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Abstract. Many applications see huge demands of discovering impor-
tant patterns in dynamic attributed graph. In this paper, we intro-
duce the problem of discovering trend sub-graphs in dynamic attributed
graphs. This new kind of pattern relies on the graph structure and the
temporal evolution of the attribute values. Several interestingness mea-
sures are introduced to focus on the most relevant patterns with regard
to the graph structure, the vertex attributes, and the time. We design an
efficient algorithm that benefits from various constraint properties and
provide an extensive empirical study from several real-world dynamic
attributed graphs.

1 Introduction

Data mining techniques are now sufficiently mature to investigate complex data
such as graph, whose vertices stand for entities and edges represent their rela-
tionships or interactions. With the rapid development of social media, sensor
technologies and bioinformatic assay tools, real-world graph data has become
ubiquitous and new dedicated data mining techniques have been developed.
Whereas dynamic graphs [2,4,13,15] and attributed graphs [12,14,16] have been
separately considered so-far, we focus on the extraction of valuable information
from dynamic attributed graphs. The simultaneous consideration of the graph
structure, the vertex attributes and their evolution through time makes possible
to tackle a wide variety of mining problems. A timely challenge is to provide
tools and methods to describe the evolution of the whole graph but also the
specific evolution of some particular sub-graphs.

The second problem was recently tackled in [6], where an algorithm that mines
cohesive co-evolution patterns is proposed. These patterns identify sets of ver-
tices that are similar from the point of view of their attribute values and of the
vertices in their neighborhood. However, as this method under-utilizes the topo-
logical structure of the vertex sets (i.e., only similarity measure are computed
from two vertex adjacency lists), it tends to fragment some reliable patterns.
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In this paper, we propose to mine maximal dynamic attributed sub-graphs that
satisfy some constraints on the graph topology and on the attribute values. To be
more robust towards intrinsic inter-individual variability, we do not compare raw
numerical values, but their trends, that is, their derivative at time stamp t. The
connectivity of the dynamic sub-graphs is constrained by a maximum diameter
value that limits the length of the longest shortest path between two vertices.
Additional interestingness measures are used to assess the interest of the trend
dynamic sub-graphs and guide their search by user-parameterized constraints.
These constraints aim at answering the following questions:

– How similar are the vertices outside the trend dynamic sub-graph to the
ones inside it?

– Are trends specific to the vertices of the pattern?
– What about the dynamic of the pattern? Does it appear suddenly or con-
tinuously?

The algorithm designed to compute these patterns traverses the lattice of
dynamic attributed sub-graphs in a depth-first manner. It prunes and propagates
constraints that are fully or partially monotonic or anti-monotonic [5], and thus
takes advantage of a large variety of constraints that are usually not exploited
by standard lattice-based approaches. To summarize, the main contributions of
this paper are:

– The introduction of a novel problem: the discovery of trend dynamic sub-
graphs in dynamic attributed graph. We define the trend dynamic sub-graph
as a suitable mathematical notion for the study of dynamic attributed graphs
and introduce the notions of vertex specificity, temporal dynamic, and trend
relevancy characterizations.

– The design of an efficient algorithm that exploits the constraints, even those
that are neither monotonic nor anti-monotonic.

– A quantitative and qualitative empirical study. We report on the evaluation
of the efficiency and the effectiveness of the algorithm on several real-world
dynamic attributed graphs.

The remainder of the paper is organized as follows. Section 2 defines the trend
dynamic sub-graphs and their related interestingness measures. It also formalizes
a new data mining task. Section 3 presents the algorithm that computes trend
dynamic sub-graphs. An empirical evaluation on real-world attributed dynamic
graphs is reported in Section 4. Section 5 discusses the related work. A conclusion
ends the paper in Section 6.

2 Trend Dynamic Sub-graphs and Their Related
Constraints

2.1 Trend Dynamic Sub-graphs

The input of our mining task is a dynamic graph G = {Gt | t = 1 . . . tmax}
over a discrete time span T = �1, tmax�. Each static graph is a non-directed
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attributed graph Gt = (V,Et, A) where V is a set of n vertices {v1, . . . , vn}
that is fixed throughout the time, {Et | t ∈ T } is a sequence of sets of edges
that connect vertices of V at time t (Et ⊆ V × V ), and A is a set of p ordinal
attributes {a1, . . . , ap} whose values are defined for each vertex at each time step
(ai : V × T → Di, where Di is the domain of ai).

