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Abstract

We present a new approach that provides the simplest rules characteriz-
ing classes with respect to their left-hand sides. This approach is based
on a condensed representation (d-free sets) of data which is efficiently
computed. Produced rules have a minimal body (i.e. any subset of the
left-hand side of a rule does not enable to conclude on the same class
value). We show a sensible sufficient condition that avoids important
classification conflicts. Experiments show that the number of rules char-
acterizing classes drastically decreases. The technique is operational for
large data sets and can be used even in the difficult context of highly-
correlated data where other algorithms fail.

Keywords: characterization of classes, rule conflicts, d-free sets, associa-
tion rules, classification rules.

1 Introduction

Context and motivations. Frequent association rules is one popular data min-
ing technique. This kind of process has been studied a lot of times since the
definition of the mining task in [1]. Association rules can tell something like
“It is frequent that when properties A; and Ay are true within an example,
then property As tends to be true”. We provide a simple formalization of this
task in Section 2.1. Finding rules that characterize classes and classification
rules are important research topics as well. Starting from a collection of exam-
ples associated with a known class value, classification concerns the design of
models that enable to predict accurate class values for unseen examples. The
set of examples for which the class value is given is the so-called learning set.
Various knowledge representation formalisms have been used for designing clas-
sifiers. Classification rules (which are rules that conclude on one class value)
are quite popular for that purpose and the literature is abundant (see for ex-
ample [12]). Mining rules that characterize classes can be viewed as a special
form of association rule mining where conclusions of rules are pre-specified.
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However, known techniques are not able to handle dense and highly-correlated
data (i.e., problems for rule mining) and the large number of produced rules
leads to rule conflicts and over-fitting (i.e., rules may be over-specified and
miss-classification arise when using them for classifying unseen examples). To
cope with these drawbacks, we consider the efficient extraction of the set of the
simplest rules characterizing classes w.r.t. their left-hand sides. Furthermore,
we found a property that avoids classification conflicts. Such results form a
sound basis for the selection of classification rules and the design of a classifier.

Related work. Until recently, extracting rules characterizing classes used to
undergo two steps: first, association rules were mined from the learning set and
then the identification of the classification rules was performed mainly as a post-
processing step ([2, 13]). CBA system (Classification Based on Association) is
presented in [13]. The selection of a subset of classification rules is done in
two steps: first, all rule concluding on the class are produced, some of them
are pruned using the pessimistic error rate [20]. Second, a classifier builder
selects the final set of rules according to the numbers of well-classified and
miss-classified examples of the training set. Besides a high computational cost,
Freitas [9] has shown the limitations of such an approach, emphasizing the
differences between classification rules and association rules. Furthermore, the
huge number of potential interesting classification rules makes this approach
difficult (indeed, how to identify the most relevant rule to classify a new case
might be quite difficult). Bayardo [3] suggests to add pruning strategies to
control combinatorial explosion in the number of candidates. Target-constraint
association rules [4] can be used, but rule sets contain many redundant rules
useless for prediction. In [15], Liu et al. add two improvements on their CBA
system. On one side, to deal with unbalanced class distribution, they use
multiple class minimum frequencies in rule generation. On the other side, to
tackle large data sets, they propose a technique to combine CBA with the
decision tree method and the Naive-Bayes method. Recent works revisit these
questions and bring improvements. In [11], memory consumption and time
complexity have been decreased by features selection and, in a post-processing
stage, rules covering most examples are selected. CMAR [14] uses statistical
techniques to avoid bias and improve efficiency by relevant data structures.
The minimum subset of classification rules having the same prediction power
(defined by statistical measures or the confidence) as the complete class rule
set is computed in [16].

Contributions. The contribution of this paper is twofold. First, we provide
the simplest rules that characterize classes w.r.t. their left-hand sides, i.e., a
key point in classification. Given a rule characterizing a class, one wants that
any own and proper subset of its left-hand side does not enable to conclude on
the same class value. It is possible to work on difficult contexts such as dense
and highly-correlated learning sets. Second, we highlight a property to avoid
important classification conflicts for unseen examples. This allows to use such
rules to design a classifier. Furthermore, we think that this work proposes an
original use of frequent sets (frequent d-free sets are a generalization of frequent



sets) and condensed representations [18].

