26469) partially funded by the EC IST Programme - FET.

Y. Kambayashi, W. Winiwarter, M. Arikawa (Eds.): DaWaK 2002, LNCS 2454, pp. 1–10, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



2 M. Botta et al.

the main features of the analyzed languages, whereas in Section 4 some real ex-
amples of queries are discussed, so that the comparison between the languages
is straightforward. Finally Section 5 draws some conclusions.

2 Desired Properties of a Data Mining Language

A query language for IDBs, is an extension of a database query language that
includes primitives for supporting the steps of a KDD process, that are:
– The selection of data to be mined. The language must offer the possibility

to select (e.g., via standard queries but also by means of sampling), to ma-
nipulate and to query data and views in the database. It must also provide
support for multi-dimensional data manipulation.
DMQL and MINE RULE allow the selection of data. None of them has
primitives for sampling. All of them allow multi-dimensional data
manipulation (because this is inherent to SQL).

– The specification of the type of patterns to be mined. Clearly, real-life KDD
processes need for different kinds of patterns like various types of descriptive
rules, clusters or predictive models.
DMQL considers different patterns beyond association rules.

– The specification of the needed background knowledge (e.g., the definition
of a concept hierarchy).
Even though both MINE RULE and MSQL can treat hierarchies if the
relationship ’is-a’ is represented in a companion relation, DMQL
allows its explicit definition and use during the pattern extraction.

– The definition of constraints that the extracted patterns must satisfy. This
implies that the language allows the user to define constraints that specify
the interesting patterns (e.g., using measures like frequency, generality, cov-
erage, similarity, etc).
All the three languages allow the specification of various kinds
of constraints based on rule elements, rule cardinality and aggre-
gate values. They allow the specification of support and confidence
measures. DMQL allows some other measures like novelty.

– The satisfaction of the closure property (by storing the results in the
database).
All the three languages satisfy this property.

– The post-processing of results. The language must allow to browse the pat-
terns, apply selection templates, cross over patterns and data, e.g., by se-
lecting the data in which some patterns hold, or aggregating results.
MSQL is richer than the other two languages in its offer of few post-
processing primitives (it has a dedicated operator, SelectRules).
DMQL allows some visualization options. However, the three lan-
guages are quite poor for rule post-processing.

3 Query Languages for Rule Mining

MSQL has been described in [4,5], and designed at the Rutgers University, New
Jersey, USA. The main features of MSQL, as stated by the authors, are the



A Comparison between Query Languages 3

following: (1) Ability to nest SQL expressions such as sorting and grouping
in a MSQL statement and allowing nested SQL queries. (2) Satisfaction of the
closure property and availability of operators to further manipulate results of
previous MSQL queries. (3) cross-over between data and rules with operations
allowing to identify subsets of data satisfying or violating a given set of
rules. (4) distinction between rule generation and rule querying. Indeed, as
the volume of generated rules might explode, rules might be extensively
generated only at querying time, and not at generation time.
The language comprises five basic statements: GetRules that generates rules
into a rule base; SelectRules that queries the rule base; Create Encoding
that efficiently encodes discrete values into continuous valued attributes;
satisfies and violates that allow to cross-over data and rules, and that
can be used in a data selection statement.

DMQL has been presented in [6,7] and designed at the Simon Fraser University,
Canada. The language consists of the specification of four major primitives
in data mining that manage: (1) the set of relevant data w.r.t. a data min-
ing process; (2) the kind of knowledge to be discovered; (3) the background
knowledge; (4) the justification of the interestingness of the knowledge (i.e.,
thresholds).
(1) This primitive is specified as a relational conventional query.
(2) This primitive may include association rules, classification rules (rules
that assign data to disjoint classes according to the value of a chosen classify-
ing attribute), characteristica (descriptions that constitute a summarization
of the common properties in a given set of data), comparisons (descriptions
that allow to compare the total number of tuples belonging to a class with
different, contrasting classes), generalized relations (obtained by generalizing
a set of data corresponding to low level concepts with data corresponding to
higher level concepts according to a specified concept hierarchy).
(3) This primitive manages a set of concept hierarchies or generalization op-
erators that assist the generalization processes.
(4) This primitive is included as a set of different constraints depending on
the kind of target rules. For association rules, e.g., besides the classical sup-
port and confidence thresholds, DMQL allows the specification of noise (the
minimum percentage of tuples in the database that must satisfy a rule so
that it is not discarded) and rule novelty, i.e., electing the more specific rule.