Intuitively, a trend dynamic sub-graph is an induced dynamic graph of G(V, T )
whose vertices follow the same trend over a subset of attributes of A. Formally,
given a subset of vertices U ⊆ V and a subsequence S = 〈t1, · · · , ts〉 of time
stamps of T , the dynamic sub-graph of G induced by (U, S) is G(U, S) = {Gt(U) |
t ∈ S} and Gt(U) contains all the edges in Et that have both ends in U . The
induced dynamic graphs that are apt to convey a useful piece of information
are those whose vertices follow a similar trend for a set of attributes, that is to
say whose attribute value derivative at a time stamp t has the same sign over
all the vertices and the time stamps of the dynamic sub-graph. We say that an
attribute a shows an increasing trend over G(U, S), denoted a+, if ∀u ∈ U and
∀t ∈ S, a(u, t) < a(u, t+ 1). In a similar way, we also consider decreasing trend,
a−. Many trend dynamic sub-graph can be observed over a dynamic attributed
graph, but those that are particularly important occur in nodes that are closely
related through the induced sub-graph topology. To that end, we are looking for
trend dynamic sub-graphs whose static induce sub-graphs have a small diameter.
To summarize, a trend dynamic sub-graph is defined as follows:

Definition 1 (Trend Dynamic Sub-graph). A trend dynamic sub-graph of

an attributed dynamic graph
(
G(V, T ), A × {+,−}

)
is composed by (1) the in-

duced dynamic sub-graph G(U, S) = {Gt(U) | t ∈ S} where U ⊆ V and S =
〈t1, . . . , ts〉 is a subsequence of T , and (2) a subset of signed attributes Ω, with
Ω ⊆ A×{+,−}. It is denoted (G(U, S), Ω)

and satisfies the following properties :

1. At each time stamp t ∈ S, the sub-graph induced by U is Gt(U) = (U, Ft)
with Ft = Et ∩ (U × U).

2. At each time stamp t ∈ S, the diameter of the graph Gt(U) is less than
or equal to k, where k is a user-defined threshold. I.e., for any two vertices
v, w ∈ U , there exists a path connecting them whose length is smaller than
or equal to k. Formally, let dGt(U)(v, w) be the shortest path length between
the vertices v and w in Gt(U). The diameter of G is thus defined by

diamGt(U) ≡ max
v,w∈U

dGt(U)(v, w)

and the diameter constraint, that is diamGt(U) ≤ k, ∀t ∈ S, is denoted

diameter
(G(U, S), Ω)

.
3. Each signed attribute (a,m) ∈ Ω defined a trend that has to be satisfied by

any vertex u ∈ U at any timestamp t ∈ S:
{
a+(u, t) ≡ a(u, t) < a(u, t+ 1), if m = +
a−(u, t) ≡ a(u, t) > a(u, t+ 1), if m = −

This constraint is denoted trend
(G(U, S), Ω)

.
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4. If
(G(U, S), Ω)

is maximal, then the sets U and Ω, as well as the sequence S
cannot be enlarged without invalidating one or more of the above properties.
This constraint is denoted maximal

(G(U, S), Ω)
.

2.2 Interestingness Measures

To further guide the extraction of trend dynamic sub-graphs toward most rele-
vant ones, we propose several interstingness measures that offer the possibility
to the end-users to express their needs. An interestingness measure is a function
which assigns a value to a pattern according to its quality. Such a measure can
easily be used as a constraint by specifying a user-defined threshold that makes
possible the selection of patterns having a high or a low value on these measures.

Size measures: As most simple interestingness measures are often the most useful
ones, we first consider size measures that characterize a pattern by the number
of elements it contains: sz vertices

(G(U, S), Ω)
= |U |, sz times

(G(U, S), Ω)
=

|S| and sz attributes
(G(U, S), Ω)

= |Ω|. These measures are generally used to
constrain patterns to a minimal size.

Volume measure: In some contexts, it can also be useful to combine the three size

measures in a single value: volume
(G(U, S), Ω)

= |U|
|V | × |S|

|T | × |Ω|
|A| . This measure

is also generally used to constrain patterns to a minimal volume.

Measure of vertex specificity: The question that aims to answer this measure is:
How similar are the vertices outside the trend dynamic sub-graph to the ones
inside it? We want to quantify the average proportion of trends that are satisfied
by outside pattern vertices:

vertex specificity
(G(U, S), Ω)

=

∑
w∈V \U

∑
(a,m)∈Ω

∑
t∈S δam(w,t)

|V \ U | × |Ω| × |S|
where δcondition is the Kronecker function that is equal to 1 if condition is satis-
fied, or 0 otherwise. The more the trend dynamic sub-graph is made of specific
vertices with respect to attribute trends, the lower this measure.