Organization of the paper. The next section defines the concept of J-strong
rule for class characterization. It shows how the simplest rules characterizing
classes are derived. We present in Section 3 a property that avoids classification
conflicts. Experimental results are given in Section 4.

2 Mining the J)-strong rules characterizing
classes

Let us provide a simple formalization of §-strong rule mining task. We start to
recall standard definitions.

2.1 Association Rule Mining

Definition 1 (item, itemset, example) Assume R = {A;,...,4,}, is a
schema of boolean attributes. One attribute from R is called an item and a
subset of R is called an itemset. r, an instance of R, is a multi-set of exam-
ples. Thus, r can be considered as a boolean matriz.

For instance, these attributes can identify molecule properties. In practice,
one can have hundreds of thousands of examples and hundreds of attributes.
In our experiments (see section 4) data have 6,150 fragments. This is obviously
a difficult mining context.

Definition 2 (association rule) Given r, an instance of R, an association
rule on r is an expression X = B, where the itemset X CR and B € R\ X.

The intuitive meaning of a potentially interesting association rule X = B
is that all the items in X U{B} are true (value 1) for enough examples and that
when an example contains true for each item of X, then this example tends
to contain true for item B too. This semantics is captured by the classical
measures of frequency and confidence [1].

Definition 3 (frequency, confidence) Given W C R, F(W,r) (or frequency
of W) is the number of examples in r that contain 1 for each item in W. The
frequency of X = B in r is defined as F(X U {B},r) and its confidence is
F(X U{B},r)/F(X,r). We define an absolute frequency (a number of exam-
ples < |r|). We also use the relative frequency F(X U {B},r)/|r|, i.e., a value
in [0,1].

The standard association rule mining task concerns the discovery of every
rule whose frequency and confidence are greater than user-specified thresholds.
In other words, one wants rules that are frequent “enough” and valid. The
main algorithmic issue concerns the computation of every frequent set.

Definition 4 (frequent itemset) Given v a frequency threshold < |r|. An
itemset X is said frequent or y-frequent if F(X,r) > .



The complexity of frequent itemset mining is exponential with the number
of attributes. Many research works (e.g. [22, 19, 6]) concern the contexts for
which such a discovery remains tractable, even though a trade-off is needed
with the exact knowledge of the frequencies and/or the completeness of the
extractions.

2.2 J-strong rules

A rule characterizing classes must conclude on class values with a rather high
confidence. d-strong rules introduced in [6] satisfy such a constraint.

Definition 5 (d-strong rules) Given R, a matrizr, a frequency threshold -,
and an integer §, a d-strong rule on r is an association rule X = B, where
F(XU{B},r) >, F(X,r) - F(XU{B},r) <4, XCR, and Be R\ X.

A é-strong rule is violated by at most & examples. In other words, its
confidence is at least equal to 1 —(&/7). From a technical perspective, -strong
rules can be built from d-free sets that constitute their left-hand sides [6]. Let
us provide the key intuition for the concept of é-free set. An itemset X is
called é-free if there is no d-strong rule that holds between two of its own and
proper subsets. We illustrate this notion with Table 1 (this table consists of 8
examples, each one identified by its Id, and there are 4 items denoted A;. .. Ay).

Items
Id Ay Ay A3 Ay
11111
211111
311 111
4 |1 1
) 11
6 1
711 11
8 |1 1 1

Table 1: A set of 8 examples described by 4 items

The case 6 = 0 (corresponding to O-free-sets) is important: no rule with
confidence equal to 1 holds between proper subsets of X. For instance, A1 Ao
is a O-free set because all rules constructed from proper subsets of A; Ay have
at least one exception: examples numbers 4 and 7 for the rule A; = A5 and
example number 5 for the rule 4> = A;. If § = 1, A1 A5 is not a 1-free set
owing to the rule Ay = A; which has only one exception. On the contrary, 4,
and A,, for instance, are 1-free sets.

d-free sets are related to the concepts of closed itemsets in [19] and almost-
closures in [5]. In the case § = 0, let us provide the relationship with the closure
operator.



