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Abstract

Given a set of class-labeled objects taking descriptions from a partially ordered
set (e.g. itemsets, graphs, intervals, etc.), the task of finding description general-
izations that strongly cover a class and weakly the others, has attracted a lot of
attention in artificial intelligence (machine learning and data-mining) under vari-
ous names (hypothesis, contrast sets, subgroups, emerging/jumping patterns, etc.).
We propose in this paper to discover sequential patterns that discriminate victory
from zero-sum games. We present efficient algorithms and show how emerging
pattern mining may be used to balance games (an important issue in the game in-
dustry) by using it to analyze strategies with a novel measure, the balance measure.
We experiment with the designed algorithms on a real-world strategy game played
professionally as an electronic sport.

1 Introduction
Discovering patterns that highly distinguish a dataset from others is an important task
in artificial intelligence [14]. One of the main reason is that such patterns enable the
building of comprehensible classifiers [9]. In the general settings, we are given a set
of objects of different classes that take descriptions, generally from a partially ordered
set (itemsets, graphs, intervals, etc.) [12]. The goal is to find good descriptions gener-
alizations, that mostly appear in one class of objects and not in the others. In different
fields of AI and applied mathematics, such descriptions have different names [14] like
version spaces [13], contrast sets [2] and subgroups discovery [8] in machine learn-
ing, emerging patterns [6] in data-mining; or no counter-example hypothesis in formal
∗This article is an extended version an article [3] presented at the European Conference on Artificial

Intelligence (ECAI 2014). It contains supplementary materials such as algorithm descriptions and extended
experiments. This work has been partially supported by the FAPEMIG/INRIA project “Mining Data guided
by Knowledge Models”.
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concept analysis [12]. In the present work, we choose a pattern mining oriented discus-
sion [1]. Emerging patterns are the descriptions which are frequent in a class of objects
and much less frequent in the rest.

Many real-world data are dynamically generated and can be represented as sequen-
tial data where each object is described by a sequence of sets of events. Over the last
decade, many algorithms and methods have been proposed to extract different types of
sequential patterns and effective pattern representations. Sequential patterns are used in
web search, customer trajectory analysis, workflow analysis, and bioinformatics. For
frequent sequential patterns as well, their articulation as local knowledge can be used to
build classifiers in various real-world applications with emerging patterns [7, 14, 16].

In this work, we are interested in discovering sequences from zero-sum games
databases. The particularity is that they represent traces of real-time (and not turn-
by-turn) games opposing two players with only one possible winner. Our goal is to
provide the basic pattern mining tools to exhibit characteristics such as weaknesses
and strengths of players. More precisely, the question is how to define a measure that
gives for an arbitrary sequence of actions a notion of balance. Intuitively, consider the
example where a player chooses the sequence of actions s and the opponent s′ (s, s′

forms a single game): what are the odds of playing s against s′? In other terms, a game
s, s′ is well-balanced when playing s against s′ allows to win as much as it allows
to loose1. This is a challenging task as current state-of-the-art methods fail to handle
this specific type of sequences. We show indeed that a balance measure can be easily
defined as a growth rate measure (that characterizes emerging patterns) for a particular
case of zero-sum games: those where both players do not have the same set of available
actions. In the general case, this approach fails and new settings that we develop are
required.

From an application point of view, sequential patterns from zero-sum games allow
analysts to derive statistics on the success of a player with different tactics for real-time
strategy games. These video games are becoming the de facto sensations in organized
competitions, especially between professionals competitors taking part in international
tournaments, with prize-pools in millions of US$, surrounded by managers, teams and
sponsors [17] and followed by a large world-wide fan base [11]. As such, balancing the
games is one of the most important issues of any E-Sport to ensure a fair competitive
aspect on which depends a complete economic model. Surprisingly, few pattern mining
approaches have been published [10] about this new data play ground that interests both
the game industry, social sciences researchers and computer scientists.

The rest of the paper is organized as follows. Section 2 recalls the basics of se-
quential pattern mining. Section 3 introduces the problem of mining non-zero games
sequences as balanced patterns, while sections 4 and 5 gives two methods for achieving
such a task. Algorithms are then designed (Section 6) and experimented with E-Sport
data (Section 7) before to conclude.

