
Towards the Reverse Engineering of
Denormalized Relational Databases

J-M. Petit, F. Toumani, J-F. Boulicaut, J . Kouloumdjian
Laboratoire d’Ing6nierie des Systkmes d’hformation

INSA Lyon, 20 av. Albert Einstein, B&. 501
F-69621 Villeurbanne cedex

e-mail: jean-marc.petit@lisi. insa-1yon.fr

Abstract
This paper describes a method to cope with denor-

malized relational schemas in a database reverse en-
gineering process. We propose two main steps to irn-
prove the understanding of data semantics. Firstly we
extract inclusion dependencies by analyzing the equi-
join queries embedded in application progranis and hy
querying the database extension. Secondly we show
how to discover only functional dependencies uhicli in-

the database extension, the application programs,
but especially expert users.

* Expressing the extracted semantics with a high
level data model
This task consists in a schema translation activity
and gives rise to several difficulties since the con-
cepts of the original model do not overlap those
of the target model.

fluence the way attributes should be restructured. The
method is interactive since an expert user has to val-
idate the presumptions on the elicited dependencies.
Moreover, a restructuring phase leads to a relational
schema an third normal form provided with key con-
straints and referential integrity constraints. Finally,
we sketch how an Entity-Relationship schema can be
derived f rom such information.

1 Introduction
The aim of a Database Reverse Engineering

(DBRE) process is to improve the underst~anding of
the data semantics. Many aspectss of database evolu-
tion, especially for old databases where data seman-
tics has been lost for years, require a DBRE process
[7]. Such current situations are the re-engineering of
the so-called legacy systems or the federation of dis-
tributed databases. Many works have already been
done where a conceptual schema (often based on an
extension of the Entity-Relationship (ER.) model [4])
is derived from a hierarchical database [15, 21, a net-
work database [2] or a relational database [3, 15, 13,
2, 21, 51. A DBRE process is nat,iirally split into two
major steps [18]:

0 Eliciting the data semantics from the existing sys-
tem

Various sources of information can be relevant
for tackling this task, e.g., the physical schema,

In the context of relational databases, most of the
DBRE methods [15, 13, 211 focus only on the schema
translation task since they assume that the constraints
(e.g. , functional dependencies or foreign keys) are
available at the beginning of the process. However,
to cope with real-life situations, such strong assump
tions are not realistic since old versions of DataBase
Management) Syst,ems (DBMSs) do not support such
declarations.

Some recent works [19, 22, 1, 161 have proposed
independently to alleviat,e the assumptions on the
knowledge available a priori. Given a schema in third
Normal Form (3NF), the key idea is to fetch the
needed information from the data manipulation state-
ments embedded in application programs. We have
already interesting results in this direction [16, 17, 181.
Unlike [5] , we do not constrain the relational schema
with a consistent naming of key attributes and unlike
[13, 21, 10, 91, we do not need to have all the structural
constraints before applying the method.

A current assumption in existing DBRE methods,
including our previous results, is to impose the rela-
tional schema to be in 3NF to ensure that each rela-
tion corresponds to a unique object of the application
domain. Nevertheless, Johannesson has shown that
several objects, the so-called hidden objects, can be en-
coded in a 3NF relation [lo]. He introduces a formal
framework to handle such cases in a DBRE process.
Unlike Joliannesson who still has strong assumptions

1063-6382/96 $5.00 0 1996 IEEE
2 18

http://insa-1yon.fr
jfboulicaut
Zone de texte
Proceedings 12th IEEE Int. Conf. on Data Engineering ICDE'96, New-Orleans (USA), February 26 - March 1, 1996, IEEE Press, pp. 218-227.

on the a priori knowledge, we propose in [18] a full
method to cope with 3NF schenias while eliciting the
needed knowledge from the application programs.

However, the 3NF requirement remains one of the
major limits of current DBRE methods. Indeed, dur-
ing the database design process, the relational schemas
are often either directly produced in 1NF or in 2NF,
or denormalized at the end of the design process. The
denormalization occurs mainly:

0 during the physical database implementation,

during the maintenance phase when attributes
are added.

The aim is generally to reduce the access time and to
provide efficiency to end-users [6, 201.

This paper deals with the reverse engineering of
relational schemas for which only 1NF is required, ar-
guing that it is a major step towards real-life DBR.E.
Coping with such denormalized schemas in the DBRE
context is, up to our knowledge, an open problem.
Shoval and Shreiber [21] have investigated this prob-
lem, but with all the needed const,raints at, hand,
whereas Anderson [l] has briefly addressed it.
We focus on the elicitation of the depenclencies tjhat
enable to derive a new relational schema in 3NF with
key constraints and referential integrity constraints.
The translation of such a 3NF relational schema into
Extended Entity-Relationship (EER) structures has
been widely studied, e.g., in [13, 2, 51. In the spirit, of
Markowitz and Makowsky [13], we consider the rela-
tional schemas that can be translat,ed into conceptual
schemas, by looking into the method which has been
used to design them.
The key problems to apply DBR.E techniques to a de-
normalized relational schema can be resumed as fol-
lows: identifying the relevant8 objects of the applica-
tion domain, recovering the structure of eacli of these
objects and eliciting the links (or relationships) be-
tween these objects.
To tackle these problems we propose to decompose
the denormalized schemas into 3NF schemas where
each relation maps exactly one object of the applica-
tion domain. To achieve this restructuring task, we
need to extract the functional dependencies which are
meaningful for the application domain while they have
not been conceptualized as relations. Hence the first
difficulty is to find out the non-key at,t,ributes t)hat
correspond to identifiers of objects of the application
domain. These attributes constit,ut,e the left hand side

interrelation dependencies.
of relevant functional dependencies and are involved in