Definition 6 (closure) Given an itemset X, the closure of X is the mazimal
superset (w.r.t. set inclusion) of X that has the same frequency than X.

For instance in Table 1, with X = A; Ay, A4 belongs to the closure of X (i.e.
Ay is always true when A; and A» are true). In that case, frequencies of A; Ay
and A; A» A4 are the same. The closure of X can be computed efficiently during
the computation of the frequency of X and, in our example, one avoids to count
the frequencies of A; A3 A4. In highly-correlated data, it reduces drastically the
extraction time [19, 5]. Frequent closed itemsets are the closures of 0-free sets.

When § > 0, we are interested in the almost-closures of a frequent é-free set
X: B belongs to the almost-closure of X if F(X,r) — F(X U{B},r) <¢. It is
easy to provide d-strong rules from the y-frequent §-free sets and their almost-
closures: in this case, we have the rule X = B with at most J exceptions.
Following our example given in Table 1, A4 belongs to the almost-closure of 4,
with 6 = 1 (there is only one exception, example number 4).

A collection of frequent J-free sets is a condensed representation of the
collection of frequent itemsets. If § = 0, one can compute the frequency of
every frequent itemset. If 4 > 0, one can approximate the frequency of every
frequent itemset X with a bounded error: when an itemset X is not d-free, its
frequency is approximated from the frequency of the largest d-free set included
in X [6]. In [6], it is shown that the error is very low in practice.

One interesting property of freeness is its anti-monotonicity w.r.t. itemset
inclusion (a property p is anti-monotone iff for all itemsets X and Y, p(X) and
Y C X implies p(Y)). It gives a safe pruning criterion for level-wise search
in the itemset lattice [17, 6]. Accordingly, it is possible to design efficient
algorithms for frequent d-free set discovery and have tractable extractions for
practical mining tasks that are intractable with apriori-like algorithms (see
Section 4).

2.3 4-strong rules and minimal body

We have seen that d-strong rules have a number of exceptions bounded by
d and can be efficiently extracted from large sets of highly-correlated data.
Furthermore, this formalism offers a property of minimal body which is a key
point for a classification purpose.

Definition 7 (rule with a minimal body) Given a frequency threshold ~
and an integer §, a rule X = B has a minimal body if there is no frequent rule
Y = B with Y C X and a confidence greater or equal to 1 — (§/7).

This definition means that we consider only minimum sets of items to end
up on B, the uncertainty being controlled by §. In practical applications,
more specified rules concluding on B can exist. Nevertheless, Section 3 gives
a property showing that, under a sensible assumption, any specified rule R
characterizes the same class as the rule with a minimal body which is included
in R.



Property 1 (minimal body) Given a frequency threshold v, an integer §
and X = B a rule with a minimal body, then X is a 6-free set.

This result comes from properties of d-free sets [6]. The key intuition of
this result is that a d-free set X is a minimal conjunction of items to know the
frequencies of a set of items C (C is bounded by the closed itemset defined by X
and its closure). As all itemsets of C have the same frequency, X is a minimal
conjunction of items which has to be used to produce all rules having their
left-hand sides stemming from C. The whole collection of J-free sets ensures to
produce all rules with minimal body.

Nevertheless, let us note that it can happen that a d-strong rule has not a
minimal body. For instance, in Table 1, A; Ax Az is a 0-free set having A4 in its
closure. It means that the rule Ay As A3 = A4 exists (with a frequency value of
3). We have seen in the previous section that there is also the rule A; Ay = Ay
(with a frequency value of 4) which is the simplest rule to conclude on A4
with § = 0. Our prototype can be seen as an instance of the level-wise search
algorithm presented in [17] which allows to recognize a minimal conjunction
of items concluding on B. Let us consider X a d-free set with k items (i.e. a
k--free set produced at level k). When the almost-closure of X is computed,
we start to merge the almost-closures of all (k — 1)-d-free sets included in X.
d-strong rules with a minimal body will be infer only from new items added in
the almost-closure of X (i.e. items which do not belonging to the set of the
almost-closures of all (k — 1)-0-free sets included in X).