MINE RULE proposal can be found in [8] and [9]. This operator extracts
a set of association rules from the database and stores them back in the
database in a separate relation. This language is an extension of SQL. Its
main features are the following. (1) Selection of the relevant set of data for a
data mining process; (2) Definition of the structure of the rules to be mined
and of constraints applied at different granularity levels; (3) Definition of
the grouping condition that determines which data of the relation can take
part to an association rule; (4) Definition of rule evaluation measures (i.e.,
support and confidence thresholds).
The selection above mentioned as the first feature of MINE RULE is applied
at different granularity levels, that is at the row level (selection of a sub-
set of the rows of a relation) or at the group level (group condition). The



4 M. Botta et al.

second feature defines unidimensional association rule (i.e., its elements are
the different values of the same dimension or attribute), or multidimensional
one (each rule element involves the value of more attributes). Furthermore,
rules constraints belong to two categories: the former ones are applied at the
rule level (mining conditions), while the second ones (cluster conditions), are
applied at the body or head level (i.e., the sets of rule elements that compose
each rule).

4 Comparative Examples

We describe here a classical basket analysis problem that will serve as a running
example troughout the paper: we are considering information of Table 1 and we
are looking for association rules between bought items and customer’s age for
payments with a credit cards. We are considering a complete KDD process. We
will consider two manipulations at the pre-processing step (selection of the items
bought by credit card and encoding of the age attribute), crossing-over between
extracted rules and original data (selecting tuples of the source table that violate
all the extracted rules of size 3), and two post-processing operations (selection
of rules with 2 items in the body and selection of rules having a maximal body).

Table 1. Sales Transactional table used with MSQL

t id ski pants hiking boots col shirts brown boots jackets customer age payment
t1 1 1 0 0 0 26 credit card
t2 0 0 1 1 0 35 credit card
t3 0 0 1 1 0 48 cash
t4 0 0 0 0 1 29 credit card
t5 0 0 1 0 1 46 credit card
t6 0 1 0 1 0 25 cash
t7 1 1 0 1 0 29 credit card
t8 1 1 0 1 1 34 credit card
t9 0 1 0 0 0 28 credit card
t10 1 0 0 0 0 41 credit card
t11 1 0 0 1 1 36 cash

4.1 MSQL

Table 1 corresponds to the source data encoded in the input format used by
MSQL. There are as many boolean attributes as there are possible items.

Pre-processing step 1: selection of the subset of data to be mined.
We are interested only in clients paying with a credit card. MSQL requires that we
make a selection of the subset of data to be mined, before the extraction task.
The relation on which we will work is supposed to have been correctly selected
from a pre-existing set of data, by means of a view, named RSales.



A Comparison between Query Languages 5

Pre-processing step 2: encoding age.MSQL provides methods to declare
encodings on some attributes. It is important to note that MSQL is able to do
discretization “on the fly”, so that the intermediate encoded value will not appear
in the final results. The following query will encode the age attribute:

CREATE ENCODING e_age ON RSales.customer_age AS
BEGIN
(MIN, 9, 0), (10, 19, 1), (20, 29, 2), (30, 39, 3), (40, 49, 4),
(50, 59, 5), (60, 69, 6), (70, MAX,7), 0

END;

Rules extraction. We want to extract rules associating a set of items to
the customer’s age and having a support over 25 % and a confidence over 50 %.
GETRULES(RSales) INTO RSalesRB
WHERE BODY has {(ski_pants=1) OR (hiking_boots=1) OR (col_shirts=1)

OR (brown_boots=1) OR (jackets=1)} AND
Consequent is {(Age = *)} AND support>=0.25 AND confidence>=0.5

USING e_age FOR customer_age

This example puts in evidence a limit of MSQL: if the number of items is high,
the number of predicates in the WHERE clause increases correspondingly!

Crossing-over: looking for exceptions in the original data. Finally,
we select tuples from RSales that violate all the extracted rules of size 3.

SELECT * FROM RSales
WHERE VIOLATES ALL (SELECTRULES(RSalesRB) WHERE length=3)

Post-processing step 1: manipulation of rules. We select rules with 2
items in the body. As MSQL is designed to extract rules with one item in the head
and as it provides access only to the extracted rules (and not to the originating
itemsets), we must specify that the total size of the rule is 3.

SelectRules(RSalesRB) where length=3

Post-processing step 2: extraction of rules with a maximal body. It
is equivalent to require that there is no couple of rules with the same consequent,
such that the body of one rule is included in the body of the other one.