Measure of trend relevancy: The question that aims to answer this measure
is: Does the attributes that do not belong to Ω have an homogeneous trend
on G(U, S)? To that end, we evaluate the entropy of the attribute trends and
consider the one that has the smallest entropy. Let

P1(b
m,G(U, S)) =

∑
u∈U

∑
t∈S δbm(u,t)∑

u∈U

∑
t∈S

(
δb−(u,t) + δb+(u,t)

)

be the proportion of the trend m of attribute b on the vertices and time stamps
of G(U, S). Then the trend relevancy interestingness measure is:

trend relevancy
(G(U,S), Ω)

= min
b∈A\Ω

∑

m∈{−,+}
−P1(b

m,G(U, S)) logP1(b
m, G(U,S))

The more a trend dynamic sub-graph is trend relevant, the higher this measure.
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Fig. 1. Does the pattern burst ?

Measure of temporal dynamic: The
question that aims to answer this
measure is: How does a pattern ap-
pear in the time? Does it burst?
To that end, we evaluate the dy-
namic of the proportion of ver-
tices and attributes that satisfy the
pattern before and after the time
stamps of S: P2(t, (G(U, S), Ω)) =
∑

u∈U

∑
(a,m)∈Ω δam(u,t)

|U|.|Ω| . If a trend dynamic sub-graph bursts, then the propor-

tion P2 is below a threshold at every time stamps not in S:

temporal dynamic(G(U, S), Ω) = max
t∈T\S

P2(t, (G(U, S), Ω))

3 Trend Sub-graph Enumeration

To compute all the trend attributed sub-graphs that satisfy the interestingness
measures, we design MINTAG algorithm (for MINing Trend Attributed Graph)
that enumerates induced dynamic sub-graphs based on the next partial order.

Definition 2 (Partial Order on Attributed Induced Dynamic Sub-
graphs). Let Q1 =

(G(U1, S1), Ω1

)
and Q2 =

(G(U2, S2), Ω2

)
be two attributed

induced dynamic sub-graphs. We say that Q1 is more specific than Q2, Q1 � Q2,
iff U1 ⊆ U2 and S1 ⊆ S2 and Ω1 ⊆ Ω2.

This partial order forms a lattice: for any nonempty finite subset of attributed
induced dynamic sub-graphs F = {Qi | i = 1 . . . k}, F∨ =

(G(⋃Ui,
⋃
Si),

⋃
Ωi

)
and F∧ =

(G(⋂Ui,
⋂
Si),

⋂
Ωi

)
are respectively the join and meet elements. The

bounds of the lattice are Q� =
(G(V, T ), A × {+,−}) and Q⊥ =

(G(∅, ∅), ∅).
The enumeration strategy used by MINTAG is a binary partition [17]. In order
to enumerate all the trend attributed sub-graphs R induced from

(G(V, T ), A×
{+,−}), a binary partition algorithm consists in choosing an element e ∈ E =
V ∪ T ∪ A × {+,−} and divides R into two sets R+e and R−e so that R+e

consists of all the elements of R including e, and R−e consists of those that do
not include e. Therefore, e belongs to R∧

+e and e does not belong to R∨−e. If R+e

(resp. R−e) is not empty and R∨
+e �= R∧

+e (resp. R∨
−e �= R∧

−e), it is recursively
divided by choosing another element inR∨

+e\R∧
+e (resp.R∨

−e\R∧
−e). The number

of iterations of a binary partition algorithm is linear in |R|, which is the output
size, if it is possible to check whether either R+e or R−e are empty. In the
following, we explain how this test is performed.

3.1 Constraint Checking and Propagation Mechanisms

Let I and O be two subsets of E. We denote by RIO a search space such that I
is the set of elements that are included in all the patterns of RIO and O is the
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set of elements that cannot be included in any pattern of RIO. R∨
IO and R∧

IO are
respectively the join and meet elements of this search space and I ⊆ R∧

IO and
O ∩R∨

IO = ∅. Checking whether the search space is empty can be done by eval-
uating the constraints on the join or the meet elements. Indeed, if a monotonic
constraint is not satisfied by the join element, then RIO is empty. Similarly, if
an anti-monotonic constraint is not satisfied by the meet element, then RIO is
also empty. Constraints that are partially monotonic or anti-monotonic can also
be pushed [5], as it is explained below.

