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Abstract are used iICBA[11] to rank the rules in a list that will be
considered as a classifier. Then, pruning based on database

Learning classifiers has been studied extensively the lastcoverage can be applied to reduce the size of such a list. An
two decades. Recently, various approaches based on patunseen caseis finally labeled by the first verified classifi-
terns (e.g., association rules) that hold within labeled data cation rule in the list. Other approaches lE&AR10] or
have been considered. In this paper, we propose a novel asCPAR[16] define class-related scores — respectiyn-
sociative classification algorithm that combines rules and bined effecbf subsets of rules aralverage expected accu-
a decision tree structure. In a so-callédPDT (5-Pattern racy of the bestk rules — then choose the class that max-
Decision Tree), nodes are made of selected disjunétive imizes this score. Further properties can be enforced on
strong classification rules. Such rules are generated from selected rules like, for instance, a minimal body property
collections ofd-free patterns that can be computed effi- [5, 2]. Another important way to support classification is
ciently. These rules have a minimal body, they are non-to consider emerging patterns [6], i.e., patterns that are fre-
redundant and they avoid classification conflicts under a quent in samples of a given class and barely infrequent for
sensible condition oA. We show that they also capture the samples of the other classes. Many algorithms have been
discriminative power of emerging patterns. Our approach developed. For instanc8JEP-classifier [7]is based
is empirically evaluated by means of a comparison to state-on the aggregation of emerging patterns and the computa-
of-the-art proposals. tion of a collective score (see, e.g., [14] for a survey).

Both associative classification and approaches based on
emerging patterns follow the same principle : (1) mining
1. Introduction set patterns or rules that support class characterization, (2)
pruning this set to select best rules, (3) combine extracted
The popular association rule mining task [1] has been rules to classify unseen samples. In this paper, we propose
applied not only for descriptive tasks but also for class char- & Novel associative classification approach call&DT. It
acterization and classifying tasks when considering labeledcOmbines decision tree construction and the disjunction of
transactional data [11, 10, 5, 16, 2]. An association rule -Strong rules (|.§., association rules that conplude onaclass
7 is an implication of the formX = Y where X (condi- value anq are violated by at mo%tsamplesé is assumed
tion) andY” (consequence) are different sets of features (alsot© be quite small w.rt. the size of labeled data). These
called items of Boolean attributes). Such rules provide feed-"ules have minimal body (i.e., any subset of the body of a
back on attribute value co-occurrences. Whedenotes a  fule cannot conclude on the same class), and [5] points out
single class value, it is possible to look at the predictive @ condition ond to avoid classification conflict_s(S—strong
power of such association rules and to look at them as canfules are based on the so-calleftee patterns, i.e., a class
didate classification rules: when conjunctions of vakie  ©Of pattern which has been introduced for frequency approx-
is observed, is it accurate to predict class valie Such ~ imation in difficult frequent set mining tasks [4].
a shift between descriptive and predictive tasks has to be We introduce new conditions on thieparameter such
done carefully [9], and this is an identified research topic that j-free sets become emerging patterns that have a dis-
called associative classification. The idea is to post-processriminating power property. Furthermore, whén> 0,
the association rules that conclude on class values for uswe can consider a "near equivalence” perspective and thus,
ing the fewest(with least information loss) but thmost roughly speaking, the concept of almost-closed set (max-
interestingones for classifying purposes. Interestingness imal one) and the notion of-Closure Equivalence Class
is approached by support and confidence measures whicl{d-CEC). It means that we can consider the disjunctioft of
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free sets of the sameCEC. The construction of thePDT
tree roughly follows the popula®4.5 decision tree build-
ing algorithm. Main difference is that test nodes ¢fBDT
are bodies of disjunctivé-strong rules selected w.r.t. an ex-
tended version of Information Gain Ratio criterion.