SELECTRULES(RSalesRB) AS R1
WHERE NOT EXISTS (SELECTRULES(RSalesRB) AS R2

WHERE R2.body has R1.body
AND NOT (R2.body is R1.body)
AND R2.consequent is R1.consequent )

Pros and cons of MSQL. Clearly, the main advantage of MSQL is that it is
possible to query knowledge as well as data, by using SelectRules on rule-
bases and GetRules on data (and it is possible to specify if we want rules to
be materialized or not). Another good point is that MSQL has been designed
to be an extension of classical SQL, making the language quite easy to under-
stand. For example, it is quite simple to test rules against a dataset and to make



6 M. Botta et al.

crossing-over between the original data and query results, by using SATISFY
and VIOLATES. To be considered as a good candidate language for inductive
databases, it is clear that MSQL, which is essentially built around the extraction
phase, should be extended, particularly with a better handling of pre- and post-
processing steps. For instance, even if it provides some pre-processing operators
like ENCODE for discretization of quantitative attributes, it does not provide any
support for complex pre-processing operations, like sampling. Moreover, tuples
on which the extraction task must be performed are supposed to have been se-
lected in advance. Concerning the extraction phase, the user can specify some
constraints on rules to be extracted (e.g., inclusion of an item in the body or in
the head, rule’s length, mutually exclusive items, etc) and the support and con-
fidence thresholds. It would be useful however to have the possibility to specify
more complex constraints and interest measures, for instance user defined ones.

4.2 MINE RULE

We include the same information of Table 1 into a normalized relation Sales
over a schema (t id, customer age, item, payment).

Pre-processing step 1: selection of the subset of data to be mined.
In contrast to MSQL, MINE RULE does not require to apply some pre-defined view
on the original data. As it is designed as an extension to SQL, it perfectly nest
SQL, and thus, it is possible to select the relevant subset of data to be mined
by specifying it in the WHERE clause of the query.

Pre-processing step 2: encoding age. Since MINE RULE does not have an
encoding operator for performing pre-processing tasks, we must encode by our-
selves the interval values (2 represents an age in the interval [20-29], 3 represents
an age in [30-39], and so on).

Rules extraction. In MINE RULE, we specify that we are looking for rules
associating one or more items (rule’s body) and customer’s age (rule’s head):

MINE RULE SalesRB AS
SELECT DISTINCT 1..n item AS BODY, 1..1 customer_age AS head,

SUPPORT, CONFIDENCE
FROM Sales WHERE payment=’credit_card’
GROUP BY t_id
EXTRACTING RULES WITH SUPPORT: 0.25, CONFIDENCE: 0.5

Extracted rules are stored into the table SalesRB(r id, b id, h id, sup, conf)
where r id, b id, h id are respectively the identifiers assigned to rules, body
itemsets and head itemsets. The body and head itemsets are stored resp. in tables
SalesRB B(b id,<bodySchema>) and SalesRB H(h id,<headSchema>).

Crossing-over: looking for exceptions in the original data. We want
to find tuples of the original relation violating all rules with 2 items in the body.
As rules’ components (bodies and heads) are stored in relational tables, we use
an SQL query to manipulate itemsets. The correspondent query is reported here:



A Comparison between Query Languages 7

SELECT * FROM Sales AS S1 WHERE NOT EXISTS
(SELECT * FROM SalesRB AS R1
WHERE (SELECT customer_age FROM SalesRB_H

WHERE h_id=R1.h_id)=S1.customer_age
AND (SELECT COUNT(*) FROM SalesRB_B

WHERE R1.b_id=SalesRB_B.b_id)=2
AND NOT EXISTS (SELECT * FROM SalesRB_B AS I1

WHERE I1.b_id=R1.b_id AND NOT EXISTS
(SELECT * FROM Sales AS S2
WHERE S2.t_id=S1.t_id
AND S2.item=I1.item )));

This query is hard to write and to understand. It aims at selecting tuples of
the original table such that there are no rules of size 3 that hold in it. To check
that, we verify that the consequent of the rule occurs in a tuple associated to a
transaction and that there are no items of the rule’s body that do not occur in
the same transaction.

Post-processing step 1: manipulation of rules. Once again, as itemsets
corresponding to rule’s components are stored in tables (SalesRB B,SalesRB H),
we can select rules having two items in the body with a simple SQL query.

SELECT * FROM SalesRB AS R1 WHERE 2=
(SELECT COUNT(*) FROM SalesRB_B R2 WHERE R1.b_id=R2.b_id);

Post-processing step 2: selection of rules with a maximal body. We
select rules with a maximal body for a given consequent. As rules’ components
are stored in relational tables, we use again a SQL query to perform such a task.