Trend Sub-graph Constraints

Trend constraint: This constraint is anti-monotonic with respect to �. That is,
if Q1 and Q2 are two attributed induced dynamic sub-graphs such that Q1 �
Q2, then, trend(Q2) ⇒ trend(Q1). The anti-monotonic property of the trend
constraint implies that if trend(R∧

IO) is not satisfied, then RIO is empty. In
MINTAG algorithm, this constraint is propagated using the following procedure:
if there exists e in R∨

IO \ R∧
IO such that trend(R∧

IO ∪ e) is not satisfied, then e
is removed from R∨

IO.
Diameter constraint: This constraint is neither monotonic nor anti-monotonic
with respect to �. However, noting that this constraint is monotonic or anti-
monotonic in each of its parameters, we can derive a propagation mechanism
of this constraint. That is, for all vertex v and all time stamp t in the trend
sub-graph, we should have maxw∈U1 dGt(U2)(v, w) ≤ k. This constraint is anti-
monotonic on U1 and monotonic on U2, that is (a) if the constraint is satisfied on
U1, it is also satisfied for any of its subsets; (b) if the constraint is satisfied on a
graph Gt(U2), then, adding some vertices and edges to Gt(U2) will not increase
its value. Therefore, in MINTAG algorithm, this constraint is propagated using the
following mechanisms: (1) if there exists v ∈ R∨

IO \ R∧
IO, w ∈ R∧

IO and t ∈ R∧
IO

such that dGt(R∨
IO∩V )(v, w) > k then v is removed from R∨

IO; (2) if there exists
t ∈ R∨

IO \R∧
IO, v ∈ R∧

IO and w ∈ R∧
IO such that dGt(R∨

IO∩V )(v, w) > k then t is
removed from R∨

IO.

Other Interestingness Constraints

Minimal size constraints: As these constraints are monotonic, if sz vertices
(R∨

IO ∩ V ) < min sz vertices or sz attributes(R∨
IO ∩ A × {+,−}) <

min sz attributes or sz times(R∨
IO ∩ T ) < min sz times, then RIO is empty.

Minimal volume constraint: Similarly, this constraint is monotonic and if
volume(R∨

IO) < min volume, then RIO is empty.

Maximal vertex specificity constraint: As the diameter constraint, this constraint
is monotonic or anti-monotonic on each of its parameters. Considering the
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equation
∑

w∈V \U1

∑
(a,m)∈Ω1

∑
t∈S1

δam(w,t)

|V \U2|×|Ω2|×|S2| ≤ max vertex spec, we can observe

that it is monotonic on U1, S2 and Ω2 and anti-monotonic on U2, S1 and Ω1.
Thus, RIO is empty if

∑
w∈(R∨

IO∩V )

∑
(a,m)∈(R∧

IO∩(A×{+,−})
∑

t∈(R∧
IO∩T ) δam(w,t)

|R∧
IO ∩ V | × |R∨

IO ∩ (A× {+,−})| × |R∨
IO ∩ T | > max vertex spec

Minimal trend relevancy constraint: Handling this constraint is a little more
tricky. Let us first consider the entropy function with two probability values:
f(x) = −x log(x) − (1 − x) log(1 − x). This function increases on [0, 12 ] and de-
creases on [ 12 , 1]. Using this notation, the minimal trend relevancy can be rewrit-
ten as minb∈A\Ω f(P1(b

+,G(U, S)) ≥ min trend rel.1 Second, we can derive the
following upper bound on P1(b

m,G(U, S)):

P1(b
m,G(U, S)) ≤

∑
u∈(R∨

IO∩U)

∑
t∈(R∨

IO∩S) δbm(u,t)∑
u∈(R∧

IO∩U

∑
t∈(R∧

IO∩S)

(
δb−(u,t) + δb+(u,t)

) = UB(bm)

as P1 is monotonic on its numerator parameters, and anti-monotonic on
its denominator ones. Similarly, we can derive a lower bound2 LB(bm) ≤
P1(b

m,G(U, S)). Thus, if UB(bm) ≤ 1
2 , then f is increasing and

f(P1(b
m,G(U, S))) ≤ f(UB(bm)). Similarly, if LB(bm) ≥ 1

2 , then f is decreasing
and f(P1(b

m,G(U, S))) ≤ f(LB(bm)).
Therefore, if there exists b ∈ A \ R∨

IO and m ∈ {+,−} such that either
(1) UB(bm) ≤ 1

2 and f(UB(bm)) < min trend rel, or (2) LB(bm) ≥ 1
2 and

f(LB(bm)) < min trend rel then f(P1(b
m,G(U, S))) < min trend rel and we

can conclude that RIO is empty.

Maximal temporal dynamic constraint: This constraint is anti-monotonic on its
parameters on the numerator and monotonic on the ones on the denominator:

max
t∈T\S

∑
u∈U

∑
(a,m)∈Ω δam(u,t)

|U |.|Ω| ≤ max temp dyn

Therefore, if there exists t ∈ T \R∨
IO such that

∑
u∈R∧

IO
∩U

∑
(a,m)∈R∧

IO
∩Ω δam(u,t)

|R∨
IO∩U|.|R∨

IO∩Ω| >

max temp dyn, then we can conclude that RIO is empty.