2 Preliminaries
Let I be a finite set of items. Any non-empty subset X ⊆ I is called an itemset. A
sequence s = 〈X1, ..., Xl〉 is an ordered list of l > 0 itemsets. l is the length of the

1Note that such a balance measure can be seen as a utility function in zero-sum games where s, s′ is a
strategy profile. Sequential patterns can be helpful for building normal or extensive forms representation of
a game to be analyzed with game theory tools. This is indeed a difficult problem for real time games where
the search space can be extremely large. This however goes beyond the scope of this paper.

2



Table 1: A sequence database D.

id s ∈ D class(s)

s1 〈a{abc}{ac}d{cf}〉 +
s2 〈{ad}c{bc}{ae}〉 +
s3 〈{ef}{ab}{df}cb〉 −
s4 〈eg{af}cbc〉 −

sequence, whereas
∑l

i=1 |Xi| is its size. Considering I as a set of events (or actions),
an itemset denotes simultaneous events while the order between two itemsets a strict
preceding relation. A sequence databaseD is a set of |D| sequences over I. Sequences
may have different lengths and sizes and are uniquely identified, see Table 1 (omitting
the third column).

Definition (subsequence). A sequence s = 〈X1, ..., Xls〉 is a subsequence of a se-
quence s′ = 〈X ′1, ..., X ′l′s〉, denoted s v s′, if there exists 1 ≤ j1 < j2 < ... < jls ≤ l′s
such that s1 ⊆ s′j1 , s2 ⊆ s

′
j , ..., sls ⊆ s′jls .

Definition (Support and frequency) Let D be a sequence database. The support of a
sequence s is given by support(s,D) = {s′ | s v s′, s′ ∈ D}, and the frequency by
freq(s,D) = |support(s,D)|/|D|.
Problem (Frequent sequential pattern mining). Given a minimal frequency thresh-
old 0 < σ ≤ 1, the problem is to find all sequences s such as freq(s,D) ≥ σ: the
frequent sequential patterns.

In several situations, each sequence of D is associated to a class label. Let class :
D → {+,−} a mapping that associates to each sequence a positive or negative label
(hence two classes). D is accordingly partitioned in two bases, with the positive (resp.
negative) sequences D+ (resp. D−) and D = D+ ∪ D−, D+ ∩ D− = ∅. The growth-
rate characterizes the discriminating power of a pattern for one class w.r.t. the other [4,
6, 14]2.

Definition (Growth-rate). Given a sequence databaseD = D+∪D−, the growth-rate
of a sequential pattern from Dx to Dy (x 6= y and x, y ∈ {+,−}), is given by

growth rate(s,Dx) =
|support(s,Dx)|

|Dx|
× |Dy|
|support(s,Dy)|

Example. Let D = {s1, s2, s3, s4} with I = {a, b, c, d, e, f, g} be a sequence
database given in Table 1. To ease reading, we drop the commas, but also braces for
singletons. For a given sequence s = 〈abc〉, we have s v s1, s v s4, s 6v s2, s 6v s3.
With σ = 3

4 , 〈acc〉 is frequent, 〈a{bc}a〉 is not. Consider now the class label from
{+,−} associated to each database sequence, we have growth rate(〈cb〉,D−) = 2

2 ×
2
1 = 2, i.e. 〈cb〉 is two times more present in class − than in class +.

3 Introducing the Problem of Strategy Elicitation
We consider a competitive interaction as a sequence of actions made by two players
where exactly one player wins (no ties), typically a zero-sum game. Such a sequential

2Note that non binary classes can be handled with slight modifications [4, 6].
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game can be represented as a sequence of sets of actions, each action realized by one
of the two players. When both players play in real-time, one can describe these inter-
actions as sequences of itemsets. An itemset is then a set of simultaneous actions, or
within an insignificant interval of time.
Definition (Interaction (sequence) database). Given a set of players Players and
a set of actions Actions, a sequence database Dinteraction is called an interaction
database. Each sequence denotes an interaction between two players and is defined
over the set of items I = Actions × Players. A mapping class : Dinteraction →
Players gives the winner of each interaction.
Example. In Table 2, the sequence identified s1 can be interpreted as: “Player p1 did
action a, then he did b and c while player p2 did c, and finally p1 did b while p2 did d.
At then end, the player p1 wins”.

