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Many applications deal with classification in multi-class imbalanced contexts. In such difficult
situations, classical CBA-like approaches (Classification Based on Association rules) show their
limits. Most CBA-like methods actually are One-Vs-All approaches (OVA), i.e., the selected
classification rules are relevant for one class and irrelevant for the union of the other classes. In
this paper, we point out recurrent problems encountered by OVA approaches applied to
multi-class imbalanced data sets (e.g., improper bias towards majority classes, conflicting
rules). That is why we propose a new One-Versus-Each (OVE) framework. In this framework, a
rule has to be relevant for one class and irrelevant for every other class taken separately. Our
approach, called fitcare, is empirically validated on various benchmark data sets and our
theoretical findings are confirmed.
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1. Introduction

Among the various paradigms for supervised classification, associative classification has generated much interest in the data
mining community. Mining association rules [1] concluding on a class and that furthermore satisfy some relevance constraints
can provide good classification rules. In particular, their left-hand sides, i.e., conjunctions of Boolean attributes, can
advantageously replace the original attributes for classification purpose. The publication of the CBA algorithm [2] has opened
up this area of research. To learn a classifier from a set of training objects described with Boolean attributes, CBA first extracts
every classification rule having both a frequency and a confidence greater than two user-defined thresholds. Then, it selects a
subset of these rules based on coverage and/or redundancy considerations. This subset is used for prediction, i.e., to classify new
objects. Since this pioneering work, many CBA-like methods (e.g., [3–6]) have proposed improvements to the selection of the
classification rules and/or to their combination in a classifier. We believe their wide use is mainly explained by the ability to
“understand” the classification model, i.e., the analyst can present the rules that trigger the classification of an object which are
easily interpretable.

Nevertheless, these methods are often inaccurate for the minority classes. By definition, a minority class contains significantly
less objects than the other class(es). According to [7], “the class imbalance problem is pervasive and ubiquitous, causing trouble to a
large segment of the data mining community”. A frequency-confidence approach, such as CBA, ignores the class distribution during
the initial selection of the classification rules. These rules, with high confidences, may also be negatively correlated, i.e., the
conjunction of attributes they involve may better represent another (minority) class than the one they conclude on. In fact, it has
been shown that a frequency-confidence approach (i) is not suitable for statistically significant rule mining [8] and (ii) is biased
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towards the majority class in imbalanced data sets [9]. This bias is also the reason for poor accuracy results, such as true positive
rates, in the minority class(es). To overcome this weakness, the authors of [10,9] suggest a framework based on a correlation
measure. Although the correlation measure takes into account the class distribution, their approach is not perfect either. Indeed,
in a context with strictly more than two classes, two classification rules involving the same conjunction of attributes but
concluding on different classes may both be positively correlated. In other terms, conflicting rules can be selected.

The common fundamental issue affecting these proposals is that they are OVA (One-Versus-All) methods. That is to say, the
classification problem, into p classes, is split into p two-class classification problems (every class versus the other classes
altogether). In this way, the OVA approaches look for rules that are relevant for one class and irrelevant for the union of the other
classes. Notice also that the numerous classifiers based on emerging patterns [11] (see, e.g., [12] for a survey) follow as well the
OVA principle, thus suffer from the same problems. The OVO (One-Versus-One) framework, which selects classification rules after
successive restrictions of the training data set to every pair of classes, is not a solution either: one ignored class may perfectly
satisfies a rule selected for one of the classes in the pair. The next section highlights the characteristics of these frameworks and
more formally details their inherent problems with imbalanced classes and, therefore, motivates our proposal for a new
classification framework, namely the OVE (One-Versus-Each) framework. A key idea of the OVE framework is to take into account
the distribution of the objects supporting the classification rules in each class, then providing rules relevant for one class and
irrelevant for every other class taken separately. We make the following contributions.

• We propose a new classification framework called OVE (One-Versus-Each). In this framework, the repartition, in the different
classes, of the “errors” committed by a classification rule is considered. In this way, classification rules are selected based on
their relevance in the predicted class and their irrelevance in every other class.

• We implement this framework with an algorithm selecting the classification rules based on their frequencies in every class. The
bodies of these rules better represent the objects in the class they conclude on than the objects in any other class. The definition
of the rules allows their efficient extraction (by search space pruning). Two simple constraints on the technique guarantee that
no rule conflict occurs. The algorithm is parametrized with a matrix whose number of values is quadratic in the number of
classes. We design and implement a constrained hill-climbing technique to automatically learn the parameter matrix. A
performance study and an in-depth comparison with several classification methods on many data sets are conducted to
evaluate our approach.

The rest of the paper is organized as follows. The next section formally sets the context of our work, highlights current issues
and thus motivates our proposal for a new classification framework. Section 3 formally specifies the classifiers we propose to
learn and how simple constraints on its parameters guarantee that it is conflict-free. Section 4 details the algorithm fitcare that
computes such classifiers and learns the parameters of the model. We report the experimental validation of fitcare in Section 5.
We discuss further related work in Section 6. Finally, Section 7 briefly concludes.

2. Context & motivations

This section explains the need for a new framework for classification with imbalanced classes. We start by giving preliminary
definitions. LetT be a set of transactions (or objects or examples) andI a set of Boolean items (or attributes). All along this article,
RpT � I is a given binary database where some items CpI , called classes, partition the transactions, i.e.,∀t∈T ;∃!c∈C t; cð Þ∈Rj . A
subset of items IpI is called itemset. Its support and frequency, in R, are defined as follows:

Definition 1. Support of an itemset

The support of an itemset IpI in a binary database R is:
s I;Rð Þ ¼ t∈T tf g � IpRj g:f
Definition 2. Frequency of an itemset

The frequency of an itemset IpI in a binary database R is:
f I;Rð Þ ¼ s I;Rð Þj j
Tj j :
In these definitions, R is a variable so that it is possible to talk about the support or the frequency of an itemset in the binary
database R restricted to a subset TpT of transactions. Such a database is denoted RT and formally defined as t; ið Þ∈R t∈Tj gf .

To avoid lengthy notations, the support of a class c∈C, i.e., s cf g;Rð Þ, is simply denoted T c. In this way, the distribution of the
transactions in the 3-class binary database depicted in Fig. 1, is given by T c1j j T c2j j T c3j jð Þ. Because this toy database has 15 times
more transactions in the class c2 than in the class c3, the classes can be said imbalanced and the limits of the OVA framework can
(and will) be illustrated.



Fig. 1. A 3-class imbalanced data set.
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The associative classification is based on classification rules, i.e., association rules of the form I → c where IpI n C is called the
body of the rules and c∈C is the class on which the rule concludes. We now recall popular measures involved in the selection of the
classification rules constituting the classification models that are learned:

Definition 3. Frequency-confidence

The frequency of a classification rule I → c in a binary database R is:
f I→c;Rð Þ ¼ f I∪ cf g;Rð Þ;
Its confidence is:
conf I→c;Rð Þ ¼ f I→c;Rð Þ
f I;Rð Þ :
A frequency-confidence approach relies on a minimal frequency threshold and a minimal confidence threshold, i.e., the
selected classification rules are frequent enough and confident enough.

Classification processes are linked to the search of contrasts between classes of transactions [13]. The growth rate is a well-used
contrast measure [11].

Definition 4. Growth rate

The growth rate of a classification rule I → c in a binary database R is:
GR I→c;Rð Þ ¼

0 if f I;RT c

� �
¼ 0

∞ if f I;RT c

� �
> 0∧f I;RT nT c

� �
¼ 0

f I;RT c

� �

f I;RT nT c

� � otherwise

:

8>>>>>>><
>>>>>>>:
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An emerging pattern approach [11] relies on a minimal growth rate threshold, i.e., the selected classification rules have a
growth rate that is large enough. Emerging patterns belong to the family of contrast patterns [14].

Other measures such as the lift [15] enable us to quantify interests of rules:

Definition 5. Lift

The lift of a classification rule I → c, in a binary database R is:
lift I→c;Rð Þ ¼
f I;RT c

� �
f I;Rð Þ :
A positive correlation approach [16] relies on a minimal lift threshold, i.e., the selected classification rules must indicate a
positive correlation, between I and c, that is large enough.