3.2 MINTAG Algorithm

Algorithm 1 presents the main steps of MINTAG. Lines 1 and 2 initialize I and O
to the emptyset. Line 3 and 4 initialize the sub-space join value to the lattice top
and the meet value to the lattice bottom. Line 5 is the first call to MINTAG Enum

1 This is equivalent to minb∈A\Ω f(P1(b
−,G(U, S)) ≥ min trend rel as

P1(b
+,G(U, S)) = 1− P1(b

−,G(U, S)).
2 LB(bm) =

∑
u∈(R∧

IO
∩U)

∑
t∈(R∧

IO
∩S)

δbm(u,t)

∑
u∈(R∨

IO
∩U

∑
t∈(R∨

IO
∩S)

(
δ
b−(u,t)

+δ
b+(u,t)

) ≤ P1(b
m,G(U, S)).
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function which enumerates once and only once each trend dynamic sub-graph.
The first line of the function tests if the search space contains a single trend
dynamic sub-graph. If so, it is output. Line 4 reduces the search space join by
removing elements whose enumeration will emptied the search space due to the
trend or the diameter constraints. Line 5 checks if the search space is empty
by considering the maximality, minimal size, minimal volume, maximal vertex
specificity, minimal trend relevancy and maximal temporal dynamic constraints.
If one of these constraints is not relevant for the end-user, she can set the corre-
sponding threshold to 0, for the minimal constraints, or to 1 for the other ones.
In that case, these constraints do not coerce the result. If the search space is not
empty, a new element, that belongs to the join but not to the meet, is enumer-
ated. This element is first added to the search space meet before the recursive
call (lines 7 and 8), and then it is removed from the search space join before the
recursive call (lines 10 and 11).

Algorithm 1. MINTAG Function MINTAG Enum(R∨
IO,R∧

IO)

Require: An attributed dynamic
graph G = {Gt = (V,Et, A) |
t ∈ T} with A{a1, . . . , ap}, ai :
V × T → Di and the parame-
ters.

Ensure: All trend dynamic sub-
graph that satisfy the con-
straints.

1: I ← ∅
2: O ← ∅
3: R∨

IO ←
(
G(V, T ), A× {+,−}

)

4: R∧
IO ←

(
G(∅, ∅), ∅

)

5: MINTAG Enum(R∨
IO ,R∧

IO)

1: if R∨
IO = R∧

IO then
2: Ouput(R∨

IO)
3: else
4: R∨

IO ← Constraint Propagation(R∨
IO ,R∧

IO)

5: if not Empty Search Space(R∨
IO ,R∧

IO) then
6: for all e ∈ R∨

IO \ R∧
IO do

7: I ← I ∪ {e}
8: MINTAG Enum(R∨

IO ,R∧
IO ∪ {e})

9: I ← I \ {e}
10: O ← O ∪ {e}
11: MINTAG Enum(R∨

IO \ {e},R∧
IO)

12: O ← O \ {e}
13: end for
14: end if
15: end if

4 Experimental Study

In this section, we report on experimental results to illustrate the interest of
the proposed approach. We start by describing the different real-world dynamic
attributed graphs we use, as well as the questions we aim to answer. Then, we
provide a performance study and give some qualitative results. All experiments
were performed on a cluster. Nodes are equipped with 2 processors at 2.5GHz and
16GB of RAM under Linux operating systems. MINTAG algorithm is implemented
in standard C++.
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4.1 Real-World Dynamic Attributed Graphs Description

Dynamic attributed graph |V | |T | |A| density

DBLP 2145 10 43 1.3× 10−3

US Flights Last 20 years 361 20 8 3.2× 10−2

September 2001 220 30 6 5.7× 10−2

Two years around 9/11 234 25 8 5.7× 10−2

Katrina 280 8 8 5× 10−2

Brazil landslides 394885 2 11 5.7× 10−4

Fig. 2. Main characteristics of the dy-
namic attributed graphs

We considered 3 real-world dynamic
attributed graphs whose characteris-
tics are given in Figure 4.1.

DBLP: This co-authorship graph is
built from the DBLP digital library 3.
Each vertex represents an author who
published at least ten papers in one of
the major conferences and journals of
the Data Mining and Database com-
munities between January 1990 and December 2012. This time period is divided
in 10 timestamps. Each timestamp describes the co-authorship relations and the
publication records of the authors over 5 consecutive years. For sake of consis-
tency in the data, two consecutive periods have a 3 year overlap4. Each edge at
a time stamp t links two authors who co-authored at least one paper in this time
interval. The vertex properties are the number of publications in each of the 43
journals or conferences.