The problem here is to find sequences of actions of both interacting players (sup-
posing that those actions are mutually dependent) as generalizations that appear fre-
quently and to be able to characterize their discriminating ability for winning/loosing
through a so-called balance measure. In sequential pattern mining settings, the goal
is to find frequent sequences (strategies) and their balance (a growth-rate like mea-
sure). However, the notion of class has to be revisited to be able to handle winner and
looser class labels, instead of the winning player. Indeed, intuitively, mining emerging
patterns from an interaction database with the winning players as classes (as given in
Table 2) does not fulfill our objectives. Therefore, we need to abstract the notion of
player as either a winner or a looser. Now, consider a frequent sequence made only of
actions 〈a, b〉, where a is made by the winner, and b by the looser. Consider also the
same sequence, but this time a has been done by the looser and b by the winner. A
ratio involving the support of both sequences can then give the balance of the sequence
of actions 〈a, b〉. As such, we need to be able to find sequences of actions that are
frequent, and for each action to know if it has been done by a winner or a looser.

A first idea is to split each interaction sequence into two sequences, one for each
player, and label each positively (resp. negatively) when the given player has won
(resp. has lost). This would lead to a sequence database as given in previous section
(Table 1). However, there we loose the interaction dimension: an emerging pattern
denotes a mostly winning (resp. loosing) sequence of action made by a winning (resp.
loosing) player. Since actions of both players are mutually dependent in general, we
wish that extracted patterns take into account actions of both players.

To solve this problem, we propose to differentiate two cases of interactions databases:
(i) non-mirror interaction databases where both players have different (non-intersecting)
sets of available actions; (ii) mirror interaction databases where both players can per-
form the same actions. We show that in the first case, emerging patterns as introduced
in the literature (previous section) are able to answer the problem by slightly modify-
ing the interaction database representation. In the second case, the most general (not
dealt with in the literature to the best of our knowledge), we need new settings, and
we propose to embed the class (positive or negative) in the definition of the items of
a sequence, see Table 4. This is formalized in the two next sections, and it allows the
design of efficient pattern mining algorithms in Section 6.
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Table 2: An interaction sequence database Dinteraction

id Interaction sequence Winner

s1 〈(p1, a){(p1, b)(p1, c)(p2, c)}{(p2, a)(p1, d)}〉 p1
s2 〈(p3, a){(p3, b)(p3, c)(p3, d)}{(p1, b)(p1, c)}〉 p3

4 Balanced Patterns in Non-mirror Databases
In this section, we consider an interaction database, called non-mirror database, where
the set of actions is different for each of the players in a single interaction. It means
that we have only two types of players in each sequence and in the whole database, and
those types are determined by the actions they can do. As such, the type can be also
used as a winning class label. Typically, this happens for the strategy game we study
in the experiment section. To characterize balanced patterns in such databases, we
consider a simple transformation of the original interaction database Dinteractions by
dropping the player associated to each action, and labeling each sequence by the type
of the winner. This allows us to express a balance measure as a growth-rate measure
in this new data representation. The transformed database is then formally defined as
follows.
Definition (Transformed interaction database). A sequence database Dt defined
over the set of items (actions) I1 ∪ I2 such as I1 ∩ I2 = ∅ and class : Dt → {I1, I2}
is called a transformed interaction database.

Consider an interaction s ∈ Dt where the winner is characterized by the actions
I1: we have class(s) = I1 that gives the winner of the interaction. This brings back
the problem of finding frequent balanced interaction patterns to well-known emerging
patterns settings. Indeed, consider an arbitrary pattern s over I1 ∪ I2: it support in
the whole database support(s,Dt) tells us its frequency, while support(s,DI1t ) and
support(s,DI2t ) allows to define a balance measure as a growth-rate.