In the binary database represented by Fig. 1, considering the itemset YpI n C such that s Y;RT c1

� ���� ��� ¼ 0; s Y ;RT c2

� ���� ��� ¼ 40 and

s Y ;RT c3

� ���� ��� ¼ 5 as the body of classification rules is enough to understand relevance problems met by the aforementioned

approaches in an OVA framework.

2.1. Frequency-confidence approaches

The confidence ofY→c2 conf Y→c2;Rð Þ ¼ 40=45ð Þ is much higher than that ofY→c3 conf Y→c3;Rð Þ ¼ 5=45ð Þ. However, Y better
“represents” the transactions classified in c3 (all of them are supersets of Y) than those in c2 (slightly more than half of them are
supersets of Y). More generally, a frequency-confidence approach favors rules concluding on majority classes. This problem even
exists with two classes. It is, therefore, present as well in an OVO (One-Versus-One) framework where the binary database is
successively restricted to every pair of classes.

2.2. Emerging pattern approaches

The growth rate of Y→c2 GR Y→c2;Rð Þ ¼ 40=75ð Þ= 5=25ð Þ ¼ 2:667ð Þ is higher than that of Y→c3 GR Y→c2;Rð Þ ¼ð
5=5ð Þ= 40=95ð Þ ¼ 2:375Þ. However, as explained above, Y better “represents” the transactions classified in c3 than those in c2. This
issue only arises when there are strictly more than two classes. In this case, and as illustrated with Y, an emerging pattern approach
favors rules concluding on majority classes.

2.3. Positive correlation approaches

It is obvious from Definition 5 that, given an itemset I as the body of classification rules, the one maximizing the lift concludes
on the class c providing the highest f I;RT cð Þ. In other terms, the rules favored in a positive correlation approach have their bodies
that better represent the transactions in the class they conclude on than those in any other class. The problem raised by the
positive correlation approach is computational. To the best of our knowledge, no algorithm has been developed to efficiently
extract classification rules under a minimal lift constraint. The fundamental issue stems from the fact that the constraint “having a
lift above a given threshold” is neither monotone [17] nor anti-monotone [18]. Notice also that it is neither succinct [17] nor
convertible [19]. As a consequence, the classical itemset mining methods are unable to use this constraint to prune the search
space, which exponentially grows with the number of items. The rare positive correlation approaches extract a pool of frequent
bodies for the classification rules (the frequency constraint is anti-monotone) and, in a post-processing step, compute their lifts to
select those constituting the classification model. Unfortunately, the time to extract the frequent itemsets quickly grows when the
minimal frequency threshold is lowered. As a consequence, the best rules that concludes on minority classes usually are
inaccessible. For instance, in the binary database depicted in Fig. 1, a classification rule that perfectly concludes on c3 (i.e., the
support of its body is T c3 ) cannot be found unless the minimal frequency threshold is set to 5% or less.

2.4. Other issues

Another issue, common to all OVA approaches, is the lack of flexibility to extract suitable sets of candidate classification rules. Indeed,
a same minimal frequency/confidence/growth rate/lift threshold is usually used to select all classification rules. This can lead to rule
conflicts, i.e., to the selection of two rules X → c and X′ → c′ with X p X′ and c ≠ c′. For instance, in the binary database depicted in
Fig. 1, the lifts of Y→c2 lift Y→c2;Rð Þ ¼ 40=75ð Þ= 45=100ð Þð Þ is 1:19 and that of Y→c3 lift Y→c3;Rð Þ ¼ 5=5ð Þ= 45=100ð Þð Þ is 2:22. It
indicates positive correlations (i.e., the values are greater than 1) between Y and the respective classes. As a consequence, both
may be part of the classification model even though they are in conflict. A post-processing step could refine the parameter so
that no conflict occurs. However this would be computationally costly (quadratic in the number of extracted rules).
Furthermore, with one single parameter, such a post-processing step would discard many rules that do not raise any conflict. By
allowing different parameters for the different classes on which the rules conclude, less rules are removed. However, because
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conflicting rules can conclude on any pair of classes, it would be even better to have parameters relating to every pair of classes.
That would mean taking into account the repartition, in the different classes, of the “errors” (misclassified transactions)
committed by a rule and it is in contradiction with the mere definition of the OVA framework.

Although the OVO (One-Versus-One) algorithms can be parametrized according to any pair of classes (and leading to a number
of values that is quadratic in the number of classes), they cannot avoid rule conflicts either. In this framework, the rules are
selected according to measures (such as those defined above) evaluated on binary databases restricted to pairs of classes. For
instance, in the binary database depicted in Fig. 1, the model to classify in c1 or c2 is learned independently from the model to
classify in c1 or c3. The classification rule Y → c2 may be selected during the former learning step; Y → c3 during the latter one.
Like in the OVA framework, post-processing the selected rules altogether could allow to refine the parameters but this would be
both costly and in contradiction with the definition of the framework. Table 1 summarizes the key principles of the classification
processes of these frameworks to get a better understanding of their characteristics and differences.

3. One-Versus-Each framework

Let us consider, without loss of generality, a context T ; I ;Rf g with p classes {c1, c2,…,cp}pI . In order to take into account the
various class sizes, we use per-class minimal frequency thresholds to select the bodies of the classification rules.

If an itemset has a frequency below the threshold associated with the class ci, it is considered insufficiently representative of this
class to be at the body of a rule concluding on it.Moreover, to control the distribution of the errorsmade by such a rule, an infrequency
threshold (i.e., a maximal frequency threshold) needs to be set for every class cj ≠ ci. A matrix, denoted Γ, concisely represents all
parameters:
Γ ¼

γ1;1 γ1;2 … γ1;p
γ2;1 γ2;2 … γ2;p
⋮ ⋮ ⋱ ⋮

γp;1 γp;2 … γp;p

0
BB@

1
CCA
The ith line of Γ parameterizes the frequency and infrequency constraints that must be satisfied by every itemset X at the body

of a classification rule concluding on ci. More precisely, X must be γi,i-frequent in RT ci
(i.e., f X;RT ci

� �
≥γi;i) and, for all j ≠ i, it

must be γi,j-infrequent in RT cj
(i.e., f X;RT cj

� �
bγi;j). An additional minimal body constraint complements the definition of the

itemsets selected at the body of the classification rules.

Definition 6. OVE-classification rule

Given a parameter matrix Γ, a classification rule X → ci is an OVE-classification rule, abbreviated OVE-CR, if and only if the three
following assertions are true:

1. X is frequent in RT ci
, i.e., f X;RT ci

� �
≥γi;i;

2. X is infrequent in every other class, i.e., ∀j≠i; f X;RT cj

� �
bγi;j;

3. X is a minimal body, i.e., ∀Y⊂X;∃j≠i f Y ;RT cj

� �
≥γi;j

��� .

Statements 1 and 2 force the extracted itemsets to respect the frequency and infrequency thresholds imposed by Γ. Statement
3 is the minimal body constraint. It is valuable for classification purpose because it avoids some redundancy in the set of OVE-CRs:
when rules concluding on a same class having bodies that are included into each other, the more general ones (i.e., the simplest
w.r.t. the body) are preferred as long as this generality does not imply more errors in the classes that are not predicted.

It is interesting to notice that the bodies of the OVE-CRs can be seen as frequent emerging patterns with per-class frequency
constraints and per-pair-of-classes growth rates. In particular, with a same value α ∈ [0,1] on the diagonal of Γ (i.e., for the
Table 1
Characterization of the OVA, the OVO and the OVE frameworks for a p-class problem. The database R is partitioned in
RT ci

n o
i ¼ 1::p. Following the terminology of “contrast data mining” [14], Contrast(RT ci

;RT cj
) stands for a classification sub-task

on a database restricted to classes ci and cj.

Strategies #tasks Unit sub-tasks (for p = 3)

OVA p Contrast(RT c1
;RT n RT c1

);
Contrast(RT c2

;RT n RT c2
);

Contrast(RT c3
;RT n RT c3

);
OVO p(p − 1) Contrast(RT c1

;RT c2
); Contrast(RT c2

;RT c1
);

Contrast(RT c1
;RT c3

); Contrast(RT c3
;RT c1

);
Contrast(RT c2

;RT c3
); Contrast(RT c3

;RT c2
);

OVE p Contrast(RT c1
;RT c2

) ∧ Contrast(RT c1
;RT c3

);
Contrast(RT c2

;RT c1
) ∧ Contrast(RT c2

;RT c3
);

Contrast(RT c3
;RT c1

) ∧ Contrast(RT c3
;RT c2

);
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frequency thresholds) and a same value β ∈ [0,1] in the other cells of Γ (i.e., for the infrequency thresholds), these bodies are
α-frequent α

β-EPs (see Definition 4). If β = 0, they are called, in the literature, jumping EPs. Being able to consider different
frequency thresholds, the OVE-framework allows us to address the class imbalance problem. Thanks to the per-class infrequency
thresholds (and even if they have a same value β), it takes into consideration the multi-class aspect of the task.