US Flights: RITA “On-Time Performance” database5 contains on-time arrival
data for non-stop US domestic flights by major air carriers. From this database,
we generated 4 dynamic attributed graphs that aggregate data over different
period of time. Graph vertices stand for US airports and are connected by an
edge if there is at least a flight connecting them during the time period. We
consider 8 vertex attributes that are the number of departures/arrivals, the
number of canceled flights, the number of flights whose destination airport has
been diverted, the mean delay of departure/arrival and the ground waiting time
departure/arrival. The four dynamic graphs are:

– Last 20 years: Data are aggregated over each year.
– September 2001: Data are aggregated over each day of September 2001.
– Two years around 9/11: Data are aggregated over each month between
September 2000 and September 2002.

– Katrina: To study the consequences of hurricane Katrina on US airports,
data are aggregated over each week between 01/08/2005 and 25/09/2005.

Brazil landslides: This dynamic attributed graph is derived from two satellite
images taken before and after huge landslides in Brazil. It is composed of 394885
vertices that stand for image shapes (segmented areas), two time stamps and
11 attributes that are the spectral response in infra-red, red, blue green and
indices computed from these values. There is an edge between two vertices if the
corresponding shapes are contiguous.

3 http://dblp.uni-trier.de/
4 [1990-1994][1992-1996][1994-1998]...[2008-2012].
5 http://www.transtats.bts.gov

http://dblp.uni-trier.de/
http://www.transtats.bts.gov
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The ensuing experimental study aims at answering the following questions:
What is the efficiency of MINTAG with regard to the graph characteristics that
may affect its execution time? How effective are MINTAG’s pruning properties?
Does MINTAG scale? What about MINTAG’s trend dynamic sub-graph relevancy?

4.2 Quantitative Results

We conduct intensive experiments to evaluate the performance of MINTAG in
terms of computational cost and number of trend dynamic sub-graphs on differ-
ent dynamic attributed graphs. Figure 3 shows the number of extracted patterns
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Fig. 3. Number of patterns and runtime for DBLP (left) and US flights (right) with
respect to volume: max vertex spec = 0.5, min trend rel = 0.05 and max temp dyn =
0.8. The diameter is set to 2 on (left) and to 1 on (right).

and the execution times of MINTAG on DBLP and US Flights with respect to the
volume threshold. When the minimum volume threshold decreases, more exe-
cution time is required since more trend dynamic sub-graph are obtained. Yet,
MINTAG is able to extract trend dynamic sub-graphs when the minimum volume
threshold is minimal, that is to say equals 1, since we report absolute volume
values. MINTAG does not exhibit a similar monotonic behavior when varying the
diameter constraint: the time computation is no more proportional to the num-
ber of extracted patterns. Actually, pushing this constraint needs to compute
shortest paths in the graph, that is costly.

Figure 4 reports the execution times and the number of patterns with respect
to the other interestingness measures: vertex specificity, trend relevancy and
temporal dynamic. We can observe that for the graphs DBLP and US Flights, the
less stringent the constraints, the higher the execution times and the number of
patterns are. In most of the cases, the number of patterns increases dramatically.
This behavior shows that our approach push efficiently these constraints that
are neither monotonic nor anti-monotonic. It is noteworthy that in Figure 4,
the execution time of MINTAG on DBLP for min trend rel = 0 is not available
because the process was killed after several hours.

Figure 5 reports on the scability of MINTAG. We used DBLP and replicated
alternatively the number of vertices, time stamps and attributes. As the number
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Fig. 4. Runtime and number of patterns with respect to the specificity measures
(max vertex spec = 0.3, min trend rel = 0.1, max temp dyn = 0.5, min volume = 5
and max diameter = 2 for DBLP (top) or 1 for US flights (bottom))

of extracted patterns is not preserved by these replications (i.e., the vertex repli-
cation adds connected components while the time replication introduces new
variations involving the last time stamp) we report the runtime per pattern. It
appears that MINTAG is more robust to the increase of the number of attributes
and to the number of vertices than to the number of time stamps. This is a good
point since, in practice, the number of vertices is often large while the numbers
of attributes and mainly the number of time stamps are rather small.
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Fig. 5. Runtime per pattern with respect to replication factors on vertices, attributes
and time stamps (max vertex spec = 0.3, min trend rel = 0.1, max temp dyn = 0.5,
min volume = 5 and max diameter = 2