Mining balanced patterns from transformed interactions. Let Dt be a transformed
database obtained from a non-mirror interaction database Dinteraction. Dt is defined
over I1 ∪ I2 where Ik represents the type k of player (k ∈ {1, 2}) and class : Dt →
{I1, I2} assigns to any sequence its winner type, and σ a minimum frequency thresh-
old. The problem is to extract the set of so-called frequent balanced patternsFt such as
for any s ∈ Ft, freq(s,DI1t ) ≥ σ and freq(s,DI2t ) ≥ σ (implying freq(s,Dt) ≥ σ)
and the balance measure is computed and given by:

balance(s,Dk
t ) =

|support(s,Dk
t )|

|support(s,D1
t )|+ |support(s,D2

t )|

The balance measure is a normalized version of the growth rate given in previous sec-
tion so that balance(.) ∈ ]0, 1] and that balance(s,D1

t ) + balance(s,D2
t ) = 1 which

entails a zero-sum game property. Note that we do not consider closed patterns [18].
Indeed, two patterns which have the same support may have different balance measure
since a growth rate intuitively gives the proportion of appearance of the support in two
different classes, and we do not seek patterns that maximize the growth-rate.
Example. Table 3 gives a transformed interaction database Dt, obtained from a non-
mirror interaction database Dinteraction, with I1 = {a, b} and I2 = {c} being the
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Table 3: A non mirror interaction database

id Interaction sequence Winner

s1 〈{ab}{c}〉 I1
s2 〈{ab}{a}{c}〉 I1
s3 〈{abc}{c}〉 I2
s4 〈{ac}{a}{c}〉 I1
s5 〈{c}{b}{ac}〉 I2

Table 4: A signed interaction database.

id s ∈ Ds

s1 〈a+{b+c−}〉
s2 〈a+{b+c−}c+〉
s3 〈d+{b+c+}d−〉
s4 〈a−{b+c+}〉

sets of actions of each player’s type. With σ = 0.2, s = 〈{ab}{c}〉 is a frequent
balanced pattern since freq(DI1t , s) = 0.4 and freq(DI2t , s) = 0.2. Moreover,
balance(s,DI1t ) = 2

3 and balance(s,DI2t ) = 1
3 . This means that s wins two times

more for the type 1 of player than for the type 2.

5 Balanced Patterns in Mirror Databases
In this section, we consider interaction sequence databases where the players have ac-
cess to the same set of actions. Consequently, the latter cannot be partitioned in two
sets and the previous approach fails. We propose a new interaction database represen-
tation, signed interaction databases, which allows to define frequent balanced patterns
from an arbitrary interaction database (either mirror or non-mirror).
Definition (Signed interaction database). Recall that Actions is a finite set of ac-
tions shared by both players. We introduce Is = Actions × {+,−} denoting actions
associated either to a positive or negative class. A signed database Ds is built from an
interaction database Dinteraction as follows: Each action of an interaction sequence is
signed + if it is performed by the winner and signed− if performed by the looser (both
players and class labels are dropped).
Definition (Dual of an item, itemset and sequence). Let Is = Actions× {+,−} be
the set of signed items, or actions. For any (a, c) ∈ Is, also written ac, we define its
dual as

dual(a, c) = dual(ac) = (a, {+,−}\c) = a{+,−}\c

Informally, it means that the dual of a signed action is the same action where the class
c has changed. This definition is simply propagated for itemsets and sequences of
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itemsets, for any X ⊆ Is and any s = 〈X1, X2, ...〉 a sequence over Is :

dual(X) = {dual(x),∀x ∈ X}
dual(s) = 〈dual(X1), dual(X2), ...〉

Example. In Table 4, we have Is = {a, b, c, d} × {+,−}, dual(a+) = a− and
dual(s1) = 〈a−{b−c+}〉.

These definitions allow us now to naturally introduce a balance measure that would,
for a sequential pattern s give the proportion of its support among the support of both
itself and its dual.

Definition (Balance measure). Let s be a frequent sequential pattern in a databaseDs.
The balance measure of s is given by

balance(s) =
|support(s,Ds)|

|support(s,Ds)|+ |support(dual(s),Ds)|
(1)

This intuitive definition however does not hold. Since actions are shared by the
two players, both a sub-sequence and its dual may occur in a single sequence s ∈ Ds.
Consider the following example: Ds = {〈{a+b−}{a−b+}〉, 〈{a−b+}〉} with σ = 1

2 .
The sequence s = 〈{a+b−}〉 is a frequent sequential pattern, and |support(s,Ds)| =
1. We have also |support(dual(s),Ds)| = |support(dual(〈{a−b+}〉),Ds)| = 2.
Hence, balance(s) = 1

1+2 = 1
3 . However, since s and dual(s) both appear in the first

sequence, it should not be counted two times. This leads us to the definition of the
balance measure in the general case.