We now identify two constraints, on the parameter matrix Γ, that must be satisfied for the set of OVE-CRs to be relevant. The
body of such a rule X → ci intuitively needs to better represent the class ci than any other class. This gives us the first constraint on
Γ: the frequency threshold γi,i must be greater than the infrequency thresholds γi,j on the same line of Γ. More formally, Γ must
satisfy the following constraint, namely Crow:
Crow≡∀i∈ 1;…;nf g;∀j≠i;γi;j≤γi;i:
Although Crow has just been introduced by intuition, it can be further justified with some wanted properties it gives to the
OVE-CRs. Crow actually makes the OVE-CRs have both a growth-rate and a lift strictly greater than 1 (proof in the Appendix):

Proposition 1. If Γ satisfies Crow, then any OVE-CR X → ci extracted in the binary database R under the constraints expressed by Γ is
such that GR X→ci;Rð Þ > 1.
Proposition 2. If Γ satisfies Crow, then any OVE-CR X → ci extracted in the binary database R under the constraints expressed by Γ is
such that lift X→ci;Rð Þ > 1.

As illustrated earlier on the toy example in Fig. 1, two classification rules Y → c2 and Y → c3 sharing a same body can both
have growth rates and positive correlations greater than 1. In other terms, these properties are not sufficient to avoid rule
conflicts. This leads us to the second constraint on Γ, namely Ccolumn:
Ccolumn≡∀i∈ 1;…;nf g;∀j≠i;γi;j≤γj;j:

forces the number of errors X → ci makes in a class cj ≠ ci to be, in proportion of T cj

��� ���, lower than γj,j. Without it, Xwould
Ccolumn

also represent the class cj, i.e., X → cj could be extracted thus leading to rule conflicts. More formally, the following proposition
holds (proof in the Appendix):

Proposition 3. Let SΓ be the complete set of OVE-CRs satisfying the frequency and infrequency constraints parametrized by Γ. If Γ
satisfies Ccolumn, then SΓ is conflict-free, i.e., it does not contain a pair of OVE-CRs (X → ci, Y → cj) such that X p Y and i ≠ j.

To conclude this section with a broader perspective, notice that any method following the OVA or the OVO framework somewhat
works on several two-class problems (“every class against the union of the other classes” or “every class against every different
class”), whereas the OVE framework directly takes into consideration the multi-class aspect of the problem. Furthermore, because
every parameter of theOVE framework is relative to one single class, the imbalance aspect is, aswell, directly taken into consideration.

4. Introducing the fitcare algorithm

Our approach, fitcare, is an instance of the OVE framework. This section describes it in three steps. First, given a parameter
matrix Γ, an efficient algorithm is proposed in detail to compute exactly the OVE-CRs. Subsequently, the combination of the
OVE-CRs into a classifier is explained. Finally, an optimization method to discover Γ is described.

4.1. Extraction

Given a context T ; I ;Rf g with p classes {c1, c2, …, cp} p I and a parameter matrix Γ, the extraction of the complete set of
OVE-CRs is divided into p independent sub-problems. They correspond to the p rows of the parameter matrix Γ, i.e., the OVE-CRs
concluding on a class ci (respecting the frequency constraint parametrized by γi,i and the infrequency constraints parametrized by
(γi,j)j ≠ i) – let us call them SΓ,i – and are mined independently from those concluding on another class cj ≠ ci. Algorithm 1,
namely EXTRACT, computes such a set SΓ,i. The complete set of OVE-CRs, SΓ, is ∪ i = 1

p SΓ,i.
EXTRACT takes advantage of the anti-monotonicity of both the minimal frequency and the minimal body constraints to prune the

search-space. Since the conclusion of the rule is fixed, this search-space is the potential bodies of the OVE-CRs. It is traversed in a
breadth-firstway, i.e., EXTRACT startswith a level containing the only itemset having zero item,∅ (Line 4), and iteratively computes the
level (called futureParents) of itemsetswith k + 1 items from the level of itemsets with k items (called parents). More precisely,
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an itemset, called child, with k + 1 items is constructed by union of an itemset, called parent, with k items and an additional item
(class items excluded) that is greater than any item already in parent (Line 7). Any order on the items ensures that every OVE-CR is
discovered only once. However, ordering the items by increasing frequency is a good heuristic (the famous fail-first principle) to
decrease the number of itemsets EXTRACT enumerates, hence its running time.

For child to actually be inserted among the futureParents (Line 15), it must be frequent in RT ci
(Line 10) and in at least

another class (Line 11). Indeed, by anti-monotonicity of the frequency, if the former constraint is violated then every child's
superset is infrequent inRT ci

and the search-space is safely pruned. If the former constraint is satisfied but the latter is not, then
child is the body of an OVE-CR (output at Line 12) and, by definition, none of its strict supersets can be a minimal body. Again,
the search-space is safely pruned. However, this time, not inserting child in futureParents is not enough to force the
itemsets, enumerated later on, not to be supersets of child. That is why child is stored in a prefix tree, called
forbiddenPrefixes (Line 13). When constructing new itemsets from a parent,
EXTRACT efficiently computes the set of additional items (the forbiddenItems) that would make these itemsets be supersets
of a branch of forbiddenPrefixes (Line 6). By excluding those items as valid extensions of parent (Line 8), only minimal
bodies are enumerated. Taking advantage of this necessary structure, bodies that are infrequent in RT ci

are stored as well in
forbiddenPrefixes (Line 17). In this way, no strict superset of an infrequent body is ever enumerated.

From a technical point of view, the support of an itemset X is stored in p bitsets representing s X;RT cj

� �� �
j∈ 1;…pf g

. The supports

of the individual items (but the classes) are stored in the same way. Therefore, the support of a child is computed, just before
Line 10, with a simple “bitwise and” operation between the support of the parent and that of the appended item. The choice of a
prefix tree to store and access the forbiddenPrefixes is based on performance considerations too.

4.2. Classification

Algorithm EXTRACT not only outputs everyOVE-CR but also its frequencies in every class (Line 12 inAlgorithm1). All these frequencies
are used when it comes to classifying a new transaction t (pI , i.e., seen as its set of items). To do so, a likeliness score is computed for
each class. It simply is the sum of the frequencies in this class of the bodies of the OVE-CRs “matching” t, i.e., that are subsets of t:
l t; cið Þ ¼
Xp
j¼1

∑
fX→cj∈SΓ Xptj g

f X;RRT ci

� �
:
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Notice that the class in which an OVE-CR concludes does not “hide” the exceptions it may have in other classes. The class
predicted for t is the one providing the highest likelihood score, i.e., arg maxci l(t, ci).

4.3. Automatic discovery of a locally optimal Γ

Given a p-class problem, the matrix Γ contains p2 parameters to be set. That is why an exhaustive search of the parameters
leading to the best classifier is practically impossible. Since manually tuning Γ would be tedious, an automatic optimization
procedure was designed.

4.3.1. A constrained hill-climbing technique
The hill-climbing is a technique that aims at discovering a local optimum of a function f with a discrete domain. This

domain— the search space— can be represented as a graph. Its vertices are the possible inputs for f and an edge connects two
close inputs. The hill-climbing technique traverses this graph using f to decide what vertex to visit next. If rollbacks are
allowed (when the newly visited vertex provides a worse solution than the previous one), this technique stops at a local
optimum of f.