We study the effectiveness of each constraint on both DBLP and US Flights,
when varying the different thresholds (volume, vertex specificity, temporal dy-
namic and trend relevancy). To this end, we count the number of pruned un-
promising candidates by each constraint. The results are shown in Figure 6 for
DBLP (top) and US Flights (bottom). It is noteworthy that all the constraints
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enable to prune unpromising candidates and they have different impact on both
graphs. We can observe that the trend relevancy constraint is effective on the
two graphs and prunes almost 50% of the unpromising candidates on DBLP in
most of the cases. Even if this constraint has no anti-monotonic property, it is ef-
ficiently pushed in MINTAG. The volume constraint, more effective on DBLP than
US Flights, makes possible to prune large part of the search space. This behavior
is much more expected since this constraint is anti-monotonic. The pruning im-
pact of the temporal dynamic constraint is not negligible, since it prunes nearly
20% of the candidates on DBLP and up to 60% on US flights. This important
difference is mainly due to the temporal regularity of US Flights. This can also
explain the fact that the vertex specificity constraint plays a prominent role on
the US Flights while having a limited impact of the DBLP dynamic graph.
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Fig. 6. Constraint efficiency on DBLP (top) and US Flights (bottom) w.r.t. speci-
ficity measures. From top to bottom: volume (black), trend relevancy (red), tempo-
ral dynamic (green) and vertex specificity (blue). Same parameters as in Fig. 3 and 4.

4.3 Qualitative Results

Results on DBLP: We perform an extraction on DBLP dynamic attributed
graph with max diameter set to infinity (vertices belong to the same connected
component) and min volume = 5. Other constraints threshold are set so as not
to constrain the result. We obtained 112 trend dynamic sub-graphs in less than
4 seconds. The top 2 largest patterns depict the same well-known phenomenon,
explained below. The first pattern involves 171 authors having an increasing
number of publications in PVLDB between 2004 and 2012. The second one
involves 164 authors that have a decreasing number of publications in VLDB
during the same period. These patterns reflect the new policy of the VLDB
endowment. Indeed, PVLDB appeared in 2008 and, in 2010, the review process of
the VLDB conference series was done in collaboration with, and entirely through
PVLDB in 2011. Then, we carry out a new extraction taking into account all the
constraints (max diameter = 2, max vertex spec = 0.3, max temp dyn = 0.5)
except min trend rel that was set to 0. We obtained 41 patterns in 8 seconds.
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We first consider the pattern that has the longest duration and involves the
most recent period, that is [2008-2012]. It implies the vertices related to Jimeng
Sun and Christos Faloutsos, who have an increasing number of publications in
KDD and SDM, while having a decreasing number of publications in VLDB. We
consider another pattern which has the best temporal dynamic value among the
patterns having their trend relevancy greater than 0.1. It involves two authors,
Rong Zhou and Eric A. Hansen, and the time stamps between 1998 and 2008.
On this period, the authors have an increasing number of publications in AAAI
conference series. This pattern has good values on vertex specificity (0.12),
temporal dynamic (0) and trend relevancy (0.81). This publication trend is
rare with regard to the whole graph.

Fig. 7. Airports (left) involved in the top temporal dynamic trend dynamic sub-graph
(in red) and in the top trend relevancy (in yellow) and the Katrina’s track (right)

Results on Katrina: Hurricane Katrina was the deadliest and most destruc-
tive Atlantic hurricane of the 2005 Atlantic hurricane season. It was the costli-
est natural disaster, as well as one of the five deadliest hurricanes, in the his-
tory of the United States. Among recorded Atlantic hurricanes, it was the sixth
strongest overall. In this experiment, we aim to characterize the impact of this
hurricane on the US domestic flights. To this end, we set constraints as follows:
min volume = 10, max vertex spec = 0.6, min trend rel = 0.1, max temp dyn =
0.2 and max diameter = ∞. We extract 37 patterns in 14 seconds. We look for
two patterns: (i) the trend dynamic sub-graph with largest temporal dynamic
value, and (ii) the pattern with the highest trend relevancy value. These pat-
terns and Katrina’s track6 are shown in Figure 7. Pattern (i) involves 71 air-
ports (in red on Figure 7 (left)) whose arrival delays increase over 3 weeks. One
week is not related to the hurricane but the two others are the two weeks af-
ter Katrina caused severe destruction along the Gulf coast. This pattern has
a temporal dynamic = 0, which means that arrival delays never increased in
these airports during another week. The hurricane strongly influenced the do-
mestic flight organization. Pattern (ii) has a trend relevancy value equal to 0.81
and includes 5 airports (in yellow on Figure 7 (left)) whose number of departures
and arrivals increased over the three weeks following Katrina hurricane. Three
out of the 5 airports are in the Katrina’s trajectory while the two other ones were

6 Map from c©2013 Google, INEGI, Inav/Geosistemas SRL, MapLink
http://commons.wikimedia.org/wiki/File:Katrina_2005_track

http://commons.wikimedia.org/wiki/File:Katrina_2005_track
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Table 1. Trend dynamic sub-graphs extracted by MINTAG on September 2001 graph

Pattern |V | Days A vertex spec. temp. dyn. trend rel.