Definition (Generalized balance measure). For a sequential pattern s, the generalized
balance measure is given by

balancegen(s) =
|support(s,Ds)\support(dual(s),Ds)|
|supportD(s,Ds) t support(dual(s),Ds)|

(2)

where t denotes the exclusive union A t B = (A ∪ B)\(A ∩ B). In the following,
balance will always refer to the general version. We have that balance(s) ∈ [0, 1] and
balance(s) + balance(dual(s)) = 1 which expresses a zero-sum game property.

Mining balanced patterns from signed interactions. Let Ds be a signed interaction
database defined over Is generated from an interaction database Dinteraction, and σ a
minimum frequency threshold. The problem is to extract the set of so-called frequent
balanced patterns Fs such as for s ∈ Fs, freqDs(s) ≥ σ, freqDs(dual(s)) ≥ σ
and the balance measure is computed and given by (2). Furthermore, the fact both s
and dual(s) have to be frequent leads to redundant information: it is enough to keep
s along with its support, balance measure and intersection of support common(s) =
|supportD(s) ∩ supportD(dual(s))| to know the measures of its dual. As such, the
problem is also to compute a non redundant collection of patterns Fs where, if s ∈ Fs

then dual(s) 6∈ Fs.

Example. Table 4 gives a signed interaction database Ds obtained from an arbitrary
Dinteraction. With σ = 1

4 , s = 〈a+c−〉 appears two times, its dual appear one time,
hence balance(s) = 2

3 .

Remark 1. Any interaction database, mirror or non-mirror, can be represented as a
signed interaction database. For non-mirror, one can easily prove that for any balanced
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pattern s, we have common(s) = ∅ and thus Formula (1) is enough for computing its
balance.

Remark 2. We consider a sequential pattern from Ds as a balanced pattern if and
only if both s and dual(s) are frequent (strictly frequent). One could leverage this
definition by constraining only one of the two. The same applies in the formulation of
the previous section. For sake of clarity, we consider only strictly frequent balanced
patterns, since it would only slightly change the present definitions.

Finally, consider a non-mirror interaction database Dinteraction, as well as its trans-
formed database Dt and its signed database Ds. It can be naturally shown that both
collections Ft and Fs are equivalent. This is because of the non-mirror property of the
interaction database.

6 Algorithms
We discuss algorithms to extract frequent balanced patterns from interaction databases.
We introduce first a well-known framework for mining frequent sequential patterns,
called PATTERN-GROWTH and its associated algorithm PREFIXSPAN [15]. We adapt
this framework in various ways to mine balanced patterns.

The PREFIXSPAN algorithm. Given a sequence database D over items I and a mini-
mum frequency threshold σ, PREFIXSPAN outputs all frequent sequential patterns, and
only them without generating any candidates [15]. Firstly, the database D is scanned
one time to find all the frequent items from I, called size-1 sequential patterns. Sec-
ondly, each of these prefixes is used to divide the search space: for one prefix, say
〈a〉 (and a ∈ I), one retains only sequences of D containing a and only keeps for
each of these sequences the longest suffix starting by a. The set of the remaining se-
quences is called a projected database w.r.t. to prefix 〈a〉, written D|〈a〉. Thirdly, this
projected database is scanned to generated the size-2 sequential patterns having 〈a〉 as
prefix. The process is recursively applied leading to a tree structure where each node
represents a frequent sequential pattern (associated with a projected database of a least
σ × |D| sequences) and an edge to an extension: the item added to a size-k sequen-
tial pattern to generate a size-(k + 1) sequential pattern. For a prefix s and an item
a, two kinds of extensions are considered: appending a as a new suffix itemset of s,
noted s ◦s a, and appending a within the last itemset of s, written s ◦i a (◦ denotes an
extension in general). At the end, the pattern tree structure is explored and each node
outputs a pattern.