Our method is a constrained hill-climbing technique. The search space are the possible parameter matrices Γ. It is discrete
since there is a finite number of transactions in the context, hence a finite number of frequency and infrequency thresholds that
lead to different extractions with Algorithm 1. For a better efficiency (evaluating the function to optimize requires computing a
set of OVE-CRs with Algorithm 1) and a better effectiveness, fitcare is not a generic hill-climbing. It takes advantage of the
constraints Crow and Ccolumn on Γ (see Section 3) and uses as well coverage considerations (i.e., the maximal possible number of
transactions in T ci must be matched by the OVE-CRs concluding on ci). The formal definition of the coverage rate δi of T ci by a set
S(Γ,i) of OVE-CRs concluding on ci is:
δi ¼
∪X→ci∈S Γ;ið Þ

ft∈T ci
Xptj g

��� ���
T ci

��� ��� :
We now provide details about fitcare's key points.

4.3.1.1. Initialization. During an initialization step, fitcare learns the maximal coverage rates (δi)i ∈ {1,…,p} that can be achieved. It
is first assumed that (1,…, 1) is reachable. Starting with every frequency and infrequency threshold at 1, these parameters in Γ are
lowered until the full-coverage is reached or until a zero frequency (to avoid lengthy extractions when the full coverage is
impossible, lower bounds of the per-class frequencies can be fixed). More precisely, when attempting to cover T ci ;γi;i is lowered

by units of 1= T ci

�� �� and, to satisfy Crow, any infrequency threshold γi,j is set to the highest multiple of 1= T cj

��� ��� lesser than γi,i. If the

full-coverage of T ci is not reached, the ith row of Γ is set to the values providing the highest δi that has been met.
The parameter matrix computed in this way violates Ccolumn (unless a same frequency threshold suits all classes). To

satisfy Ccolumn, every infrequency threshold γi,j strictly greater than γj,j is set to the highest multiple of 1= T cj

��� ��� lesser than

γj,j. EXTRACT is then called for each row that has been modified. If the best coverage rate of T ci has been lost, γi,i is, again,
lowered by units of 1= T ci

�� �� and, if necessary to satisfy Crow, so are the infrequency thresholds γi,j. This procedure stops
when the δi is met again. If this does not occur, this rate is set to the highest one that has been met and the ith row of Γ is
rolled back accordingly.

The initialization goes on in this way, oscillating between the enforcement ofCrow and that ofCcolumn. It ends when a parameter
matrix satisfying bothCrow andCcolumn leads to the extraction of OVE-CRs covering the T ci

� �
i∈ 1;…;pf g with the highest possible rates

(δi)i ∈ {1,…,p} discovered earlier. In practice, these rates often are (1, …, 1), i.e., EXTRACT is never called with very low minimal
frequency thresholds and is fast thanks to frequency-based pruning.

The constrained hill-climbing technique starts from the parameter matrix discovered at the end of the initialization. All along
the remaining traversal of the parameter space, the coverage rates (δi)i ∈ {1,…,p}, discovered at the end of the initialization, are
preserved. In other terms, any set of OVE-CRs that does provide these rates directly is considered worse than the best set so far.
Now that we know where the hill-climbing starts its exploration, we present the objective function which locally optimized and
how this function indicates the next move to do in the parameter space.

4.3.1.2. Function optimized by hill-climbing. The choice of the function to optimize obviously is critical. Given a parameter matrix at
input, it must reflect the quality of the classification by the related OVE-CRs. Any classical measure for the assessment of a
classifier could be used. However, many of these measures have a bias towards the approaches favoring the majority classes. For
instance, the accuracy (i.e., the proportion of transactions, in a testing data set, that are correctly classified) of the classifier that
always returns the majority class is high if a high proportion of transactions indeed is in this class. Since the OVE framework aims
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at avoiding this bias, fitcare optimizes a new function. It is based on a measure of the tendency to classify in cj the transactions
in T ′

ci , i.e., labeled with ci in a testing data set1:
1 This
experim
g ci; cj
� �

¼

∑
t∈T ′

ci

l t; cið Þ

∑
t∈T ′

ci

l t; cj
� � :
We baptize this measure global growth rate. It is a ratio of a sum of frequencies in T ′
ci and another one in T ′

cj . The number of
terms in both sums is the same. It corresponds to the sum of the numbers of OVE-CRs matching each transaction in T ′

ci . The
higher g(ci, cj), the less confusion with cj when classifying the transactions in T ′

ci . fitcare maximizes the worse global
growth rate, min i ≠ jg(ci,cj). The next paragraph explains how a deeper analysis of the terms at its denominator allows to
find a reason for it to be low and therefore gives the direction, in the parameter space, in which moving would probably
improve the classifier.

4.3.1.3. Driving the hill-climbing. Since the function to optimize is the minimal global growth rate over all pairs of different classes,
improving the function is improving this minimum. Assume that it is obtained for the pair (ci,cj) of different classes. To order the
causes for this low g(ci, cj), the terms at its denominator (see the definition of l in Section 4.2) are grouped w.r.t. the classes at the
conclusions of the matching OVE-CRs:
∑
t∈T ci

∑
fX→c1∈SΓjXptg

f X;RT cj

� �

∑
t∈T ci

∑
fX→c2∈SΓjXptg

f X;RT cj

� �

⋮
∑
t∈T ci

∑
fX→cp∈SΓ jXptg

f X;RT cj

� �

0
BBBBBBBBBB@

1
CCCCCCCCCCA
:

Sorting these values is also sorting the causes for the low g(ci, cj). The two greatest values (i.e., the primary causes for a low
g(ci, cj)) usually are the ith and the jth ones. The ith value indicates to what extent the OVE-CRs concluding on ci make errors in cj.
The jth value indicates to what extent the OVE-CRs concluding on cj apply to the transactions in cj. The remaining values
correspond to the errors made in cj by the rules concluding on the p-2 other classes.

Each of these values directly relates to an infrequency threshold that fitcare lowers: a large jth value is associated with

lowering γj,i (by 1= T ci

�� ��), while a large kth value (k ≠ j) is an invitation to a smaller γk, j (lowered by 1= T cj

��� ���). After such an

alteration of an infrequency threshold in the parameter matrix, the coverage rate of the transactions related to the modified row
may decrease. A procedure similar to the one used for the initialization attempts to have, again, the best possible coverage rates of
the transactions in every class while satisfying Crow and Ccolumn. Nevertheless, this time, the impossibility to reach the optimal
coverage rates means an abortion: the parameters in the matrix Γ are rolled back to those that the optimized function has scored
best so far. This occurs as well when the optimal coverage rates are reached but the score, provided by optimized function,
actually is smaller. After a rollback of the parameter matrix, the second cause for the lowest global growth rate gives the new
move in the parameter space, and so on until lowering any infrequency threshold leads to either suboptimal coverage rates or a
worse classifier. When this happens, fitcare returns the best classifier (i.e., the best set of OVE-CRs) it has discovered and
terminates.

4.3.2. fitcare: algorithm
Algorithm 2more formally presents fitcare. The initialization of Γ (Line 1), thoroughly described earlier, is not detailed though.

However, the way fitcaremoves in the parameter space during the initialization (respecting bothCrow andCcolumn) is similar to the
way it does it during the hill-climbing. Two variables coordinate the execution: isParameterModified and classId. classId is
the index of Γ's row that fitcare currently considers or equals p + 1 (Line 16) when it has just been computed a set of OVE-CRs
allowing maximal cover rates. When classId is at most p, the Boolean variable isParameterModified successively indicates
whether the classId-th row of Γmay violate Ccolumn (Line 5) and whether the OVE-CRs, related to this row of parameters, have not
been extracted (Line 7). Just after the initialization, isParameterModified is set to false (Line 2) and classId to p (Line 3) but it
immediately becomes p + 1 (Line 15). That is why, below, the validation or invalidation of a new set of OVE-CRs is presented first.
Then, the way fitcare moves in the parameter space, respecting Crow and Ccolumn, is detailed.
data set is set apart from the learning data set before the initialization. In practice, we have chosen a stratified selection of 10% of the transactions. In the
ental section, fitcare is evaluated on yet other transactions that are set apart even earlier.
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4.3.2.1. (In)validation of a new set of OVE-CRs allowing maximal cover rates. Given a set of OVE-CRs, WGGR evaluates the function to
be optimized, i.e., computes the worst global growth rate (hence the acronym) between any pair of different classes. After
comparing the value obtained with the current set of OVE-CRs with that of the best solution so far (Line 17), this solution is
eitherreplaced by an even better one (Lines 18 and 19) or rolled back (Line 21). Then, and according to the ordering specified in
Section 4.3.1, an infrequency threshold is lowered (Line 22). If a better set of OVE-CRs has just been found, this parameter relates
to the primary cause for the worst global growth rate, otherwise the rank of the cause depends on how many moves from Γbest
have been tried so far. If the answer is “all of them”, LOWERMOSTPROBLEMATICPARAMETER returns a value strictly above p, SΓbest is output
(Line 24) and fitcare terminates.