P1 179 10, 11 #Cancel.+ 0.5 0.41 0.94

P2 111 13, 15 #Cancel.− 0.52 0.83 0.9

P3 102 13, 14, 15 #Cancel.− 0.6 0.84 0.81

impacted because of their connections to airports from damaged areas. Substi-
tutions flights were provided from these airports during this period. The values
on the other interestingness measures show that this behavior is rather rare in
the rest of the graph (vertex specificity = 0.29, temporal dynamic = 0.2).

Results on September 2001: To characterize the impact of September 11
attacks, we look for patterns involving many airports (at least 100) whose trends
are relevant (trend relevancy = 0.8). Given this setting, MINTAG returns 3 trend
dynamic sub-graphs in 8 seconds. These patterns are reported in Table 1. They
depict a large number of airports, whose number of canceled flights increased on
September 11 and 12 compared to the previous days, and then decreased two
days after the terrorist attacks (between the 13th and 16th September). These
patterns identify the time required for a return to normal domestic traffic.

Results on Two years around 9/11: Considering longer periods before and
after the September attacks, with more restrictive threshold values (temporal
dynamic = 1, vertex specificity = 0.5 and trend relevancy = 0.8), we obtain
87 patterns in 67 seconds. The top trend relevancy pattern involves 159 air-
ports that have an increasing number of canceled flights in September 2001 and
December 2000. Obviously, the number of canceled flights in September 2001 is
related to terrorist attack. It is noteworthy that December 2000 snow storm had
a similar impact on the cancellation of flights, because we do not quantify the
strength of the trends. Actually, the number of canceled flights in September
2001 is four times bigger than the one in December 2000.

Results on Brazil landslides: In this series of 2 satellite images, the goal is

Fig. 8. Regions involved in the
patterns: true landslides (red)
and other phenomena (white).

to identify regions in which a landslide appears
in the second image. Generally, the main con-
sequence of a landslide if the disappearance of
the vegetation. Therefore, we focus on the pat-
terns that involve NDV I−, since NDV I is a
computed index that quantifies the level of veg-
etation. MINTAG returns 4821 patterns in 2 hours
that involve 34275 regions that are reported on
Figure 8. These results were evaluated by an ex-
pert who testified that 69% of the true landslide
regions appear in the computed patterns. These
regions represent 46% of the extracted regions.
The 54% remaining regions belong to one of
the 4 following categories:(1) regions nearby true
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landslides which have not been interpreted as landslides by the expert (border
effect), (2) deforested area not due to landslides (e.g., human activity), (3) re-
gions found due to misalignment of the segmentation technique and (4) regions
that represent cities and human activity footprints.

5 Related Work

Many proposals intend to characterize graph evolution by means of patterns or
rules. Borgwardt et al. [4] introduce the problem of mining frequent sub-graphs
in dynamic graphs. Lahiri and Berger-Wolf [10] extract frequent sub-graphs that
appear periodically. Inokuchi and Washio [7] define frequent induced sub-graph
subsequence whose isomorphic occurrences appear frequently in graph sequences.
Ahmed et al. [1] propose to mine time-persistent edges and captures all maximal
non-redundant evolution paths among them. You and Cook [18] compute graph
rewriting rules that describe the evolution of consecutive graphs. Berlingerio et
al. [2] extract patterns based on frequency and derive graph evolution rules.
Descriptive n-ary association rules are defined in [13]. More recently, dynamic
attributed graphs have received a particular interest. Boden et al. [3] propose to
extract clusters in each static attributed graph and associate time consecutive
clusters that are similar. Jin et al. [8] consider dynamic graph whose vertices
are weighted. They extract groups of connected vertices whose vertex weights
follow a similar evolution, increasing or decreasing, on consecutive time stamps.
Desmier et al. [6] discover neighborhood similar set of vertices whose attributes
follow the same trends. All the above works only assess the interest of the pat-
terns by means of frequency-based constraints. They do not specify additional
interestingness measures to guide the search toward relevant patterns. However,
such constraints have been extensively studied in itemset mining, but not yet in
dynamic attributed graph settings. To name a few, Morishita et al. [11] define
a theoretical framework to compute significant association rules according to
statistical measures and Kuznetsov [9] defines the stability of a formal concept.

6 Conclusion

In this paper, we propose to extract dynamic sub-graphs that have a small
diameter. These dynamic sub-graphs are characterized by the attributes that
have the same trend over the pattern vertices at each pattern time stamps. To
only compute the most significant trend dynamic sub-graphs, we define three
interestingness measures. We design an algorithm that actively uses all the con-
straints, even those that are neither monotonic nor anti-monotonic. It reduces
the search space while preserving the completeness of the extraction. We provide
experiments that prove that MINTAG computes the trend dynamic sub-graph in
a feasible time. Moreover, experiments on real-world dynamic attributed graphs
show that our method allows to extract truly relevant patterns.
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