Mining Balanced Patterns with EMERGSPAN. Given a sequential database over an
arbitrary I, where each sequence is labeled by a class (among two classes) and a mini-
mum frequency threshold, the general problem here is to find all frequent patterns, each
one provided with its growth-rate. In our settings, this involves mining a non-mirror
interaction database Dinteraction as a transformed database Dt where sequences are
composed of actions of both players and the class label gives the winner’s type. The
balance measure is then exactly the growth rate as defined in the general settings. It has
been shown in [16] that computing the growth-rate can be done as a post-processing of
a sequential pattern mining algorithm and that this post-processing is negligible w.r.t.
to the whole extraction time. With PREFIXSPAN, it works as follows. For each se-
quence of the database Dt, its class is appended as a new itemset at its end. It ensures
that frequent patterns containing a class label are leaves of the pattern tree, and that
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two sequential patterns that differ only by their classes have the same direct parent.
Computing frequent balanced patterns is then straightforward with a single depth-first
traversal of the pattern tree (only direct parents of leaves are considered when having
two children obtained both by an extension of a class label).

Mining Balanced Patterns with PREFIXSPANNAIVE. Now we consider a signed
interaction database Ds over Is and a minimal frequency threshold σ. The problem is
to extract the set of frequent sequential patterns provided with their balanced measure.
We can first use the original PREFIXSPAN algorithm to build the frequent pattern tree
structure. We need for each pattern to (i) compute its balance, and (ii) to ensure that
for a pattern and its dual only one of them is output. We then propose to store for each
node (equivalently sequential pattern) a pointer to its dual pattern. At the first level of
the tree, a node represents a single frequent item, and there is a pointer towards its dual
(if both are frequent). Recursively, when a item is used to expand a sequential pattern
p to obtain a pattern q, we compute the pointer towards dual(q) by searching among
the children of dual(p). If dual(q) exists, the pattern q is output, dual(q) is flagged
as already output (redundant pattern) and the process recursively continues. Otherwise
a backtracking is operated. In this way, it never happens that both q and dual(q) are
output, we extract the set of all frequent balanced patterns (ensuring that for a pattern
q both q and dual(q) are frequent). Computing the balance for non mirror databases
is straightforward since for each node/pattern we have access to its dual support. For
mirror databases, we need however to know common(q) which is stored for each node.
The proof of the completeness and correctness of PREFIXSPANNAIVE for extracting all
balanced patterns without redundancy is trivial: first, PREFIXSPAN extracts all frequent
patterns, thus any pattern s and its dual dual(s) are nodes of the pattern tree and none
can be missed; second, as we visit in the tree traversal both a pattern s and its dual
dual(s) (if frequent), we ensure no redundant patterns.

Mining Balanced Patterns with BALANCESPAN. The problem of PREFIXSPAN-
NAIVE is that it generates both a pattern and its dual as different nodes in the pattern
tree. Furthermore, it also generates nodes for patterns that are frequent but whose dual
is not frequent. Consequently, and this is shown in the experiments (Section 7), an im-
portant amount of nodes are useless. To solve that problem, and to be sure only nodes
corresponding to balanced patterns are generated (and only them, i.e. correct and com-
plete), we propose the BALANCESPAN approach. The general idea is the following:
instead of considering each item a ∈ Is as an extension on sequence s leading to a
new projected database Ds|s ◦ a and consequently a new node in the pattern tree, we
consider simultaneously an item and its dual, hence two projected databases Ds|s ◦ a

and Ds|s ◦ dual(a) (this is done for both kinds of extensions ◦i and ◦s). Thus, it ensures
us that no redundant patterns are generated, since both a sequence s and dual(s) are
generated at the same node, and it allows to compute balance(s) (or balance(dual(s))
directly if and only if both s and dual(s) are frequent. It follows that BALANCESPAN
produces a correct and complete collection of frequent balanced patterns. Note that
dealing with Remark 2 is then straightforward if one is interested to produce non-strict
frequent patterns: the recursion continues until both projected databases do not produce
frequent patterns.
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7 Experiments
We experiment our approach to assess its computational feasibility and, helped by a
high level StarCraft II player, the quality of the extracted patterns.