We argue that this property of minimal body is a fundamental issue for
class characterization. Not only it prevents from over-fitting [21] (i.e. over-
specified rules acquired on the learning set and leading to miss-classified unseen
examples) but also it makes the characterization of an example easier to explain.
It provides a feedback on the application domain expertise that can be reused
for further analysis.

2.4 J-strong rules characterizing classes

Let us consider a classification task with & class values. Assuming C, ...,Cy
are the k items that denote class values.

Definition 8 (d-strong rule characterizing classes) A d-strong rule char-
acterizing classes is a d-strong rule with a minimal body that concludes on one
class value (i.e., C;).

Hereafter, we consider the typical case where each example is associated to
a unique class value. Thus, we have the following equality (see equation 1).
Let us notice that when it is clear from the context, r is omitted:

k

> F(Ci) =[x (1)

i=1
The value of § is fundamental to obtain relevant rules. Let us recall that
when § = 0, every extracted rule has a confidence value of 1. This is a problem



for the practical impact. Indeed, it is rare that rules characterizing classes
with confidence 1 hold in real data. In many application domains, such as
biology or medicine, where the same cause does not always produce the same
effect and/or where parameter values that are used for decision making are
unknown, we must accept exceptions for rules. Experts are trained to cope
with some bounded uncertainty.

The more § raises, the more the confidence decreases. Intuitively, we feel
that when the confidence decreases (i.e. the uncertainty increases), it can give
rise to more and more classification conflicts. In order to characterize classes,
it is useful to verify whether this formalism enables to point out situations
(and under which assumptions) where rule conflicts can be avoided. The next
section studies the relationship between the values for § and v and classification
conflicts. We show that with respect to a simple property, we can avoid some
types of classification conflicts.

3 Avoid rule conflicts

Let us consider now a systematic study of three pairs of rules that lead to
classification conflicts.

3.1 Identical body conflicts

An identical body conflict is characterized by a pair of rules that have the same
body but conclude on different class values. It means that a same J-free set
gives rise to at least two d-strong rules characterizing classes. For example :

R :X=C Ry : X = Cy

The pair {R;, R>} does not characterize properly classes and leads to a
conflict when an example to be classified contains X. Obviously, the more § is
large w.r.t. v, the more that identical body conflicts can appear.

Let us now consider a sufficient condition on é and 7 values such that
identical body conflicts are impossible. Assume that we have the §-strong rule
characterizing classes Ry : X = C; {d,} with frequency 7, and d0; exceptions
(figure between braces indicated the exact number of exceptions). Note that
the choice of C; for the class value is arbitrary. Given that R; is a d-strong
rule, we get:

1 =FXU{Ci}) >~
5 = F(X) — F(X O {C}) < 6

Let us look now for conditions on  and § values that prevent the existence
of a d-strong rule characterizing classes Ry : X = Cy {2} with frequency 7
and J5 exceptions such that Cy is a class value different from C;. As each
example is associated to a unique class value, we have from the Equation 1



(the inequality becomes an equality if the class has just the two values C; and
CQ):

F(XU{C1}) + F(XU{C:}) < F(X)
It points out a lower bound for § w.r.t. vo:
Y2 = F(XU{C}) < (F(X) - F(XU{C}) <0 (2)

If R, is a d-strong rule, we have 7, > 7. This inequality combined with
inequality 2 enables to compare v and §:

Y< <o (3)

The inequality 3 shows that it is sufficient to take § < 7 to enforce that R,
is not a d-strong rule characterizing classes.

Property 2 If § < v, there is no identical body conflict.

3.2 Included bodies conflicts

Given the pair {R;1, R»}, there is an included bodies conflict if the left-hand
side of R; is included in the left-hand side of Ry (or vice-versa) and if Ry and
R, have different right-hand sides. For instance:

R : X =0 Ry : XUY = Oy

It means that the d-free set that produces one of the rules is included in
the d-free set from which the other rule is derived. The pair {R;, Rz} is not
a reliable characterization of classes since it leads to a conflict as soon as an
example supports X (however, this pair suggests that when Y is added to X
there may be an interesting exceptional situation if the frequency of the rule
X UY = Cs is small w.r.t. the frequency of the rule X = C).