4.3.2.2. Traversing the parameter space respecting Crow and Ccolumn. If the classId-th row of Γ has not been modified since the last
extraction of the related OVE-CRs, RATIONALIZEROW checks whether the enforcement ofCcolumn justifies such a modification, which is
made if necessary (Line 6). If it is not necessary, the next row of Γ is considered (Line 15) unless classId already indicates the
last one, in which case a validation or invalidation of the set of OVE-CRs is done. If the classId-th row of Γ has been modified
(Line 7), either to enforce Ccolumn (Line 6) or earlier (Line 23), the related OVE-CRs must be extracted. The function
LEARNRULESCONCLUDINGON does so. It calls EXTRACT with the parameter row as arguments and decreases the frequency threshold until
the maximal cover rate is reached. Doing so, the infrequency thresholds may be decreased as well so that Crow is always satisfied
(as described earlier for the initialization step). LEARNRULESCONCLUDINGON returns true if the maximal cover rate is reached, false
otherwise. In the former case, classId is set back to 1 (Line 10) because, even though the previous parameter rows have not
been modified (Line 9), they may now violateCcolumn. In the latter case, the parameter matrix is rolled back to the best solution so
far (Line 12) and the next best move in the parameter space is made (Line 13) unless no such move remained, in which case SΓbest
is output (Line 24) and fitcare terminates.
5. Experimental validation

fitcare's C++ implementation is distributed under the terms of the GNU GPLv3.2 In this section, it is compared with recent
and competitive state-of-the-art rule-based classifiers: CPAR [20] (based on inductive rules), HARMONY [21] (based on association
2 http://dcc.ufmg.br/lcerf/en/prototypes.htmlfitcare.

http://dcc.ufmg.br/lcerf/en/prototypes.htmlfitcare


Table 2
Global accuracies.

Data sets CPAR fitcare HARMONY DeEPs

breast-cancer 70.63 ± 8.91 66.08 ± 11.79 69.93 ± 11.19 58.33 ± 7.59
breast-w 94.14 ± 4.16 96.70 ± 2.03 95.70 ± 2.64 94.42 ± 3.04
colic 81.25 ± 3.89 81.79 ± 6.27 82.88 ± 4.43 79.92 ± 5.75
credit-a 85.51 ± 4.25 81.01 ± 3.80 85.65 ± 4.32 78.69 ± 4.20
diabetes 73.31 ± 5.36 64.45 ± 5.95 73.04 ± 4.99 62.87 ± 11.34
heart-c 78.82 ± 6.97 80.52 ± 6.83 78.87 ± 5.73 74.26 ± 6.37
heart-h 78.3 ± 9.77 78.57 ± 8.33 82.31 ± 6.34 76.23 ± 5.26
heart-s 81.48 ± 6.20 83.33 ± 4.76 81.48 ± 6.41 74.44 ± 6.30
hepatitis 78.54 ± 11.10 79.35 ± 8.63 85.16 ± 6.47 67.04 ± 15.42
labor 68.67 ± 17.71 80.7 ± 18.93 80.7 ± 22.91 76.00 ± 20.15
meningite 87.51 ± 5.09 93.61 ± 3.43 92.7 ± 3.36 68.38 ± 4.38
sonar 75.48 ± 7.24 76.44 ± 5.36 81.73 ± 10.76 68.76 ± 10.53
ticTacToe 70.98 ± 2.05 89.87 ± 11.55 97.18 ± 1.63 93.01 ± 2.68
balance-scale 70.08 ± 4.95 75.04 ± 4.08 73.12 ± 3.56 55.84 ± 8.86
car 78.42 ± 3.59 83.85 ± 1.81 89.35 ± 2.72 87.79 ± 1.73
iris 94.67 ± 4.99 94.67 ± 4.00 94.67 ± 5.81 85.33 ± 10.24
waveform 74.28 ± 1.70 79.74 ± 1.03 80.3 ± 0.93 82.04 ± 2.01
wine 93.86 ± 4.61 91.57 ± 5.16 96.06 ± 3.59 81.41 ± 9.79
zoo 93.18 ± 6.05 95.04 ± 8.49 92.07 ± 8.48 65.28 ± 15.11

Average 80.48 82.75 84.89 75.27
Average rank 2.8158 2.0263 1.6316 3.5263
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rules) and DeEPs [22] (based on emerging patterns). These algorithms are chosen because they rely on different kinds of rules
and have been shown to achieve better performances than older proposals (such as RIPPER [23], CBA [2], CMAR [3] and other
classifiers based on emerging patterns). HARMONYwas kindly provided by their authors [21], the Java implementation of CPAR is
that of [24] and the KEEL platform [25] includes the DeEPs algorithm that is used for these experiments.

The performances of these algorithms are compared with those of fitcare on 18 UCI data sets [26] and on a real-world data
set, “meningitis”, describing children hospitalized for acute bacterial or viral meningitis (the two classes). The continuous
attributes are discretized according to the entropy (as described in [27]) and the sole training set is used to do so. The same
discretization is then applied to the test set when it comes to assess the learned classifiers. The listed results are all obtained from
a 10-fold stratified cross-validation. The global accuracy, the balanced error rate and the per-class accuracy are chosen as quality
measures. In all cases, the statistical significance of the measured differences of performance is tested. The AUC (area under the
ROC curve) is not used because the chosen implementations of fitcare's competitors only predict the class of a transaction
instead of scoring each class for this transaction.

The remainder of this section first shows that there is no critical difference between the global performance of fitcare and
those of the best contender. It then stresses that fitcare outperforms them when it comes to predicting minority classes of an
imbalanced context. Finally, further experiments on synthetic data sets assert that fitcare is not biased towards the majority
class.

5.1. Global accuracy

The global accuracy simply is the proportion of transactions that are correctly classified. The results are listed in Table 2. The
average accuracy of each classifier is reported as well as its average rank.

The Friedman test [28] is applied to the ranking results so that their statistical significance is assessed. At a confidence level of
0.1, the null hypothesis is rejected, i.e., the classifiers show global performances that are significantly different. Proceeding to the
Fig. 2. The critical difference diagram for the global accuracy.



Table 3
Balanced error rates.

Data sets CPAR fitcare HARMONY DeEPs

breast-cancer 29.95 ± 12.82 37.04 ± 12.96 35.66 ± 12.16 44.53 ± 8.27
breast-w 5.74 ± 4.26 3.30 ± 2.26 5.05 ± 3.07 5.35 ± 2.23
colic 18.17 ± 4.66 19.31 ± 5.26 19.51 ± 6.1 23.75 ± 5.70
credit-a 13.98 ± 3.78 19.14 ± 3.62 14.81 ± 4.55 20.80 ± 3.74
diabetes 29.18 ± 6.42 33.02 ± 5.09 30.05 ± 6.40 41.63 ± 11.53
heart-c 19.81 ± 7.56 19.43 ± 7.30 21.36 ± 6.09 25.92 ± 6.26
heart-h 21.2 ± 11.38 24.17 ± 9.34 20.83 ± 6.81 25.00 ± 6.57
heart-s 17.28 ± 6.13 16.84 ± 4.58 18.92 ± 7.44 25.75 ± 6.55
hepatitis 25.24 ± 13.51 18.80 ± 10.67 27.85 ± 16.00 25.77 ± 18.69
labor 30.00 ± 19.97 18.32 ± 17.85 20.61 ± 26.25 22.92 ± 19.74
meningite 16.48 ± 6.59 8.20 ± 6.35 13.90 ± 6.88 21.23 ± 2.92
sonar 21.27 ± 6.91 23.58 ± 5.03 18.16 ± 10.77 30.75 ± 10.45
ticTacToe 31.45 ± 2.99 9.38 ± 11.94 3.72 ± 2.20 5.35 ± 2.07
balance-scale 49.13 ± 6.22 44.62 ± 4.55 47.11 ± 2.63 59.63 ± 6.55
car 44.48 ± 10.29 26.35 ± 6.04 31.66 ± 5.66 25.43 ± 8.19
iris 4.89 ± 4.90 5.33 ± 4.00 5.33 ± 5.81 14.67 ± 10.24
waveform 25.64 ± 1.71 20.17 ± 1.04 19.69 ± 0.92 17.88 ± 2.01
wine 5.29 ± 4.07 7.46 ± 4.79 3.93 ± 0.92 19.75 ± 10.54
zoo 31.48 ± 11.51 11.06 ± 9.37 16.81 ± 11.34 49.57 ± 14.16

Average 23.19 19.24 19.73 26.61
Average rank 2.4211 2.0526 2.1579 3.4211
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Nemenyi post-hoc test, the chart in Fig. 2 is obtained. It represents the critical difference of global performance between the four
algorithms (with CD ≃ 0.96). HARMONY is better ranked than fitcare but this advantage is not statistically significant. As a
consequence, it can be written that, despite fitcare's emphasis on correctly predicting minority classes, it also competes with
the state-of-the-art associative classifiers in terms of global performance.