In Section 2, we provide the preliminary definitions and

operator such thatcl(I,r) = {i € T | freg.(I,r) =
freq.(I U {i},r)}. In other words, there is no superset
of I with the same frequency thahin r, i.e. I’ D I :
frega(I',7r) = freq,(I,r). Intuitively, a closed pattern is
the unique maximal description (w.r@) commonly shared
by a set of objectd}. Furthermore, minimal descriptions

the problem setting. Section 3 gives more details on howof T; are called free patterns in [4] and key patterns in

to used-strong rules when considering pattern-based deci-

sion tree building. Experiments are reported in Section 4.
Section 5 is a brief conclusion.

2. Problem setting and definitions

We want to support classification tasks when consider-
ing that samples are O/1 data records. We assume a
nary database = {7,Z., R} where7 is a set ofobjects
Zc = I U C a set ofitems(boolean attributes and classe
attributes) andR a subset off x Z.. A pattern(or item-
set)] C Z¢ is a set of items and it is said to cover a set of
objectsT C T if I C t. T is thesupportof I in r and is
notedsupp(I,r). freq.(I,7) = |supp(l,r)| is known as
absolute frequenogf I while relative frequencyf a pattern
I'inr, notedfregq,(I,r), is defined aé%(l”)‘. Giveny
a frequency threshold, a pattefriis said to bey-frequentin
rif freq.(I,7) > 7.

2.1. Emerging patterns

An emerging pattern is a pattern whose relative fre-
quency is significantly high im., (database restricted to
objects of clasg;) compared with its relative frequency in
the rest of the database \ r.,). This ratio of frequencies
is measured by growth rate. Tlgeowth rateof a pattern/
related tor., is formally defined as:

0 if f?“eqr([,rci) =0
00 it freq.(I,re,) >0
GR(Iv Tci) = /\fr€Q7(Ia T(:j) =0
(Vj #4)
reallre) — otherwise

freq. (I,'f\rqu )

Given a growth rate threshold > 1, r.,-p-emerging pat-
terns(p-EPs) related te,, are patterng s.t. GR(I,r.,) >

p, andJumping Emerging PatterndEPSs) are the patterns
whose growth rate is infinite. Emerging patterns own an
intrinsic power of class discrimination whose strength is re-
lated to growth rate. Intuitively, higher growth rate implies
more power to discriminate classes.

2.2. Closure equivalence classes

A pattern I is said to beclosedin r if and only if
c(I,r) = I, wherecl : P(Z) — P(Z) is aclosure

bi

[3]. Intrinsic properties of free patterns (minimality, con-
cision, non-redundancy) are captured in essential classifica-
tion rules [2] to manage classification tasks and to improve
associative classifiers like, for instan@BAor CPAR

If we consider the relation-.;, meaninghas the same
closure as’ we can group patterns lmjosure equivalence
classeCECs). The unique maximal (w.r.t. set size) ele-
ment of a CECC is a closed pattern and its minimal ele-
ments are the so-called free patterns, i.e. minimal descrip-
tions for a same set of supporting obje@is [3]. Inside
CECs, every association rute: I = i (wherel is a free
pattern and € cl(I,r) A¢ ¢ I)is an exact rule (confidence
1). We think~ is relevant for classification if is a class
label c. Indeed, in this casey is a rule with confidence 1
and! is a JEP. Unfortunately, in some real (noisy) data sets,
such rules tend to be rare. Instead, we propose to consider
rules with at mosb exceptionsd > 1).

Definition 1 (§-strong rule, §-free pattern, almost clo-
sure). Letd be an integer. Aj-strong ruleis an associa-
tion rule I =° 5 which is violated in at most transactions,
and wherel C Z andi € 7\ I. Thus,I = i is a valid
d-strong rule inr if freg,(I,r) — freq,(I U {i}) < 4.

A pattern; C 7 is a §-free patterniff there is no valid
s-strong rulel =% ist. TU{i} CI,. If6 =0,6is
omitted, and then we talk about strong rules and free pat-
terns. Wherd > 0, thealmost-closuref a J-free pattern/
iscls(I,r)={i eZ| freq(I,r) — freq(I U{i}) < d}.