These interrelation dependencies can be recovered by
analyzing, the equi-join queries. Indeed, given a rela-
tional database, the practitioners are not completely
free from the navigation problem since they must spec-
ify the access paths among relations to define queries
[ll]. The thesis of this work is that understanding the
logical nuvigation in a relational schema by analyzing
the set of equi-join queries defined in application pro-
grams, enables to elicit the interrelation dependencies.
Such interrelation dependencies will become inclusion
dependencies regarding to the database extension.

The paper is organized as follows: Section 2 pro-
vides the basic relational concepts and the notations
we use. We briefly recall in Section 3 the two main
design approaches for relational databases and their
influences on a DBR.E process. The working assump-
tions are r;tat,ed in Section 4. An example that is used
throughout the pa.per is introduced in Section 5. Sec-
tion 6 deals with data semantics elicitation: An opera-
tional process to discover a set of inclusion dependen-
cies from !,he relational database is proposed; Next, an
algorithm to get, the left hand sides of candidate func-
tional dependencies is given; Then the right hand sides
of these cantlidat,e functional dependencies are found
out. Given the original schema and the elicited data
semantics., we present a schema restructuring process
in Section 7. It facilitates the translation of the rela-
tional schema into an ER, schema. Finally, conclusion
and perspectives are given in Section 8.

2 Preliininaries
We give the basic relational concepts that are used

throughout, the paper. We define a relational database
as (R , E , A) with a set of relations R, a database ex-
tension E #and a set, of clependencies A over (R , &).

A relation &(Xi) belongs to R and is defined with
a relation name R; and a set of uttrilutes .Xi. At the
semantic level, each relation R i (X ;) is associated with
a tuble rj and each attribute xi E X i is associated with
a dorrcuin 13,. Each table is made of a set of tuples and
each tuple beloiigs to E . Thus, the database extension
C represenh the set of tables r;. rj[Y] is the projection
of the table p i on a subset Y of X i and f [Y] is the
projection of the tuple t following Y.

The dependencies over (R ,E) are denoted by A =
(FUZNZ):) where F is the set of functional dependen-
cies and T,ND the set, of inclusion dependencies. Let
Ri(X;) be a relation associated with the table r; and
let Y and i5 be two subsets of X i . A functional depen-
dency denoted by Ri : Y Z on R i (X i) is satisfied
by T i i f f ~ t , t ' E T;
Let R;(XG) and Rj(-Uj) be two relations associated
with tables r , arid r j respectively. Let Y (resp. Z) be

~ [Y I = t [Y] +- t[zl= t'[z].

2 19

a subset of attributes of Xi (resp. Xj). An inclusion
dependency on R ; (X ;) and Rj(Xj) between Y and Z
denoted by Ri[Y] << Rj[Z] is satisfied by r; and r , iff
pi [Y] c rj [Z].
An element of Z N D whose right hand side is a key is
called a key-based inclusion dependency or a referential
integrity constraint. A key constraint IC; (IC; 5 X ;)
on Ri(X;) denoted as R; : K; + Xi is a functional
dependency whose right hand side is equal to Xi and
no strict subset of K; is a key. A Not Null constraint
on Z denoted by not null Z is satisfied by r; iff Vt E r ; ,
none of the values of t[Z] is null.
Notations

A set of attributes will be denoted by an upper case
letter (e.g., X or R.X to indicate the associated rela-
tion) whereas a single attribute will be denoted by a
lower case letter (e.g., a or R.a). We write XY for
X U Y , X - Y for X\Y and the singleton set {a} is
written a.
Let II.II be a function from E to natural integers which
counts the number of distinct tuples in a table regard-
ing a set of attributes.
This function can be computed in any SQL-like lan-
guage as follows:
- I

select count distinct X
Ilri[xlII = from R;

An equi-join between Ri[Y] and R j [Z] is denoted by
&[Y] w Rj[Z].
3 The Problem

To highlight the difficulties when t,ackling a denor-
malized relational schema in a DBRE cont>ext, we look
at the database design process and the normalization
activity to evaluate how they influence each other.