7.1 Context and data description
E-Sport and competitive gaming. Professional level competitors in video games
have emerged over the last few years. These “cyber-athletes” take part in interna-
tional tournaments with increasing prize-pools, surrounded by managers, teams and
sponsors [17], and a world-wide fan base follows them in great numbers on social
TVs [11]. “Electronic sport” should attract industrial actors and researchers in the next
few years around video game analytics, just like with traditional sports. We study one
of the most competitive real-time strategy games (RTS) [11], StarCraft II (Blizzard En-
tertainment, 2010) which has its own world-wide players ranking system (ELO) and
annual world cup competition series (WCS) with a US$1.6 millions prize pool for the
year 2013. StarCraft II is a real time strategy game where a game involves two players
each choosing a faction among Zerg (Z), Protoss (P) and Terran (T): there are 6 differ-
ent possible match-ups with different strategies of game. During a game, two players
are battling on a map (aerial view), controlling buildings and units to gather supply,
build an army with the final goal of winning by destroying the opponent’s forces3.
Such actions (training, building, moving, attacking) are done in real-time. Each faction
(Z,P,T) allows different units and buildings with distinctive weaknesses and strengths
following a rock-paper-scissors principle. A strategy is hidden in large sequences of
actions generated by players and called replays.

Datasets. StarCraft II replays are files that store any action made by all players during
a game, and are easily accessible on the Web4. We retained 91, 503 games with a
total of 3.19 years of game time. The average length of a game is about 20 minutes.
Games were selected if implying very high level players (in the highest leagues and
playing at least 200 actions per minutes), since casual (by opposition to professional)
players are not able to follow specific strategies. We divided the 91, 503 replays into
six different sequence datasets, one for every match ups (since there are 3 factions).
Buildings are one of the key elements of a strategy, since they allow different kinds of
units production: from each replay, we derive a sequence where the items represent the
buildings the players chose to produce in real time, and itemsets denote time windows
of 30 seconds. We consider only the 10 first minutes of each game: after that, buildings
importance fade away and do not translate anymore into strategy blocks.

7.2 Experimental results
We report an empirical evaluation of our algorithms using real datasets. Experiments
are performed on a 1.8 GHz Intel Core i5 with 8 GB main memory running Mac OS
X 10.9.1. We started from the original C++ version of PREFIXSPAN [15] to imple-
ment the algorithms EMERGSPAN, PREFIXSPANNAIVE and BALANCESPAN (com-
piled with g++ and -03 optimization). The source codes and the data sets are available5.

3http://en.wikipedia.org/wiki/Real-time strategy
4http://wiki.teamliquid.net/starcraft2/Replay Websites
5http://liris.cnrs.fr/mehdi.kaytoue/balancespan.html
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(c) ZvZ.
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(d) PvT.

 0.1

 1

 10

 100

 1000

 10000

100 75 50 30 20 10 5 3 2
 0
 200000
 400000
 600000
 800000
 1e+06
 1.2e+06
 1.4e+06
 1.6e+06
 1.8e+06

Run Time (log-scale (sec)) # Patterns

MinSupp %

BalanceSpan
EmergSpan

PrefixSpanNaive
PrefixSpan
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Figure 1: Run time and number of patterns.

The results are analyzed following different criteria: the runtime aspect, the memory
usage and the actionability of the discovered patterns.
Runtime. We discuss running times of the proposed algorithms. Firstly, we consider
the non-mirror databases given by transformed interaction databases Dt and signed
databases Ds. For different minimum frequency thresholds σ, we present the runtime
of PREFIXSPAN on Ds as a rough baseline (since it does not compute the balance of a
pattern), and the runtimes of the three others algorithms on their respective data repre-
sentation. Limited by space, we report the results for the datasets PvZ and TvZ only
(omitting PvT). It follows that BALANCESPAN, our general algorithm, is the only one
able to be executed with lowest σ (Figure 1 (c) and (d)), since it produces a lot of use-
less nodes (see Figure 2 and the next paragraph). We report the same results for mirror
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Figure 2: Percentage of used nodes.
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Table 5: Datasets: sequence and item counts; max. and avg. sequence sizes (smax,
savg); max. and avg. itemsets (imax, iavg).