One can consider relatior,;, denoting’has the same
almost-closure as'to group patterns byalmost-closure
equivalence classg®-CECSs) ;d-free patterns being min-
imal elements of these equivalence classeg-stvong rule
I =9 i can be built from ay-frequents-free patternl
and an itemi € cls(I,r) (¢ ¢ I)[4]. Itis known to
have a minimal body and a confidence greater or equal than
1 — 0/~. To characterize classes, [5] uskedtrong classifi-
cation rules §-strong rules concluding on a class). To build
d-strong classification rules, we need to compufeequent
patterns not containing class but whose almost-closure con-
tains a class. This could be managed efficiently with the
AClike implementation of the algorithm from [4] (see
http://liris.cnrs.fr/jeremy.besson/). These rules are known to
avoid common classification conflicts under a simple con-
straint. Indeedj-strong rule extraction can not produce
m I =% ¢ andmy : J =9 ¢y with I C J (bodies
conflicts) if we state) € [0; |v/2][.



Moreover, let us see how-strong classification rules
may catch the discriminating power of emerging patterns.
Consider a-class learning problem. Let: I =° ¢ {6,}
be ad-strong classification rule built from a-frequent
o-free patternl s.t. ~; > ~ is the exact frequency of

I and §; < § the exact number of violations af in
r. GR(I,r.) = %2327% and relevant growth rate is
greater than 1, i.e., when:
(vglft‘irl)ilrc\ > (755) . Ir‘x‘cl > 1

ie., 1 > el 41

ie., % > )

ie., v - ‘T‘Trf‘ > 5
Thus,§ < v - "’"‘T"I'd is a sufficient condition s.t-free pat-

terns (bodies of-strong classification rules) apeemerging
patterns g > 1).

Proposition 1. A ~-frequentd-free patternl s.t. a class
¢ € cls(I,r) is an emerging pattern i € [0;v - (1 —
freq(ci,r))[where|r.,| > |re,| Vj #i.

(6)-free patterns is a way to choose a unique representant of
C, for description. Disjunctivé-strong classification rules
differ from extracted rules of associative classifieBBA
andCPAR since rules concerning a same amount of objects
are packed into a unique concise rule.

3.1. Towards a pattern-based decision tree

The construction of a Pattern Decision Tree (Algo-
rithm 1) is based on the recursive procedureCdf5 [13]
algorithm to build decision trees — the main difference is
that we are not dealing with attributes but with disjunc-
tive §-strong classification rules. At each step, the proce-
dure determines which rule is tineostdiscriminant (call it
BestRule), then it splits training data setinto two groups
— the one {pestrule) COVered byBest Rule and the other
(r-Bestruie)- Next, another rule is chosen for each of the
groups for further splitting until all of groups are considered
to beterminal In such a tree, each test node is a disjunc-
tion of §-free patterns (bodies éfstrong classification rules
used for splitting) and each branch leads to a subset of the

These classification rules have minimal bodies, they training data

avoid common classification conflicts, and they have class

discriminating power of EPs. In the following, when talk-
ing abouts-CECs ord-strong classification rules, we only
consider couples$y, d) that produce no body conflict and
which satisfy the constraint induced by Proposition 1.

3. Classification using)-CECs

Our idea is to build a classifier combiningCECs with
a decision tree. We consider thataCEC C; is relevant
for our purpose if its maximal element (w.rd) contains a

class and at least one of its minimal elements (that are EPS)

does not contain a class attribute. Indeed, potentially inter-
esting classification rules related t@aEC C are those
d-strong rulesr : I — ¢ wherel! is a minimal element of
C1 (i.e., ay-frequents-free pattern) and the class label
which C is related to.

When C; leads to severad-strong rules €, : I; =
¢ {01},..,mp + Iy = ¢ {0}), we gather thek rules
within a unique classification rule.