Two main approaches to design a relat(iona1
database exist. The first one, the Universal Relu-
tzon (UR) approach, assumes that all the semantics
is captured through various dependencies expressed
over a universal set of attributes [ll]. The normaliza-
tion process of the universal relation is guided by the
functional dependencies and can lead to a relational
schema that does not match the intuition about how
information should be organized in relations [24]. Ba-
tini et al. [2, p.1611 argue that t,he dependencies in
general are inappropriate to capture the requirements

the functional dependencies used in a normalization
process do not always express a relationship that is
worth conceptualizing but can represent, only an in-
tegrity constraint with no influence on the data orga-
nization [13].
It also implies that the relational schema obtained by
the UR approach cannot be always translated by any

in the application domain. The main reason is that

DBRE method into a correct conceptual schema [13].
Fortunately, this is not a limit in practice since the
UR approach is not frequently used to design real-life
databases [6, p.4351.

The second approach to design a relational
database uses semantic data models [8] to describe
the application domain at the conceptual level. This
enables to reduce the conceptual distance between the
application domain and its implementation in a rela-
tional DBMS. One of the most popular semantic mod-
els is the ER model [4]. Various algorithms [23, 14, 21
have been proposed to map an ER (or an EER) schema
into a relational schema. Markowitz and Shoshani [14]
have shown that the dependencies that are directly
derivable from the EER schemas are key constraints
and referential integrity constraints.
The resulting relational schemas match a representa-
tion of the information systems in terms of objects
expressed by the relations, and interactions between
these objects expressed by the interrelation dependen-
cies. Therefore, DBRE methods can be applied on
such relational schema.
Characteristics of Denormalized Schemas

In a 1NF schema, a relation can represent many
independent objects of the application domain. Con-
sequently, some identifiers of these objects are rep-
resented by non key attributes in the denormalized
schema. The main difficulty is to find out the rel-
evant, dependencies for both the normalization and
the schema translation process, i.e., the inclusion de-
pendencies that represent objects interactions and the
functional dependencies that have a meaning in the
application domain. The interrelation dependencies
express interaction among objects and are not reduced
to the referential integrity constraints in a 1NF schema
since all idenfzfiers of objects are not compulsorily
mapped into keys in the relational schema.

4 Assumptions
We define the kind of relational database that is

considered in this paper.
The purpose is to apply a DBRE method to a rela-

tional database (R , E , fl), given its associated set P of
application programs. The data manipulation state-
ments that perform accesses to & are embedded into
these application programs.
We classify the assumptions on each of these compo-
nents and we make the user involvement as clear as
possible by identifying when his/her knowledge is op-
tional or mandatory.
On the relational schema

out) any restriction on the naming of attributes.
The relational schema is at least in 1NF and with-

220

On the available constraints
The dependencies known a priori on the data are

those availablein most of the DBMSs. So the available
constraints on attributes are assumed to be unique and
not null. Furthermore, these constraints are easily un-
derstood by the practitioners. As in standard SQL, a
unique constraint implies a not null constraint (on each
attribute involved).
We compute the set K of the key attributes and the
set N of the null not allowed attributes as follows:
K = { R.X such that X is declared unique)
N = {R.a such that a is declared not null} U{R.a E
R.X such that R.X E K}
The set At enables to compute directly the key con-
straints occurring in the schema. The expert, user is
not required to provide this information since it8 can
be extracted from the data dictionary.

On the database extension
No assumption is made on the database extension.

Even if this extension is not always a faithful snapshot
of all the constraints that must hold in the database,
we noticed that this prevents the expert user from
tedious manual tasks [5, 181.

On the application programs
The set P represents the application part of the

relational database in operation. For our current, pur-
pose, we extract from P only the equi-join queries. It,
gives a set denoted by Q.
Extracting automatically the eqni-joins from a set. of
files is not a trivial task. For instance, an equi-join
can be performed in different ways, with nested or
unnested queries, with a where clause or with an in-
tersect operator.
Let us illustrate how the set Q is augmented when
using the following unnested query involving a where
clause:

from & , R I
where afl = ai, and . . .and = (ifin I . . .

A k = {atl . . .
=+ Q = Q U {Rk[Ak] W Ri[AiI}
While the extraction of equi-joins between single

attributes remains simple, it becomes complex when
equi-joins between sets of attributes have to be dis-
covered. However, it is out of the scope of this paper
and we assume that such a set is available, i.e., it has
been computed.

To sum up, the application of the method requires
only a relational database (R, €, @) and the three sets
K , N and 6.

and Ai = {util . . . afn}

5 An Introductory Example
We propose the following example to demonstrate

how the method works. This database manages the
employees of an organization who work in projects as-
signed in different departments. Each relation name
begins with an upper-case letter, each key constraint
on attribute(s) is underlined and each not null con-
straint on attribute(s) is emphasized. A possible rela-
tional schema could be defined as follows in the data
dictionary of the DBMS:

Person(jd,name, street, number, zipcode, state) 2NF
HEmployee(n0, date, salary) 3NF
Department(dep, emp, skill, location, proj) 2NF
Assignmient(emp, dep, proj, date, project-name) 1NF

The normal form of each relation is given as com-
ment for clarity purpose. So the sets of constraints At
and N are computecl:
X: = {Person.{id}, HEmployee.{no,date}, Depart-
ment. {dep}, Assignment. {emp,dep,proj}}
N = { Department.location, Person.id, HEmployee.no,
HEmployc!e.date, Department.dep, Assignment.dep, As-
signment.emp, Assignment.proj} .