Dataset |D| |I| smax savg imax iavg

Ds - PvP 6,823 26 42 21.7 6 1.8
Ds - PvT 19,270 62 42 25.9 8 1.8
Ds - PvZ 23,491 52 41 23.1 7 1.7
Ds - TvT 7,598 36 38 23.8 7 1.8
Ds - TvZ 24,459 62 37 21.2 8 1.6
Ds - ZvZ 9,922 26 28 10.4 7 1.4
Dt - PvT 19,270 34 43 26.9 8 1.8
Dt - PvZ 23,491 29 42 24.1 7 1.7
Dt - TvZ 24,459 34 38 22.2 8 1.6

datasets (i.e. Ds only for PvP, TvT and ZvZ) in Figure 1 (a) and (b). BALANCESPAN
clearly outperforms PREFIXSPANNAIVE, its only concurrent (remembering that PRE-
FIXSPAN is given as baseline since it does not compute the balances, and EMERGSPAN
does not apply for mirror databases. Note that on the figure, missing points correspond
to unterminated runs where available memory is insufficient. It is also interesting to
note that runtimes are linked to the percentage of used nodes in the structure of tree
generated by the algorithms (Figure 2) which we explain now: indeed, the more the
percentage of used nodes is, the more comparable to BALANCESPAN the algorithms
are in term of runtime.
Memory usage. Each of the proposed algorithms builds a pattern tree in which each
node represents a frequent sequential pattern, but not necessarily a frequent balanced
pattern from Ft (or Fs). In Figure 2, we report the percentage of tree nodes that ef-
fectively produce frequent balanced patterns. BALANCESPAN always produces useful
nodes, whereas the other algorithms produce always more than 50% of useless nodes.
This explains why BALANCESPAN can deal with lower minimum frequency thresh-
olds and is faster than the others. Another important parameter is the scalability of the
algorithms. Some algorithms are not able to compute the output patterns for a minimal
frequency support too low because they require too much memory to run. For exam-
ple, the PREFIXSPANNAIVE and EMERGSPAN algorithms can not reach a minimal
frequency threshold lower than 0.1 in most cases. However BALANCESPAN is able to
output frequent patterns with a minimal frequency threshold closed to 0.01. Note that
the original PREFIXSPAN algorithm may process lower minimal frequency threshold
since it does not compute the support of the dual pattern and thus the balance measure
which requires more memory usage.

Discovered patterns. It is interesting to visualize the distribution of both the support
and the balance of the patterns. Figure 3 gives such distribution for dataset ZvZ that
allows very fast computations with low σ (less than 5 seconds for σ = 0.001). There,
both a pattern and its dual are presented, which allows interestingly to observe that y =
0.5 gives almost a symmetry axis. Indeed, both a pattern and its dual do not necessarily
have the same support. On can notice that empirically, there are high chances for a
pattern with high frequency to have a fair balance around 0.5.

We observed the collection of resulting patterns with a game expert. Firstly, the dis-
tribution Support/Balance (Figure 3) is an expected result: the game in its current state
is globally balanced. Empirically again, the less frequent a pattern the more chances
it is a long sequence (limited by space we do not present pattern size distribution: in
average the size is 10 with standard deviation of 3.2). This makes also sense, since the
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goal of any competitive strategy game is that at the initial state of the game balance
should be exactly 0.5 and the longer the game the easiest it is to break the symmetry
for any of the two players depending of their skills.

There are 43, 610 pattern on for ZvZ with σ = 0.001. We filtered out the pattern
with only one player (containing only either + or −) which returns 40, 674 patterns.
Then we restricted the set of pattern to those involving two specific items (RoachWar-
ren and Spire) to get only 290 patterns. 〈SpawPool+, SpawnPool−, SpiCrawler+,
RoachWarren+, Spire−〉 denotes for example games where one of the player go to
air units and the second to ground units, two different known openings, with balance
0.47 and support 68. Clearly, the resulting set of patterns of any extraction is not hu-
man readable. However, it can be queried by a live program during a game, which is
a very demanded tool for broadcasters of E-Sport competitions to better interact with
their audience [5, 17, 11]. This is one of our objective to include such a possibility in
Starcraft II Observer modules6.

8 Conclusion
In this work, we present efficient algorithms and show how emerging pattern mining is
used to analyze video game strategy balance issues. It is our firm belief that our prelim-
inary investigation on sequential patterns from zero-sum games will provide valuable
results, but will require significant further research, for instance using more theoretical
foundations from game theory to build predictive tools. We hope that this work will
motivate and encourage research projects in this new exciting and challenging area.
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