Definition 2 (disjunctive J-strong classification rule).
The uniquedisjunctive d-strong classification rulef a -

CECC(; is aclassification rule of the form : I;V...VI;, —

c wherely, ..., I}, are §-free patterns of’; that do not con-
tain a class attribute.

Intuitively, using a disjunctives-strong classification
ruer : Iy V..V I, — crelated toCy, a new object
matches”; descriptions and is similar to the group of ob-
jects described by, if ¢ respects at least one minimal ele-
ment of C; (i.e.,t could be labeled witlz). Disjunction of

Following theC4.5 principle, the most discriminant dis-
junctive é-strong classification ruleHest Rule) is chosen
w.r.t. an entropy-based measufe formationGainRatio
IGR). We extend/GR definition — based ofEntropy (E)
Information Gain (IG)and Split Information (SI)- for a
classification ruler : I — ¢ wherel could be a disjunction
of §-free patterns.

Definition 3 (Information gain ratio).

i=|c|

E(r)=- Z fregr(ci,r) - logy(freg-(ci,r))

i=1

IG(m,r) = E(r) — [freqT(I,r) -E(rq)

+(1 = freq.(I,r)) ~E(Tﬁﬂ)}

Sl(ﬂ-v ’I“) = _freqr(la T) : 1Og2(fTeQT(Ia ’I“))
—(1 = freg,(I,r)) - logy(1 — freq.(I,r))
IGR(m,r) = gcj((:;;

Note that deciding if a position is terminal and pruning
is also performed& 1aC4.5 ™.

Remark 1. PDT Build is launched with following param-
eters: r is the involved binary databasé; is the set of
disjunctived-strong classification rule extracted fromac-
cording to user-defined values forand §, and PDT is an
empty tree.



Algorithm 1 PDT Build(r, S)°, PDT) they only concern a few data ; but higher thresholds gen-
if IsTerminal(r, S7%) then erate too few rule_s to reasqnably cover training data. On
the other handyg is constrained by frequency threshold
PDT.class « argmaxe,cc |Te; ; . :
else (& € [0;v - freg.(ci,r)| whereg; is the major class in
BestRule «— argmax,cg. ; GainRatio(m,r) datat?"’_‘se). . whed = 0, free patterns (b.OdIe.S Of. strong
oo s classification rules) become JEPs with high discriminating
PDT.left «+ PDT Build(rBestRules S0 . pure> @) ) . .
PDT.right — PDTBuild(r 56575 ule 6) power and cover a low proportion of training data, bigh
dif g ~BestRules Oropesinuie? values of§ generally lead to bodies @fstrong rules with
er; ' PDT low growth rate which is less discriminant. Note that the
return higher the coverage proportion is, the more our rules set will
be representative of the training data. Graph in Fig. 1 shows
the evolution of coverage proportion ftweart training
data according to frequency andvalues. For other data
sets, graphs are similar : we observe that coverage propor-
We performed many tests to evaluate the accuracy oftion grows withd, then stabilizes. We thinkvalues around
a o-PDT classifier. We processed 8 data sets from the the stabilization point is a good choice, since lower values
UCI Machine Learning Repository [12] and another real- imply a loss of coverage proportion and higher values gen-
world data semeningitis 1._ When necessary, all data erate patterns with lower growth rate. In Table 1, average
sets have been discretized with entropy-based method [8]column reports average of accuracy results obtained with
then binarized to enable 0/1 data analysis by means oftheses values.
AClike ,i.e., theimplementation we use for computiig