5.2. Balanced error rate

Let us recall that, given a p-class context, the balanced error rate (BER) of a classifier is the average of the error rates in each
class:
BER ¼
ERc1

þ ERc2
þ ⋯þ ERcp

p
;

ERci is the error rate on the transactions that should be classified in ci.
where
BER results are listed in Table 3. Again, the average BER accuracy of each classifier is reported as well as its average rank.
Like for the global accuracies, the Friedman test [28] is applied to the ranking results. At a confidence level of 0.1, the null

hypothesis is rejected, i.e., the classifiers show performances that are significantly different. Proceeding to the Nemenyi post-hoc
test, the chart in Fig. 3 is obtained (still with CD ≃ 0.96). Although fitcare is ranked first, its advantage over HARMONY and CPAR
is not statistically significant. In fact, the only statistically significant statement that can be made relates to the inferiority of
DeEPs, which is also ranked last according to the global accuracy.

5.3. Performance in minority classes

In imbalanced contexts, the minority classes often are those of interest. In this section, a class is considered a minority class if
its number of transactions is, at most, 60% that of the largest class. With this definition, 19 of the 49 classes, in the considered data
sets, qualify as minority classes. They are spread across 12 different data sets, which are marked with an asterisk in Tables 4 and 5.
Fig. 3. The critical difference diagram for the balanced error rate.



Table 4
Per-class accuracies over 19 minor classes involved in 12 data sets.

Data sets CPAR fitcare HARMONY DeEPs

breast-cancer 78.15/61.95 70.64/55.29 78.1/50.58 62.19/48.75
201/85 ±6.08/24.47 ±11.58/18.97 ±11.87/18.52 ±9.52/14.05
breast-w 94.48/94.04 96.72/96.68 97.37/92.53 93.87/95.42
458/241 ±4.72/5.92 ±2.81/4.45 ±2.91/5.48 ±5.24/2.92
colic 84.35/79.31 84.91/76.47 89.65/71.32 90.09/62.42
232/136 ±4.63/10.91 ±10.56/6.92 ±4.87/14.21 ±6.60/6.60
credit-a 79.03/93.01 79.47/82.24 81.1/89.29 83.71/74.68
307/383 ±5.75/2.96 ±3.27/5.84 ±7.39/3.96 ±2.92/8.32
diabetes 77.23/64.42 58.6/75.37 80.2/59.7 73.20/43.55
500/268 ±4.74/9.01 ±9.59/7.69 ±4.24/12.33 ±13.27/16.03
heart-c 80.79/79.6 80/81.15 81.21/76.08 75.04/73.13
165/138 ±8.02/12.61 ±5.39/13.04 ±7.96/12.22 ±12.20/11.65
heart-h 81.64/75.96 85.63/66.03 90.42/67.92 79.74/70.27
188/106 ±7.02/19.01 ±7.96/15.62 ±6.1/10.02 ±10.11/17.40
heart-s 83.52/81.92 84.66/81.66 84.66/77.5 76.00/72.50
150/120 ±7.79/10.24 ±10.35/9.72 ±6/17.89 ±9.52/12.94
hepatitis 56.59/92.93 84.37/78.04 50/94.3 86.67/61.79
32/123 ±25.21/6.42 ±21.88/11.47 ±33.33/3.99 ±26.67/14.15
labor 54.83/85.17 85/78.37 75/83.78 80.00/74.17
20/37 ±26.23/29.07 ±22.91/24.49 ±40.31/20.57 ±24.49/25.67
meningite 71.46/95.59 88.09/95.51 72.61/99.59 100.00/57.55
84/245 ±11.96/2.71 ±14.13/3.21 ±14.14/1.2 ±0.00/5.83
sonar 70.1/87.37 76.28/76.57 83.5/80.18 79.11/59.39
97/111 ±7.84/12.13 ±14.7/15.32 ±12.37/14.03 ±14.31/17.47
ticTacToe 77.08/60.03 88.17/93.07 99.2/93.37 89.29/100.00
626/332 ±1.76/6.87 ±11.1/14.04 ±1.07/4.25 ±4.14/0.00
balance-scale 66.52/3/83.1 79.86/4/82.29 80.55/0/78.12 62.83/0/58.28
288/49/288 ±6.58/6.4/12.7 ±8.98/8/7.35 ±12.08/0/12.91 ±18.25/0.00/13.99
car 91.52/54.16/39.34/37.05 92.39/61.71/66.67/73.84 95.37/85.67/24.63/67.69 95.45/71.38/60.24/71.19
1210/384/69/65 ±2.59/6.64/16.55/38.36 ±0.86/7.57/19.52/12.55 ±2.67/8.64/15.71/16.67 ±2.00/7.21/24.14/16.75
iris 100/92.67/92.67 100/90/94 100/92/92 100/66/90
50/50/50 ±0/9.04/9.04 ±0/10/9.17 ±0/9.8/13.27 ±0/23.75/10
waveform 71.28/75.99/75.8 66.84/87.77/84.89 77.71/81.24/81.99 71.45/87.96/86.95
1657/1647/1696 ±1.32/3.42/3.24 ±4.62/6.22/4.3 ±2.49/1.46/1.63 ±4.48/2.91/2.16
wine 92.14/93.67/98.33 96.61/83.09/97.91 96.61/95.77/95.83 81.67/88.57/70.50
59/71/48 ±7.9/8.11/5 ±10/10.69/6 ±6.77/6.55/9.07 ±20.34/14.00/23.07
zoo 94.67/100/20/100/30/55/80 97.56/100/60/100/75/100/90 97.56/100/40/92.3/75/87.5/90 73/65/30/75/20/40/50
41/20/5/13/4/8/10 ±11.07/0/40/0/45.83/47.17/33.17 ±7.5/0/45.83/0/45.83/40/30 ±7.5/0/40/15/45.83/45.83/30 ±17.64/39.05/45.83/

40.31/40/48.99/50

Avg rank (minor classes) 2.7632 1.7105 2.7105 2.8158
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5.3.1. Per-class accuracy results
The per-class accuracies are reported in Table 4. The distribution of the transactions in the classes is indicated in the column

entitled data sets. The numbers in bold face relate to the 19 minority classes. The last row gives the average rank of the four
classifiers over these 19 classes.

Again, the Friedman test [28] is applied to the ranking results. At a confidence level of 0.1, the null hypothesis is
rejected, i.e., the classifiers show performances that are significantly different. Proceeding to the Nemenyi post-hoc test,
the chart in Fig. 4 is obtained (still with CD ≃ 0.96). This time, fitcare is found to provide statistically better results than
any of the three other competitors. We therefore conclude on the superiority of fitcare when it comes to correctly
classify transactions in minority classes. That makes fitcare an appealing choice to learn alarms, i.e., classifiers
identifying malfunctioning states of a system (those states being, hopefully, exceptional hence minority classes). As
shown with previous experiments, fitcare's performances the minority classes are not achieved at the detriment of the
global accuracy or the balanced error rate.

Back to the detailed results in Table 4, it can be observed that the superiority of fitcare is particularly obvious in contexts
with strictly more than two classes. Indeed, fitcare provides the best per-class accuracy in nine out of the ten minority classes.
On the contrary, over all imbalanced contexts (i.e., those having at least one minority class), there are 13 classes that are not
minority classes and fitcare only provides the best per-class accuracy for one of them.