SELECT * FROM SalesRB AS R1 # We select the rules in R1
WHERE NOT EXISTS # such that there are no
(SELECT * FROM SalesRB AS R2 # other rules (in R2) with
WHERE R2.h_id=R1.h_id # the same head, a different
AND NOT R2.b_id=R1.b_id # body such that it has no
AND NOT EXISTS (SELECT * # items that do not occur in
FROM SalesRB_B AS B1 # the body of the R1 rule
WHERE R1.b_id=B1.b_id AND NOT EXISTS (SELECT *

FROM SalesRB_B AS B2
WHERE B2.b_id=R2.b_id AND B2.item=B1.item)))

This rather complex query aims at selecting rules such that there are no
rules with the same consequent and a body that strictly includes the body of
the former rule. The two inner sub-queries are used to check that rule body in R1
is a superset of the rule body in R2. These queries probably could result simpler
if SQL-3 standard for the ouput of the rules were adopted.

Pros and cons of MINE RULE. The first advantage of MINE RULE is that it
has been designed as an extension to SQL. Moreover, as it perfectly nests SQL, it
is possible to use classical statements to pre-process the data, and, for instance,
select the subset of data to be mined. Like MSQL, data pre-processing is limited to



8 M. Botta et al.

operations that can be expressed in SQL: it is not possible to sample data before
extraction, and the discretization must be done by the user. Notice however, that,
by using the CLUSTER BY keyword, we can specify on which subgroups of a group
association rules must be found. Like MSQL, MINE RULE allows the user to specify
some constraints on rules to be extracted (on items belonging to head or body,
on their cardinality as well as more complex constraints based on the use of a
taxonomy). The interested reader is invited to read [8,9] to have illustration of
these latter capabilities. Like MSQL, MINE RULE is essentially designed around the
extraction step, and it does not provide much support for the other KDD steps
(e.g., post-processing tasks must be done with SQL queries). Finally, according
to our knowledge, MINE RULE is one of the few languages that have a well defined
semantics [9] for each of its operations. Indeed, it is clear that a clean theoretical
background is a key issue to allow the generation of efficient compilers.

4.3 DMQL

DMQL can work with traditional databases, so let’s consider that we have encoded
information of Table 1 into a sales db database which is made of the relations
Sales(customer id, item) and Customer info(customer id, age, payment).

Pre-processing step 1: selection of the subset of data to be mined.
Like MINE RULE, DMQL nests SQL for relational manipulations. So the selection
of the relevant subset of data (i.e. clients buying products with their credit card)
will be done via the use of the WHERE statement of the extraction query.

Pre-processing step 2: encoding age. DMQL does not provide primitives
to encode data like MSQL. However, it allows us to define a hierarchy to specify
ranges of values for customer’s age, as follows:

define hierarchy age hierarchy for customer info on sales as
level1:min...9<level0:all
level1:10...19<level0:all
...
level1:60...69<level0:all
level1:70...max<level0:all

Rules extraction. DMQL allows the user to specify templates of rules to be
discovered, called metapatterns, by using the matching keyword. These metap-
atterns can be used to impose strong syntactic constraints on rules to be discov-
ered. So we can specify that we are looking for rule’s bodies relative to bought
items and rule’s heads relative to customer’s age. Moreover, we can specify that
we desire to use the predefined hierarchy for the age attribute.

use database sales db
use hierarchy age hierarchy for customer info.age
mine association as SalesRB
matching with sales+(X, {I}) ⇒ customer info(X, A)
from sales, customer info
where sales.customer id=customer info.customer id



A Comparison between Query Languages 9

AND customer info.payment=’credit card’
with support threshold=25% with confidence threshold=50%

Crossing-over and post-processing operations. Like MINE RULE, DMQL
does not provide support for post-processing operations and performings them
requires writing SQL queries or using ad hoc tools provided externally.

Pros and cons of DMQL. Like MINE RULE, one of the main advantages of DQML
is that it completely nests classical SQL, and so it is quite easy for a new user
to learn and use the language. Moreover, DMQL is designed to work with tra-
ditional databases and datacubes. Concerning the extraction step, DMQL allows
to impose strong syntactic contraints on patterns to be extracted, by means
of metapatterns allowing the user to specify the form of extracted rules. An-
other advantage of DMQL is that we can include some background knowledge
in the process, by defining hierarchies on items occurring in the database and
mining rules across different levels of hierarchies. Once rules are extracted, we
can perform roll-up and drill-down manipulations on extracted rules. Clearly,
analogously to the other languages studied so far, the main drawback of DMQL
is that the language capabilities are essentially centered around the extraction
phase, and the language relies on SQL or additional tools to perform pre- and
post-processing operations. Finally, we can notice that, beyond association rules,
DMQL can perform many mining operations, like mining characteristic descrip-
tions, discriminant descriptions, or classification rules.