Let us assume that the following set Q of equi-
joins has been extracted from the application pro-
grams (e.g., forms, reports, batch files).

1 HEmployee[no] w Person[idJ
DepartmentIemp] w HEmployee[no]
Assignment[emp] w HEmployee[no]
Assignment[dep] w Department[dep]
Department[proj] w Assignment[proj]

Q = {

The dattabase extension & is assumed to be correct
with respect to the constraints defined in tlhe data dic-
tionary.

Our goal is to transform this schema so that each
relation rnaps exactly one object of the application
domain. !so we need to select only the relevant func-
tional dependencies for the schema restructuring. For
instance, let us assume that the two following func-
tional dependencies Assignment: proj + project-name
and Person: zip-code + state occur in the schema.
Since programmers have referred to the attribute As-
signment[proj] by the equi-join DepartmentLproj] w As-
signment[proj], the first functional dependency will be
discovered! by our method and will be relevant during
the schema restructuring process.
On the other hand, the second functional dependency
is only an integrity constraint which will not be consid-
ered further (programmers do not refer to Person[zip
code] in an equi-join). I t is worth noting that keep
ing the relation Person in 2NF does not imply update

221

anomalies [2]. Moreover, the use of this kind of func-
tional dependency during a normalization process can
lead to an erroneous design [13].

We use this example throughout the paper by
pointing out the various steps that lead to a concep
tual schema (Section 7).

6 Data Semantics Elicitation
We now focus on the two main steps required to

carry out a DBRE process on a denormalized rela-
tional schema: 1) how to recover interrelation depen-
dencies from a relational database in operation and 2)
how functional dependencies, which influence the way
data could be structured, are elicited.
6.1 Inclusion Dependency Elicitation

An algorithm that discovers the interrelation de-
pendencies between attributes of the relat,ional schema
is defined. Such interrelation dependencies are either
inclusion dependencies or non-empty int,ersect,ions be-
tween the two sets of values of the at,t,ributes. We elicit
them by scanning the eclui-joins of Q and by access-
ing the database extension &. R.oughly speaking, an
equi-join A w B is a mean to say that at,tribnt,es A
and B share something and thus it allows to express
interrelation dependencies.
The idea is to establish against the database extension
E whether the related attributes are in inclusion de-
pendencies or not. To cope with corrupted database
extensions, the expert user is involved to decide if non
empty intersections can not be reduced to inclusion
dependencies.
The equi-join analysis focuses on relevant, atst,ribut,es
enforcing the efficiency of the inclusion dependencies
elicitation.

IND-Discovery Algorithm

0 Input: R,E, Q

0 Output: ZNV a set of inclusion
dependencies, s a set of new relations

(i)

(ii)

if NI 5 N k then

fi

/* A Non-Empty Intersection (NEI) between the
sets of values o f Ak and AI is discovered*/
if the expert user conceptualizes this NE1
with R p (A p) then

(iv)

Z ” D = z”D U {Ri[Ai] << &[Ak]}; (iii)

elsif Nki # Nk and Nkl # NI then

Add the nev relation Rp(Ap) to s;
zMD = zh/V U {RP[AP] << &[Ak]}

U {RP[APl << Rl[AII}
else the expert user can choose among these
three statements :

Z M D = TN’D U {Ri[Ai] << Rk[Ak]};
Zhl’D = Z N D U {Rk[Ak] << R I [A I] }) ;
INV left unchanged: (vii)

(V)

(vi)

fi
fi

od
End

When the intersection between the two sets of val-
ues of the att-ributes is empty (i) , a data integrity
problem can occur and no interrelation dependency
can be elicited.
Otherwise, when this intersection is equal to one of the
two sets of values, an inclusion dependency is elicited
((i i) or (i i i)) .
Finally when a non empty intersection, which is dis-
tinct from the two previous sets of values, exists, the
expert user is involved. Regarding the amount of
data implied in this intersection in comparison with
these two sets of values, the expert user has to de-
cide whether it is worth adding a new relation into S
to conceptualize this int,ersection. In this case (iv),
he/she thinks that the database extension is a faith-
ful snapshot of the const,raints for these attributes. If
he/she decides not to create a new relation, he/she dis-
regards the database extension (data integrity prob-
lems can occur) and we give to him/her an alternative:

0 the considered non empty intersection becomes
an inclusion dependency, i.e., Rl[Al] <<
(v) or the inverse (v i) ,

0 the non empty intersection is ignored (v i i) .

The former takes into account the interrelation de-
pendencies as inclusion dependencies whereas the lat-
ter ignores it. The expert user is warned about the
risk to give up a non empty intersection.
What,ever the choice made by the expert user, the ob-
tained data structure no longer matches the database
ext,ension.