5.3.2. F-score results
Because per-class precisions do not take into account false positive rates, the statistically better results obtained by fitcare

could hide a bias towards the minority classes, i.e., those classes would be over-predicted. The results in Sections 5.1 and 5.2 have



Table 5
F-score results.

Data sets CPAR fitcare HARMONY DeEPs

breast-cancer 0.5792 0.4921 0.5000 0.4080
breast-w 0.9209 0.9530 0.9370 0.9218
colic 0.7714 0.7564 0.7549 0.6967
credit-a 0.8423 0.7884 0.8342 0.7776
diabetes 0.6223 0.5968 0.6072 0.4500
heart-c 0.7857 0.7915 0.7664 0.7214
heart-h 0.7297 0.6897 0.7347 0.6820
heart-s 0.8066 0.8133 0.7881 0.7160
hepatitis 0.6102 0.6279 0.5818 0.5234
labor 0.5946 0.7556 0.7317 0.7111
meningite 0.7742 0.8757 0.8356 0.6176
sonar 0.7598 0.7513 0.8100 0.7032
titactoe 0.5896 0.8643 0.9583 0.9083
balance-scale 0.0102 0.0250 0.0000 0.0000
car 0.5347 0.6295 0.7815 0.7220

0.1298 0.2480 0.1560 0.2847
0.1170 0.2560 0.3235 0.3136

iris 0.9259 0.9259 0.9259 0.8197
waveform 0.6615 0.7419 0.7313 0.7646
wine 0.9038 0.8624 0.9293 0.6733
zoo 0.7273 0.8889 0.8333 0.4127

0.1176 0.5454 0.3333 0.0976
0.6341 0.8387 0.7500 0.3509
0.1176 0.5454 0.4286 0.0513
0.3478 0.7619 0.6364 0.1395
0.5161 0.7826 0.6923 0.2128

Avg rank (minor classes) 2.8421 1.7368 2.0263 3.3947
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already shown that, globally, such a bias is not perceptible. Nevertheless, this could be due to the fact that the tendency to
over-predict the minority classes affects a quantity of transactions which is small w.r.t. the total number of transactions (but not
w.r.t. the sizes of the minority classes).

To more convincingly assert the absence of a bias towards the minority classes, the precisions in the minority classes, used in
the previous set of experiments, are dropped in favor of F-scores. The F-score (also F-measure) is the harmonic mean of precision
and recall. In this way, if all transactions in a minority class are correctly classified, the precision in this class is 1; but if this same
class is predicted for as many transactions in other classes, then the F-score only is 2� 1�0:5

1�0:5 ¼ 0:75. Contrary to global measures,
the total number of transactions does not intervene and a bias towards minority classes would therefore significantly affect the
F-score.

Table 5 lists the F-scores obtained by CPAR, fitcare, HARMONY and DeEPs in all 19 minority classes (whose sizes are reported
in bold face in Table 4). fitcare gets the best F-score for 11 of the 19 classes. The last row of the table gives the average rank of
the four classifiers. At a confidence level of 0.1, the Friedman test allows to reject the null hypothesis, i.e., the classifiers show
performances that are significantly different. Proceeding to the Nemenyi post-hoc test, the chart in Fig. 5 is obtained (with
CD ≃ 0.96). fitcare still is ranked first, hence an absence of a bias towards minority classes. The F-scores it gets in the minority
classes are significantly better than those of CPAR and DeEPs. HARMONY, ranked second, provides, in the minority classes, F-scores
that are not significantly different from fitcare's.
Fig. 4. The critical difference diagram for the per-class accuracy in minor classes.



Fig. 5. The critical difference diagram for the F-score on minor classes.
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5.4. Evolution of performance in imbalanced contexts

The waveform data set has three classes that are balanced since they respectively contain 1657, 1647 and 1696 transactions.
By removing transactions from one or two classes, various artificially imbalanced data sets are built. More precisely, a class ci is
turned into a minority class by randomly partitioning Tci into subsets of the same size (+1 transaction) that amounts to x% of the
original size (x ∈ {50, 33, 25, 20, 16, 10}). One single partition is kept and classifiers are learned with CPAR, fitcare, HARMONY
and DeEPs. Like earlier, they are assessed by 10-CV. Figs. 6, 7, 8 and 9 give, in function of x, the achieved per-class accuracies
(averaged over all partitions of the class(es) that is/are artificially smaller).

Fig. 6 reports the results obtained when only c1 is reduced. The three other figures correspond to artificial reductions of two
classes. In all cases, a same conclusion is drawn: CPAR and HARMONY are biased towards the larger class(es), whereas fitcare and
DeEPs are not. Indeed, when x increases, the per-class accuracies of CPAR and HARMONY significantly increase in the majority
class(es) and significantly decrease in the minority class(es). Notice that this fall is rather impressive when only c1 is reduced.
When only 10% of its transactions are kept, CPAR correctly classifies one tenth of them; HARMONY one quarter. On the contrary, the
per-class accuracies of fitcare and DeEPs are stable in the reduced class(es). Surprisingly, and contrary to fitcare, DeEPs
looks biased towards the minority class(es). Indeed, DeEPs seems to maintain stable the accuracy in the minority class(es) at the
cost of a lower accuracy in the majority class(es). This is particularly noticeable in Figs. 7 and 8. Furthermore, we recall that, for all
three quality measures used in the previous experiments, DeEPs always ranks last.

In conclusion, the experiments in the previous sections have shown that, without any significant loss at the global scale,
fitcare provides better results in the minority classes, yet it is not biased towards such classes. By gradually turning a balanced
data set into more and more imbalanced ones, the effect of class imbalance on the four tested classifiers becomes clearer:
fitcare's and DeEPs's performance are not affected by this parameter, whereas CPAR and HARMONY are biased towards the
majority classes. Because CPAR and HARMONY instantiate the OVA framework, we believe it is an empirical observation of the bias
towards majority classes that is theoretically explained in Section 2.
5.5. Run time

The EXTRACT algorithm takes advantage of the anti-monotonicity of both the minimal frequency and the minimal body
constraints to prune the classification rule search space. In this regard, it can be said “efficient”. The constrained hill-climbing, we
have designed, initializes the frequency thresholds at 1 and, ignoring the rollbacks, it only decreases them. Therefore the fastest
extractions are tested first. Nevertheless, and despite Crow and Ccolumn, which discard many parameter matrices, thousands of
them are sometimes tried before the discovery of a parameter matrix that locally maximizes the worst global growth rate. That is
why CPAR, HARMONY and DeEPs usually run faster than fitcare. Anyway, over all 19 tested data sets, fitcare usually requires
less than 10 s to learn the classifier. Table 6 reports the four exceptions to this rule, i.e., the run times greater than 10 s, on the
most demanding data sets.
b) c)a)

Fig. 6. Per-class accuracy results when the class c1 is reduced to 50, 33, 25, 20, 16 and 10% of its original size.
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Fig. 7. Per-class accuracy results when the classes c1 and c2 are reduced to 50, 33, 25, 20, 16 and 10% of their original sizes.
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6. Related work

The related work is organized in four categories corresponding to the key domains of the paper.

6.1. Rule-based algorithms

Two families of algorithms aim at discovering a set of rules for classification purposes: the induction-rule-based algorithms
and the association-rule-based (i.e., CBA-like) algorithms. FOIL [29], IREP [30], RIPPER [23] and CPAR [20] belong to the
former family. They follow a sequential database covering strategy (see, e.g., [16] chap. 5, p. 213) and greedily “grow” the body of
a rule one item at a time. This item is chosen according to a heuristics such as the maximization of the information gain.
Association-rule-based techniques like CBA [2], APRIORI-C [31], CMAR [3], ARC-BC [32] use association rule mining algorithms
(see, e.g., [33,34]) to extract a complete set of frequent and confident association rules. From this set, classification rules are
selected w.r.t. coverage, redundancy and/or relevance. They become the basis for a classifier. EPs-based classifiers like CAEP [35],
JEP-C [36], DeEPs [22] or [37] follow the same strategy (see also [38]). Another rule-based algorithm, namely HARMONY [21], has
recently proposed a new instance-centric strategy to directly mine classification rules. HARMONY uses per-class frequency
thresholds (instead of a global one) for more accurate predictions in imbalanced multi-class contexts. Today, it is often cited as
the best associative classifier with CPAR as a contender for two-class problems. All these rule-based algorithms follow the OVA

framework.