5 Conclusions

In this paper, we have considered various features of three languages, MSQL,
DMQL and MINE RULE, that extract association rules from a relational database
and support the “closure property”, a crucial property for inductive databases.
Then, we have compared them with the desired properties of an ideal query
language for inductive databases. Next, we have presented a set of queries taken
from data mining practice and have discussed the suitability of these languages
for querying inductive databases. The outcome is that no language presents
all the desired properties: MSQL seems the one that offers the larger number
of primitives tailored for post-processing and an on-the-fly encoding, specifically
designed for efficiency; DMQL allows the extraction of the most large set of different
data patterns and the definition and use of hierarchies and of some visualization
primitives during the rule extraction; MINE RULE is the only one that allows to
dynamically partition the source relation into groups from which the rules will be
extracted; a second level of grouping, the clusters, from which more sophisticated
rule constraints can be applied, is also possible. Furthermore, at our knowledge,
it looks as the only one with an algebraic semantics, what could become an
important positive factor when query optimization issues will be addressed.

However, one of the main limits of all the three languages is the insufficient
support of post-processing issues. Whatever the language is, the user must use
one of the predefined built-in options. This problem becomes crucial when con-
sidering user-defined post-processing operations involving something else than



10 M. Botta et al.

rule’s component, support and confidence. Instead, in our view, a good candi-
date language for inductive databases must be flexible enough in its grammar
to let the user specify its own constraints and different post-processing opera-
tions. Another important issue is the simplicity of the language and its ease of
use. Indeed, we think that a good candidate language for data mining must be
flexible enough to specify a lot of different mining tasks in a declarative fashion.
However the powerful declarative semantics must not affect the simplicity of use.
At our knowledge, these languages tackle this problem by being embedded in a
data mining tool, which provides a front end to the grammar.

Another crucial issue relative to query languages for data mining is the opti-
mization problem. When designing a language compiler, we must pay attention
to optimizations issues; for instance, trying to make profit of previously gener-
ated results, or to analyze the equivalence between queries. In these terms, at our
knowledge, a lot of work must still be done. Furthermore, it could reveal as very
important the ability to manipulate intermediate representation like condensed
representations of frequent patterns (see, e.g., [1]). A challenge tightly linked to
such a functionality would be to find ways to characterize constraints defined
in an operation of rule extraction in terms such that they could eventually be
exploited during the mining process.

This study allows us to conclude that the path to reach the maturity in
inductive database technology is still far to be reached. However, the limits and
the merits of the current query languages to give support to the knowledge
discovery process have been already identified.

References

1. Boulicaut J-F., Jeudy B.: Mining free-sets under constraints. Proc. of Database
Engineering & Applications Symposium, IDEAS’01, Grenoble, France (2001).

2. Imielinski, T., Mannila, H.: A Database Perspective on Knowledge Discovery. Com-
munications of the ACM. 3:4 (1996) 58–64.

3. Imielinski, T., Virmani, A., Abdulghani, A.: DataMine: Application Programming
Interface and Query Language for Database Mining. Proc. of the 2nd Int. Conf. on
Knowledge Discovery and Data Mining, KDD’96. 3 (1996) 256–261.

4. Imielinski, T., Virmani, A.: MSQL: A Query Language for Database Mining. Data
Mining and Knowledge Discovery. 3 (1999) 373–408.

5. Virmani, A.: Second Generation Data Mining. PhD Thesis, Rutgers Univ. (1998).
6. Han, J., Fu, Y., Wang, W., Koperski, K., Zaiane, O.: DMQL: A Data Mining Query
Language for Relational Databases.

7. Han, J., Kamber, M.: Data Mining – Concepts and Techniques. Morgan Kaufmann
Publishers (2001).

8. Meo, R., Psaila, G., Ceri, S.: A New SQL-like Operator for Mining Association Rules.
Proc. of the 22nd Int. Conf. of Very Large Data Bases. Bombay, India (1996).

9. Meo, R., Psaila, G., Ceri, S.: An Extension to SQL for Mining Association Rules.
Data Mining and Knowledge Discovery. 9:4 (1997).


	Introduction
	Desired Properties of a Data Mining Language
	Query Languages for Rule Mining
	Comparative Examples
	MSQL
	MINE RULE
	DMQL

	Conclusions