222

On the example of Section 5, we illustrate how the
interrelation dependencies can be recovered using the
IN D- Discovery algorithm.
Let us detail how the equi-joins HEmployee[no] w
Person[id] and Assignment[dep] w Department[dep] are
processed. In the first case, we assume that query-
ing the database extension returns the following valu-
ations of the relation HEmployee and Person:

IJPerson[id]J) = 2200
IlHEmployee[no]ll = 1550

IIPerson[id] w HEmployee[no]ll = 1550

Hence, a new inclusion dependency (HEmployee[no] <<
Person[id]) is elicited and added to the set ZNV.

Now let us assume that the processing of the second
equi-join reveals a non-empty intersection between the
values of Assignment[dep] and DepartmentIdep]:

IIAssignment[dep]ll = 30
IIDepartment[dep]ll = 28

I)Department[dep] w Assignment[dep]JJ = 20

Then, let us consider that the expert user wants to
conceptualize the departments which are assigned to
both projects and employees in the relation Assign-
ment. Thus, a new relation Ass-Dept(dep) is created
and added to S. Note that the c h o i c e f names for
the new relations must be significant with respect to
the application domain. The inclusion dependencies
Ass-Dept[dep] << Assignment[dep] and Ass-Dept[dep] <<
Department[dep] are added to the set ZNV.
Finally, at the end of the IND-Discovery processing,
the set of inclusion dependencies ZMD is equal to:

’ HEmployee[no] << P e r s o n H
DepartmentIemp] << HEmployee[no]
Assignment[emp] << HEmployee[no]
Ass-Dept[dep] << Assignment[dep]
A s s - D e p t [a << Department[dep]
Department[proj] << Assignment[=]

When a key occurs in an inclusion dependency, it is
underlined. The set of relations S is equal to {Ass-

6.2 Functional Dependency Elicitation
The elicitation of the functional dependencies al-

lows to cope with the relations that are not explic-
itly represented in the current denormalized scliema.
Given a denormalized relational database (R +
S, E , ZNV) and the sets K: and N , we build the set, 31
of hidden objects and the set F of fiinctional depen-
dencies which are not directly derivable from K. The

Dept(dep)I.

set 31 is iintended to capture the relevant functional
dependencies which have an empty right hand side.
There are two main steps to achieve this elicitation:
1) studying the set of inclusion dependencies to elicit
candidate left hand sides of the relevant functional
dependencies, 2) for each of them, recovering its right
hand side.
6.2.1 Extracting the Candidate Left Hand

Sides of Functional Dependencies
The following LHS-Discovery algorithm computes

the set C3CS of candidate left hand sides off functional
dependencies and the set 31 of hidden objects. It starts
by scanning the set ZNV to find out all the non key
attributes implied in an inclusion dependency. Indeed,
such non key attributes could be conceptualized as el-
ements of CXS or 31.

LHS-Discovery Algorithm

e Input: R + S , I C , 2 n / D

Output: c x s , x
Begin

for each ir E Zn/V do
let I = (Rk[Ak] << R I [A I]) ;
if Rk(&) E s then
elsif

L31S = 6; 31 = 8;

if Ri.A

let I (k and
if (Ak # z (k) then

if (A I # I\ i) then

I< then ?l = 31 U {Ri .Ai}; fi (i)

be the keys of Rk and Ri;

LHs = LHS U {Rk.Ak}; fi

CXS = LHS U {Ri .Ai} ; f i

(ii)

(iii)
f i

od
End

For each inclusion dependency, two case5 arise:

A relation of S is involved’: if the right hand
side of this inclusion dependency is not a key (i) ,
then it is added to the set 31 of hidden objects.
These attributes must be conceptualized since the
expert user has already decided to conceptualize a
subset, of their values (represented by this relation
of S).

No relation of S is involved: if non key attributes
occur (ii) (iii) then they become elements of
C31S. These attributes are candidate identifiers
of the objects which are not explicitly represented
by relations int,o the schema.

‘By construction, this relation is compulsorily in the left
liarid side of this inclusiorr dependency

223

Let us illustrate on the example of Section 5 ,
how the sets and L31S are computed. For in-
stance, Assignment.{dep} involved in the inclusion de-
pendency Ass-Dept[dep] << Assignment[dep] becomes
an element of X &=Ass-Dept belongs to S whereas
HEmployee.{no} becomes an element of L31S due to
the inclusion dependency HEmployee[no] << Person[id].
Given the set ZNV of Section 6.1, the complete ex-
ecution of the LHS-Discovery algorithm provides the
two follbwing sets:
LXS = {HEmployee.{no}, Department.{emp}, Assign-
ment.{emp} , Assignment.{proj}, Department. { proj}}
31 = {Assignment.{dep}}
6.2.2 Extracting the Riglit Hand Side of

The discovery of the right hand side of a functional
dependency can be carried out in several ways, i.e., by
relying on the expert user, by querying the ext,ension C
1121 or by extracting clues from application programs
which is in the spirit of our approach.

Let us assume that R, .A E (C X S U X) and that, we
are looking for functional dependencies in the relation
R ; (X ;) . The candidate attributes for the riglit, hand
side of R;.A are included in Xi.
The first step of the RHS-Discovery algorithm is to
decrease the number of candidate att,ributes for t,he
right hand side (e.g., the keys are deleted from the
candidate attributes since we want to meet the 3NF
requirement only). The second step consists of test-
ing for each candidate attribute whether a functional
dependency exists. The effective comput,ation of each
possible functional dependency (cf. (i)) is not de-
tailed.