Let us now discuss about a sufficient condition on ¢ and «y such that there is
no included bodies conflict. Assume that there is a §-strong rule characterizing
classes X = C; {0} with frequency 7, and ¢; exceptions. Let us look now
for conditions on v and ¢ values that prevent the existence of a §-strong rule
characterizing classes Ry XUY = Cs {d>} with frequency 72 and d, exceptions
with Y C R\ X. As previously, the following inequality holds:

F(XU{C1}) + F(XU{Cs}) < F(X)

and thus:  F(XU{C:}) < F(X)-F(XU{Ci}) <$¢
and we have: 1, =F (X UY U{C:}) < F(X U{C:})

As for the first kind of conflict, we can get a lower bound for § w.r.t. vs:

vo=F(XUY U{C:}) < F(XU{Cyr} <§¢ 4)



To enforce that R is §-strong, we must have o > . This bound, combined
with the one from inequality 4 enables to compare v and d:

Y<2 <0 (5)

Inequality 5 shows that it is a sufficient condition to take § < v to enforce
that R cannot be a d-strong rule characterizing classes.

Property 3 If § <7, there is no included bodies conflict.

3.3 Distinct bodies conflicts

A distinct bodies conflict can not be foreseen: it occurs only when an unseen
example is to be classified. Assume an example is supported by a pair of rules
(that have distinct but not included bodies) concluding on two different class
values. For instance, the pair:

R :X=>0C Ry:Y = ()

leads to a conflict when the unseen example satisfies X UY. Note that we
can have X NY # 0.

It is not possible to avoid such a conflict when producing the rules. On the
other hand, interestingly, one can see that if § < =y, there is no distinct bodies
conflict within the pair {R;, R»} if there is a d-strong rule characterizing classes
X UY = (C;. Indeed, we saw that if § < «, the existence of a J-strong rule
X UY = C; avoids the existence of simpler rules (with bodies that are subsets
of X UY, like Ry and R>) that conclude on classes.

The property § < ~ enforces no identical body conflict and no included
bodies conflict. It also enforces no distinct bodies conflict for pairs of rules
that are such that the union of their left-hand sides gives rise to a §-strong rule
characterizing classes. If there is not such a d-strong rule, that means that the
learning set does not contain enough examples, according to the thresholds,
in order to solve the ambiguity on the relationship between the union of the
left-hand sides of the rules and classes.

4 Experiments

The purpose of the first experiment is to compare the number of all classification
rules versus the number of §-strong rules characterizing classes. Data come from
the discovery challenge on thrombosis data (see http://lisp.vse.cz/challenge/
pkdd2001/), classes are collagen diseases. After a data preparation work [8],
the resulting file gathers 721 tuples described by 56 binary items. As this train-
ing set is small, we were able to run an apriori-based algorithm even with a
low frequency threshold (y = 3, i.e., 0.5%).

We performed three experiments (see Table 2) with different values of
and 0. On the one hand, we mined §-strong rules characterizing classes. On



the other hand, we extracted with the same value of v with an apriori-based
algorithm all classification rules with a single item in their right-hand side and
with a confidence threshold equals the lowest confidence value possible for a
d-strong rule characterizing classes (this value, denoted minconf., depends on
0 and v: see Table 2). In this table, each percentage is the number of J-strong
rules characterizing classes divided by the number of classification rules. We
see that mining the d-strong rules characterizing classes strongly reduces the
number of rules.

No. of rules

d-strong rules

LS classification rules
characterizing classes

vy=3 =2 (minconf.= 33%) 1,342 (1.77%) 76,004
vy=6 6=3 (minconf.=50%) 526 (4.25%) 12,366
v=6 6=>5 (minconf.=16%) 801 (2.65%) 30,260