4. Empirical validation

strong rules. We comparedPDT with other well-known heart
state-of-the-art techniques (i.e., usi6g.5 , CBA CPAR BT
SJEP-classifier ). o0 |l
C4.5 experiments were performed witWEKAplat- gg
form [15] and 10-folds stratified cross validation. We gz 75 4K 7 e heq 1% (2)
usedCBA(2.0 demo version available online) ; frequency g 70 ¥ /7 —freq 2% (4)
threshold and minimum confidence were respectively set § 23 ' s e 8
to 1% and50%. We also usePARonline release. Re- 8 5 -/ +::Zz ?;83
ported results foBJEP-classifier come from [7]. For A —freq 10% (27)
0-PDT, relative frequency ob-free patterns varies within 40 4
[0%;10%)] (except forcar data set where relative fre- gg -
quency varies within0%;0.8%)] since higher thresholds o 1 2 3 4 5 & 7 8 9 10
lead to irrelevancy) andlis constrained w.r.t. Property 1. delia
We report in Table 1 accuracy results #®PDT. The
(averagecolumn indicates accuracy averageyoandd val- Figure 1. Effect of frequency and & on cover-
ues (w.r.t. guided choice, see end of Section 4) anthése age of training data.

column stands for best accuracy obtained for a certain com-

bination ofy andé: relative frequency and are reported)

for comparison with other classifiers. Bold faced results are

the maximum obtained for a data set and blank cells are due\5 Conclusion and future work

to absence of results in the published papers. )
It appears thad-PDT is generally comparable to clas-

sifiers obtained by means of the state-of-the-art methods

h ideri igh
when considering weighted average overaindo tested we integrated the discriminating power of disjunctie

values. It often achieves the highest accuracies for Somestron classification rules into a decision tree structure
values ofy andé (see last column). 9 meat u : ISl ucture.

Thus, 6-PDT has two parametersnin freg, (relative Disjunctive ¢-strong cIaSS|f|c.at|0n rules are built from
frequency threshold) and. One one hand, frequency frequentd-free patterns having a sandeclosure equiva-
. . : i ’ ) lence class. These rules are concise and they have a minimal
threshold dilemma is well-known: lower thresholds imply

huge amount of rules among which some are useless sinc bady property. Under a condition aithey are also known
9 9 ?o avoid some classification conflicts and we demonstrated

Imeningitis  concerns children hospitalized for acute bacterial or that_ they capture the discriminating power of EPs. The col-
viral meningitis. lection of extracted rules can be post-processed thanks to an

We proposed a novel classification approach based on
both association rules and decision trees. More precisely,




Data sets C4.5 | CBA | CPAR| SJEPs 0-PDT :
average| best | (freg,;0)
car 92.36 | 88.90| 92.65 - 93.98 | 94.10 {(0.2;0}
cleve 78.88| 83.83| 83.61| 82.41 | 82.07 | 83.83 {(10:(3.4n7}
heart 83.70 | 81.87| 83.70 | 82.96 83.49 | 85.93 {(5;3)}
hepatic 8258 | 81.82| 84 | 83.33 | 82.74 | 85.16 {(10;2),(5,0%
horse-colic 85.05| 81.02| 84.14 | 84.17 81.93 | 84.51 {(10{12,13)}
irs 93.33| 95.33| 9467 - 95.11 | 95.33 | {(74{2.3.4).5{2.3.4).(3:2).(2;2}
labor 82.46 | 86.33| 91.17 | 82.00 | 85.61 | 87.72 {(10;0),(7;0),(5;0)
lymph 77.03| 8450 80.28| - 81.98 | 86.49 {(10;3)}
meningitis 94.83 | 91.79| 91.52 - 92.25 | 95.13 {(3;2)}
sonar 79.81| 79.81| 84.07| 85.10 79.33 | 81.25 {(10;5)}
vehicle 69.98 | 67.99| 73.3 71.36 70.28 | 71.04 {(1;5)}
wine 96.07 | 94.96| 97.54 | 95.63 96.63 | 97.19 {(10;6)}
[ Average | 84.67 ] 84.85] 86.72| 83.37 | 85.45 | 87.31] -

Table 1. Accuracy comparison for

extended version dhformation Gain Ratiovhile building

the final decision tree. Thus, our method needs for only two
parameters (frequency threshaléndé). We also gave in-
dications to guide user choice of parameters w.r.t. training
data coverage. Experimental comparisons with state-of-the-
art methods are quite encouraging. Siddenes the num-
ber of errors allowed for a classification rule, we now plan
to investigate noise-tolerant opportunities of our classifying
method.