Functional Dependencies

RHS-Discovery algorithm

a Input: R.&,CXS,X
e Output: 3,x

Begin

for each R,.A E (CHS U 31) do
F = 0;

let K; be the key of R,(X,);
/* Decreas ing t h e number of r i g h t hand s i d e
a t t r i b u t e s */
T = X , - AA’,;
if A @ N then T = T - (N n X ,) ; fi;
/* Computing t h e p o s s i b l e f u n c t i o n a l
dependencies */
B=0;
for each attribute b E T do

if A --f b holds in r; then B = Bb
else the expert user can enforce B = Bb;(ii)
fi

(i)

od

if B # 0 then (iii)
3 = 3 U { R , : A + B } ;
if R,.A E 31 then 31 = 3c \ {R, .A}: fi

/* A Hidden Object (HO) can be e l i c i t e d */
if the expert user conceptualizes &.A then

31= 31 u{R,.A}; fi (iv)
else R , . A is not considered; (V)

elsif R , . A g N then

fi
od
End

To account for data integrity problems of the
database extension 6 and regarding the amount of
data which are implied, the expert user still can en-
force a functional dependency (ii).
Once a presumption of functional dependency (the
sets CXS and 31) has been obtained from an inclu-
sion dependency, we have to find out, in interaction
with the expert user, if this functional dependency
truly occurs. Three cases exist,: 1) if a functional de-
pendency is elicited (iii) indicating the existence of a
denormalized relation, then it becomes an element of
the set F of functional dependencies. If the left hand
side of the elicited functional dependency has been as-
signed to 31 during the LHS-discovery algorithm, then
it has to be removed from ‘h! since it is now conceptu-
alized in F. 2) If an empty right hand side occurs and
if the user decides to conceptualize this hidden object
(i v) , then its is added to 31. 3) Otherwise, the expert
user decides to ignore this information (v).

On the example of Section 5, assume that the RHS-
Discovery algorithm is applied to find out if a right
hand side exists for each element of CXS U 31.
Let us assume that, the element Department{emp}
from C X S is processed. The candidate attributes for
the right hand side are dep, skill, location and proj. The
attributes dep and location are then removed from the
candidate at,tributes since dep is a key and location is
not null (emp having null values). The remaining at-
tributes are skill and proj. Assume that the functional
dependency Department: emp -+ skill, proj is found
out, and, after being validated by the expert user, it is
added to 3.

At the end, if trhe expert user has decided to con-
cept.iialize t’he element H Employee{ no} of L’?tS which
representss the object, Employee’ of the application dc-
main, the following sets are obtained:

F= {
31 = {HEmployee{no}, Assignmentjdep}}.

Department: emp + skill, proj
Assignment: proj + project-name

~ ~

’This is an object erribedded in the 3NF relation HEmployee
[lo1

224

The remaining attributes of C31S are not conceptual-
ized. It indicates that the attributes Assignment{emp}
and Department{proj} of C31S have been given up by
the expert user.

7 Towards a Conceptual Schema
At this point, the end of the knowledge elicita-

tion phase is reached since the needed knowledge to
perform a reverse engineering process on a 1NF rela-
tional schema is available. Indeed, the inclusion de-
pendencies, the functional dependencies and the hid-
den objects elicited by IND-Discovery, LHS-Discovery
and RHS-Discovery algorithms enable to normalize the
1NF schema in order to get a 3NF schema. This is a
usual requirement to translate relational schemas into
conceptual structures [13, lo].

The Restruct algorithm, introduced below, gives the
main steps to restructure a 1NF relational schema
given the set ZNV of inclusion dependencies, and the
set T of functional dependencies. This restructuring
provides a 3NF schema that can be represented by an
EER schema.

Restruct Algorithm
Input: RuS,K,3,3t,Zh/D

a Output: RUS,K,RZC
Begin

/* Eliciting the hidden objects */
for each Ri.Ai E 31 do

add the neu relation Rp(A;) to S ;
add R,.A, to K ;

replace R;[A;] by R,[A;] in ZMD;

RZ = 0;

ZNV = ZNV U {Ri[Ai] <(Rp[Ai]};

od
/* Splitting the schema using FDs */
for each f; E T do

let f, = R, : A, + B,;
add the neu relation RP(iflrB;) to S;
add R,.A, to K;
remove B; from &(Xi);
ZNV = ZNV U {Ri[Ai] << Rp[Ai]};
replace Ri[Ai] by Rp[Ai] and Ri[Bi] by Rp[Bi]
in ZNV;

od
/* Computing RZC */
RZC a {R;[A,] << R,[Aj] E Z ” D such that
Rj.Aj E K } ;
End

On the example of Section 5, the elements
HEmployee[no] and Assignment[dep] of 31 become two
relations Employee(n0) and Other-Dep(dep) respec-
tively.