6.2. Classifying in strictly more than two classes

The OVO (One Versus One, also known as pairwise [39]) framework aims at improving the effectiveness of the classification in
strictly more than two classes. In this framework, a p-class problem is divided into p(p − 1)/2 two-class sub-problems, i.e., that
many classifiers are learned to address each sub-problem. Given a new object, these classifiers are combined so that it is assigned
to a unique class. In this framework, the base learner (i.e., the algorithm learning to discriminate between two classes) is a
variable. As such, the methods following this framework are meta-models. For example, [40] uses RIPPER [23] as a base learner
and a simple voting strategy to combine the classifiers. Compared to the simple use of the base learner, the OVO framework indeed
enables more accurate predictions in multi-class contexts. Nevertheless, some limits have been pointed out. In particular, it does
not solve the imbalanced class issue: if the base learner is biased towards the majority class, the meta-classifier suffers from the
same problem.
a) b) c)

Fig. 8. Per-class accuracy results when the classes c1 and c3 are reduced to 50, 33, 25, 20 16, and 10% of their original sizes.



a) b) c)

Fig. 9. Per-class accuracy results when the classes c2 and c3 are reduced to 50, 33, 25, 20, 16 and 10% of their original sizes.
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6.3. Classifying in imbalanced classes

Barandela et al. [41] identify three main strategies to learn classifiers from imbalanced contexts:

• (i) By re-sampling data. This strategy – the most famous one – is a pre-processing step. It turns the imbalanced context into a
balanced one. Either under-sampling or over-sampling is used to annul the difference between the sizes of the positive and the
negative classes. Under-sampling is at the risk of ignoring useful information. Over-sampling entails a computational overhead
and often leads to over-fitting the minority class(es). Anyway, in imbalanced contexts, both techniques increase the accuracy of
the classifiers learned in a second step. Under-sampling usually gets the upper hand. SMOTE [42] combines under and
over-sampling. Some experimentations are conducted in [43] combining different classifiers and re-sampling methods to study
the effect on accuracy rate.

• (ii) By declaring higher costs to misclassifying objects from the minority class(es). In many imbalanced problems, errors in the
prediction of the minority classes are very costly. It is about learning an alarm that detects (rare) anomalies. On the
contrary, the misclassification of negative examples (i.e., false alarms) is not as costly. Cost-based classification is about
learning a classifier from the data given a cost matrix, i.e., a matrix specifying the cost related to misclassifying in cj an
object from ci (for every pair of classes (ci, cj)). The classifier is to minimize the total misclassification cost. By associating
high costs with the misclassification of objects from the minority classes, the usual bias towards the majority class(es) is
counterbalanced. Since the first workshop dedicated to this topic [44], many approaches have been studied. Some proposals weight
the learning objects according to the costs [45,46]. Other proposals rely onmeta-methods [47,48]. Qin et al. [49] wrote a quick, yet
well-structured, survey for readers interested in those approaches and other ones not mentioned here.

• (iii) By integrated algorithms. The last strategy is the one fitcare embraces. It is about modifying the design of
existing algorithms to cope with imbalanced contexts. Since msCBA [50], several associative classification methods
have been adapted. To the best of our knowledge, HARMONY [21] is fitcare's toughest contender. Other classification
frameworks have been extended as well. For example, in the domain of classification trees, [51] uses m-estimates to smooth the
probability estimates at the leaves and [52,53] propose new criteria to split a node while constructing the tree.

Today, class imbalance still is considered a difficult and open problem. Some works [54–56] and recent workshops [7,57] have
been dedicated to it. Interested readers may refer to a recent survey by Sun et al. [58].

6.4. Parameter tuning

Automatically tuning the parameters (e.g., frequency thresholds) of an associative classifier is a difficult and open
problem. A few recent methods tackle it. [59] computes polynomial approximations and fuzzy estimations to automatically
learn an adequate frequency threshold for frequent pattern mining. [60] uses a hill-climbing technique to “navigate” in the
parameter space and maximize the accuracy of CBA-like classifiers. Our algorithm, fitcare, uses as well a hill-climbing
technique. However, it tunes several (in)frequency thresholds trying to minimize the worst confusion between any pair of
classes.
Table 6
fitcare's run times on the most demanding data sets
(average over the learning sets of the 10-CV).

Data sets Run time (s)

colic 254.1 ± 191.6
credit-a 660.6 ± 366.2
sonar 1454.5 ± 4594.6
waveform 652.2 ± 732.6
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7. Conclusion and perspectives

This article deals with the pattern-based classification in multi-class imbalanced contexts. The contribution is three-fold: a
new framework dedicated to this problem has been presented; an efficient algorithm, instantiating the framework and
presenting good properties (such as the absence of rule conflict), has been designed; and a constrained hill-climbing technique
has been proposed to automatically tune the parameters so that the confusion between any pair of classes is minimized. By
taking into account the errors a classification rule makes into each class, the approach has been both theoretically and
empirically shown to not over-classify in the majority class(es), a problem affecting the state-of-the-art associative classifiers
such as CPAR and HARMONY. Moreover, experiments demonstrate that the superior effectiveness in minority classes does not
harm the accuracy at a global scale. The proposal actually is statistically on par with the best contender, HARMONY. The
anti-monotone constraints, that the selected rules satisfy, all allow to prune the search space. However, and despite the
traversal of the parameter space from the easiest extractions to the hardest ones, tuning the parameters may require thousands
of extractions. Turning the approach lazymay be a solution we plan to investigate. Another interesting perspective relates to the
ability to affect costs to classification errors. Indeed, the cost-sensitive classification (see, e.g., [61]) is intimately linked with the
classification in imbalanced contexts.
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Appendix A

Proof of Propositions 1 and 2. Let us first prove Proposition 2 and then explain how this reasoning can be easily adapted to prove
Proposition 1.

By Definition 1, the lift of X → ci in R is:
lift X→ci;Rð Þ ¼
f X;RT ci

� �
f X;Rð Þ :
Rewriting f X;Rð Þ using Definition 2 gives:
lift X→ci;Rð Þ ¼
Tj jf X;RT ci

� �
s X;Rð Þ :
Because the p classes partition the transactions, we have:
lift X→ci;Rð Þ ¼
Tj jf X;RT ci

� �

∑p
j¼1s X;RT cj

� � :
Using again Definition 2, these per-class supports are turned into per-class frequencies:
lift X→ci;Rð Þ ¼
Tj jf X;RT ci

� �

∑p
j¼1 T cj

��� ���f X;RT cj

� � :
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Γ forces f X;RT ci

� �
≥γi;i and ∀ j ≠ i; f X;RT cj

� �
bγi;j. Therefore:
lift X→ci;Rð Þ >
Tj jγi;i

∑p
j¼1 T cj

��� ���γi;j

:

Finally, because Crow imposes that ∀ j ≠ i, γi,j ≤ γi,i, we conclude on the positive correlation between X and ci:
lift X→ci;Rð Þ >
Tj jγi;i

∑p
j¼1 T cj

��� ���γi;i

¼ Tj j
∑p

j¼1 T cj

��� ��� ¼
Tj j
Tj j ¼ 1:
The proof of Proposition 1 starts with the definition of the growth rate and follows the same steps as above. The only difference
is that the denominators of the fractions exclude the class at the conclusion of the rule. The proof therefore ends with

GR X→ci;Rð Þ > T nT cij jγi;i

∑j≠i T cj

��� ���γi;i

¼ T nT cij j
T nT cij j ¼ 1.

Proof of Proposition 3. Assume, by contradiction, that SΓ contains a pair of OVE-CRs (X → ci, Y → cj) such that X p Y and i ≠ j.
By anti-monotonicity of the frequency, we have:
f Y;RT cj

� �
≤f X;RT cj

� �
:

X → ci and Y → cj respect the frequency/infrequency constraints parametrized by Γ. In particular:
f Y ;RT cj

� �
≥γj;j

f X;RT cj

� �
bγi;j

:

8>><
>>:
Because Ccolumn imposes that γi,j ≤ γj,j, a contradiction (γj,j b γj,j) is reached:
γj;j≤f Y;RT cj

� �
≤f X;RT cj

� �
bγi;j≤γj;j:
Therefore the initial assumption is false, i.e., SΓ is conflict-free.
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