Table 2: Comparison of numbers of rules

The goal of the second experiment is to show that d-strong rules charac-
terizing classes can be extracted efficiently from large data sets and we give
a first approach to design a classifier stemming from these rules. Data are
those used in the Predictive Toxicology Challenge (PTC) for 2000-2001 (see
http://www.informatik.uni-freiburg.de/ ml/ptc/). The aim is to pre-
dict chemical carcinogens (i.e. the class) on several rodents populations (each
file contains about 350 examples). Each molecule is represented by 6,150 bi-
nary attributes (i.e. chemical fragment). It is a hard context for association
rule mining since we have a huge number of attributes. On these data, with
most values of 7 indicated in Table 3, apriori-like algorithms fail due to an
excessive memory requirement (we used a PC with 768 MB of memory and a
500 MHz Pentium IIT processor with Linux operating system). For different
values of § and ~ (but always with ¢ < ), Table 3 gives the extraction time,
the number of d-free sets and almost-closures that contain a class value on male
rats. This last number can be seen as the number of potential §-strong rule
characterizing classes (i.e., with any frequency and confidence values). Results
on other populations are given in [7].

As expected, the more we increase the value of §, the more we can have
tractable extractions for lower frequency thresholds. Note that with § = 0,
there is no rule characterizing classes for the frequency threshold we can use.
It illustrates the added-value of the relaxed constraint on 4.

It is not sensible to use the whole collection of §-strong rules characterizing
classes to classify unseen examples because some rules can have low frequency
(and/or confidence if § is large w.r.t. 7). These rules with a poor quality may
introduce errors and have to be deleted. We are giving now a first approach
to design a classifier stemming from the d-strong rules characterizing classes.
This approach has techniques in common with the method used by the classifier



v/le] | 6 Time No. of | No. of almost-closures
(sec.) o-free sets with a class value

0.15 | 15 | intractable - -

0.15 | 17 3814 24671 2835

0.15 | 20 1563 17173 4529

0.20 | 10 3300 26377 0

0.20 | 15 850 12071 8

0.20 | 20 323 7109 305

0.30 | 10 69 3473 0

0.40 | 0 | intractable - -

0.40 | 10 36 922 0

0.50 | 0 201 56775 0

Table 3: Time, o-free sets and almost-closures w.r.t. 6 and -y

builder of CBA [13] that we have mentioned in Section 1, except that we use
a test file to select rules (and we think that this point is important). Data
are split into a training file (4/5 of data) and a test file (1/5 of data). Class
has the same frequency distribution in each file and in the whole data. For
each rule, we compute a score (denoted A) which is the difference between the
well-classified and the miss-classified examples of the test file. Then rules are
sorted w.r.t. A and, by varying A, we define a family of nested sets of rules
by the following way: for a value A; of A, we kept rules having A higher or
equal to A;. All rules belonging to the set defined by A; belong to sets defined
by Ay with As < Ay. Then, we use a set of rules with a high value of A to
classify unseen examples.

We tested this approach on a validation file (185 new chemicals not used
to build and select the J-strong rules characterizing classes) provided by the
organizers of the ECML-PKDD 2001 Predictive Toxicology Challenge. When
there is a distinct bodies conflict, the class value which maximizes the amount
of products of the frequency by the confidence of triggered rules is predicted.
According to the population of rodents, the used sets of rules to predict have be-
tween 9 and 76 rules. The rate of well-classified chemicals varies between 61.1%
and 76.8% with an average of 70.55% Note that predict chemical carcinogens
has been identified as a difficult classification task (the correct classification
score for experts in the domain ranges from 28% to 78% [10]). We also used
the learning classification rules software C4.5 [20]. Decision trees are built from
the same training sets and also tested with the validation file. With 5 as the
minimum value of examples for subtrees, trees have around 50 nodes and rates
of well-classified 60%. This approach achieved good results against decision
trees.



5 Conclusion

We have developed an original technique based on d-free sets to mine the sim-
plest rules characterizing classes w.r.t. their left-hand sides. We claim that
extracting such a set of rules brings several advantages. As the number of rules
decreases and as rules are simpler, sets of rules characterizing classes are more
understandable. Secondly, it prevents from over-fitting which is fundamental in
real-world domains for classes characterization. Experiments show a significant
reduction of the number of rules. This approach is effective even in the case of
huge, dense and/or highly correlated learning data sets.

A straightforward use of such rules is the characterization of classes. Then,
we have shown a sensible sufficient condition that avoids important classifica-
tion conflicts. Such results form a sound basis for the selection of classification
rules and the design of a classifier.
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