Assume the functional dependency Department: emp
-+ skill proj of =C is current,ly processed. Consider
that the expert user chooses to call this new relation
Manager, its structure being Manager(emp, skill, proj).
The structure of Department becomes DGrtment(dep,
emp, lociation) since the attributes skill and proj have
been remioved.
Therefore, the modifications of the set Z N D are the
following: 1) a new inclusion dependency Depart-
ment[emp] << Manager[emp] is created;
2) assume the functional dependency : Assignment:
proj -+ project-name has already been processed and
has givein rise to the relation Project(proj, project-
name), then the modification on Z N D l e z t o replace
Assignment[proj] << Project[proj] - by Manager[proj] <<
Project[proj].

The ;&cation of the Restruct algorithm on the
schema €2 provided with the dependencies (3, ZNV)
leads to the following restructured schema:

Person(& name, street, number, zip-code, city)
HEmployee(no, date, salary)
Depart men t(dep, em p. /oca tion)
Assignment(emp, dep, proj, date)
Employee(no)
Ass- Dept (dep)
Other-Dept(dep)
Manager(emcski l l , proj)
Project (piKproject-name) --

The set X: contains the underlined sets of attributes
and we obtain the following set of referential integrity
constraints:

RZC =

Employee[no]
Man a ger [em p]
Assign ment[em p]
Ass- Dept[dep]
Assignment[dep]
Ass-Dept[dep]
Manager[proj]
Hem pIoyee[no]
Department[emp]
Assignment[proj]

<< PersonM
<< Employeelno]
<< Employeerno]
<< Other-Dept[dep]
<< 0 t her- Dept [dep]
<< DepartmentFp]
<< ~roject[proj]-
<< Employerrno]
<< Manager[emp]
<< P r o j e c t [d F

This r’estructured schema can be translated into
EER structures [21, 5, 91.

Finally, we sketch the Translate algorithm which al-
lows to achieve the mapping of the restructured rela-
tional schiema int,o EER, structures. We only give a
flavor (e.g., the treatment of cyclic inclusion depen-
dencies is not, coilsidered here) of how EER constructs
are obtained wit,hout, going into details (see [l3]).

225

The target model is the ER model extended to the
SpeciaEizotion/Generulization of object-t,ypes”

Translate Algorithm (sketch)

Input: R U S , IC, RZC
0 Output: an EER schema

Begin
/* Mapping the relational schema into the EER
structures */

o map each re lat ion of R U S into an
object-type;

/* Identifying EER object-types */

f o r each Ri[Ai] << Rk[Ak] E R Z C do

a) i f Ai E IC then an is-a l i n k is
e l i c i t e d ;
b) i f AI forms a partit ion each element
of which appears as l e f t hand side of an
element of R Z C
then a many-to-many relationship-type is

e l i c i t e d
e l s e a weak entity-type is e l i c i t e d ;

c) i f AI e IC then a binary
relationship-type is e l i c i t e d ;

End

The resulting EER schema is depicted in Figure 1
where the entity-types are denoted by rectangles; rela-
tionships by diamond shaped boxes; weak ent,ity-types
by double boxes and is-a links by arrows with two
pointers a t their head.

8 Discussion
We have investigated the open problem of reverse

engineering of denormalized relational clatabases iiit,o
conceptual schemas, assuming only weak assumpt,ions
on the knowledge available a priori.
We have proposed a method to elicit the needed knowl-
edge to restructure a 1NF schema int80 a 3NF schema
by an analysis of eciui-join queries embedded in appli-
cation programs. In this sense, this work is a signif-
icant extension of our previous resultts [le, 181. The
retained constraints at the beginning of the method
are neither supplied by an expert, nser, nor derivable
from strong naming conventions on att,ribut,es. Here,
the expert user is involved only for valiclation pnr-
poses.
It is worth noting that our method can be integrated
as a front-end of all the existing relational DBRE

Object-type denotes either entity-type or ielati~iiisliip-type.

Person

Project
Manager

I

I Ass-Dept I
Figure 1: The final EER schema

methods.
This ongoing research is part of the project DREAM
(Dat,abase R.everse Engineering Analysis Method)
that defines an operat,ional method to reverse-engineer
real-life relational dat,abases [16, 17, 181.

RiZoreover, this work can lead to original develop
ments in the area of knowledge discovery in databases.
Indeed, it seems t,o be clnitle interesting to study the in-
fluence of the application programs of legacy systems
on traditional data mining processes. The application
programs of databases could be considered as oracles
that help to discover tlie relevant information into the
data mines.

References
[l] M . Anderson. Extracting an ER Schema from a

R.elat#ional Database Through Reverse Engineer-
ing. In Proc. of the 13t’’ I d . Conf. on the E R
Approrich, volume 881 of LNCS, pages 403-419,
hlanchest,er, Dec. 1994. Springer-Verlag.

[a] C. Batini, S. Ceri, and S. Navathe. Conceptual
DotriLase Design: an Entity-Relationship Ap-
proach. Benjamin Cummings, 1992.