Acknowledgments. The authors wish to thank P. Frangois
and B. Cemilleux who providedneningitis ~ data. This
work is partly funded by EU contract IST-FET 1Q FP6-
516169.

(6]

(7]

(8]

9]

References [10]

[1] R. Agrawal and R. Srikant. Fast algorithms for mining asso-
ciation rules in large databases. Pnoceedings 20th Inter-
national Conference on Very Large Data Bases VLDB'04
pages 487-499. Morgan Kaufmann, 1994.

E. Baralis and S. Chiusano. Essential classification rule
sets. ACM Transactions on Database Syste2@(4):635—
674, 2004.

Y. Bastide, R. Taouil, N. Pasquier, G. Stumme, and
L. Lakhal. Mining frequent patterns with counting infer-
ence.SIGKDD Explorations2(2):66-75, 2000.

J.-F. Boulicaut, A. Bykowski, and C. Rigotti. Approxima-
tion of frequency queries by means of free-sets. Pn-
ceedings 4th European Conf. on Principles of Data Min-
ing and Knowledge Discovery PKDD’'Q®@olume 1910 of
LNCS pages 75-85. Springer-Verlag, 2000.

J.-F. Boulicaut and B. @milleux. Simplest rules charac-
terizing classes generated by delta-free set®réeedings
22nd Int. Conf. on Knowledge Based Systems and Applied
Artificial Intelligence ES'02pages 33—-46.

(11]
(2]

12
3l [12]
[13]
[4] [14]

(15]

(5] [16]

0-PDT

G. Dong and J. Li. Efficient mining of emerging pat-
terns: discovering trends and differences. Pioceedings
5th ACM Int. Conf. on Knowledge Discovery and Data Min-
ing KDD’99, pages 43-52, New York, USA, 1999. ACM
Press.

H. Fan and K. Ramamohanarao. Fast discovery and the gen-
eralization of strong jumping emerging patterns for build-
ing compact and accurate classifielSEE Transactions on
Knowledge and Data Engineering8(6):721-737, 2006.

U. M. Fayyad and K. B. Irani. Multi-interval discretization
of continous-valued attributes for classification learning. In
Proceedings of the 13th International Joint Conference on
Artificial Intelligence pages 1022-1027, 1993.

A. A. Freitas. Understanding the crucial differences between
classification and discovery of association rules - a position
paper.SIGKDD Explorations2(1):65—-69, 2000.

W. Li, J. Han, and J. Pei. CMAR: Accurate and efficient
classification based on multiple class-association rules. In
Proceedings IEEE Int. Conf. on Data Mining ICDM’01
pages 369-376, San Jose, California, 2001. IEEE Computer
Society.

B. Liu, W. Hsu, and Y. Ma. Integrating classification and
association rule mining. lProceedings 4th Int. Conf. on
Knowledge Discovery and Data Mining KDD’9Bages 80—
86. AAAI Press, 1998.

D. Newman, S. Hettich, C. Blake, and C. Merz. UCI repos-
itory of machine learning databases, 1998.

J. R. Quinlan.C4.5 : programs for machine learningvior-

gan Kaufmann, San Francisco, USA, 1993.

K. Ramamohanarao and H. Fan. Patterns based classifiers.
World Wide Wep10(1):71-83, 2007.

I. H. Witten and E. FrankData Mining: Practical machine
learning tools and techniques (2nd editiojlorgan Kauf-
mann Publishers Inc., San Francisco, USA, 2005.

X.Yin and J. Han. Cpar : Classification based on predictive
association rules. IProceedings 3rd SIAM Int. Conf. on
Data Mining SDM’03 SIAM, 2003.