[3] M.A. Casanova and J.E.A. de S6. Designing
Entity-R,elat,ionship Schemes for Conventional In-
formattion Syst#ems. In Proc. of the 3td Znt. Conf.
on tlie ER Approach to Software Engineering,
pages 265-277, Anaheim, California, 1983. Else-
vier Science Publishers.

[4] P.P. Chen. The Entity-Relationship Model - To-
ward a Unified View of Data. ACM Transactions
on Dufmbase Systems, 1(1):9-36, Mar. 1976.

226

[5] R.H.L. Chiang, T.M. Barron, and V.C. Storey.
Reverse Engineering of Relational Databases:
Extraction of an EER Model from a R.elationa1
Database. Data and Knowledge Engineering,
10(12):107-142, 1994.

[6] R. Elmasri and S. Navathe. Fundamentals of
Database Systems. Benjamin Cummings, second
edition, 1994.

[7] J-L. Hainaut, V. Englebert, J . Henrard, J-M.
Hick, and D. Roland. Requirements for Infor-
mation System Reverse Engineering Support. In
Proc. of the IEEE Working Conference on Re-
verse Engineering, Toronto, Canada, Jul. 1995.
IEEE Computer Society.

[8] R. Hull and R. King. Semantic Database Model-
ing: Survey, Applications, and Research Issues.
ACM Computing Surveys, 19(3);201-260, Sep.
1987.

[9] M. Jeusfeld and U. Johnen. An Execntable Meta
Model for Re-Engineering of Database Schemas.
In Proc. of tlie 13t" Int. Conf. on the ER Ay-
proach, volume 881 of LNCS, pages 533-547,
Manchester, Dec. 1994. Springer-Verlag .

P. Johannesson. A Method for Transforming Re-
lational Schemas into Conceptual Schemas. In
Proc. of the loth Int. Conf. on Data Engineering,
pages 190-201, Houston, Texas, Feb. 1994. IEEE
Computer Society.

D. Maier, J.D. Ullman, and M. Y. Vardi.
On the Foundations of the Universal Relation
Model. ACM Trunsuctions on Dotubrise Systems,
9(2):283-308, Jun. 1984.

H. Mannila and K - J . Raiha. Algorithms for
Inferring Functional Dependencies from Rela-
tions. Data and Knowledge Engineering, 12:83-
99, 1994.

V.M. Markowitz and J.A. Makowsky. Identifying
Extended Entity-Relationship Object, Structures
in Relational Schemas. IEEE Trmsactions on
Software Engineering, 16 (8) : 777-790, Aug. 1990.

V.M. Markowitz and A. Shosliani. Representing
Extended Entity-Relationsliip Structures in R.e-
lational Databases: A Modular Approach. A CM
Transactions on Datnhse S?jsfems, 17(3):423-
464, Sep. 1992.

[15] S . IVavatJie and A. Awong. Abstracting Rela-
tional and Hierarchical Data with a Semantic
Data Model. In Proc. of the 6 th Int. Conf. on the
ER Approach, pages 277-305, New-York, Nov.
198'7.

[16] J-M. Petit, J . Kouloumdjian, J-F Boulicaut, and
F. Toumani. Using Queries to Improve Database
Reverse Engineering. In Proc. of the 13th Int.
Con$ on the ER Approach, volume 881 of LNCS,
pages 369-386, Manchester, Oct. 1994. Springer-
Verl ag .

[17] J-M. Petit and F. Toumani. Taxonomic Reason-
ing in a Database Reverse Engineering Process.
Research R.eport, 31 pages RR-94-45, LISI, Oct.
1904.

[18] J-M. Petit,, F. Toumani, and J. Kouloumd-
jian. R.elationa1 Dat,abase Reverse Engineering:
a Method Based on Query Analysis. Interna-
tionol Jouinul of Cooperative Information Sys-
tenis, 4(2,3):287-316, 1995.

[19] W.J. Premerlani and M. Blaha. An Approach
for Reverse Engineering of Relational Databases.
Coriiiuzinications of the ACM, 37(5):42-49, May
19941.

[20] U. Rogers. Denormalization: Why, What, and
How? Dutcikose Programming and Design,
2(12):46-53, Dec. 1989.

[21] P. Sl.iova1 and N. Shreiber. Database Reverse En-
gineering: From the R.elationa1 to the Binary Re-
lationship Model. Dotu and Knowledge Engineer-
ing, 10(10):293-315, 1993.

[22] 0. Signore, M. Loffredo, M. Gregori, and
M. Cima. R.econstruction of ER Schema from
Database Applications: a Cognitive Approach. In
Proc. of tlie 13t'6 I d . Conf. on the ER Approach,
vo1u;me 881 of LNCS, pages 387-402, Manchester,
Oct. 1994. Springer-Verlag.

[23] T.J . Teorey, Y. Dongqing, and J.P. Fry. A Logi-
cal Design Methodology for Relational Databases
Using the Extented Entity-Relationship Model.
A CM Coirrptrting Surveys, 18 (2) : 197-222, Jun.
1986.

[24] J.D. Ullman. Principles of Database Systems.
Comput,er Science Press, 1080.

227

