
A Proposition for Sequence Mining Using
Pattern Structures

Victor Codocedo1,3(B), Guillaume Bosc2, Mehdi Kaytoue2,
Jean-François Boulicaut2, and Amedeo Napoli3

1 Inria Chile, Las Condes, Chile
victor.codocedo@inria.cl
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Abstract. In this article we present a novel approach to rare sequence
mining using pattern structures. Particularly, we are interested in mining
closed sequences, a type of maximal sub-element which allows providing a
succinct description of the patterns in a sequence database. We present
and describe a sequence pattern structure model in which rare closed
subsequences can be easily encoded. We also propose a discussion and
characterization of the search space of closed sequences and, through the
notion of sequence alignments, provide an intuitive implementation of a
similarity operator for the sequence pattern structure based on directed
acyclic graphs. Finally, we provide an experimental evaluation of our app-
roach in comparison with state-of-the-art closed sequence mining algo-
rithms showing that our approach can largely outperform them when
dealing with large regions of the search space.

1 Introduction

Sequence mining is an interesting application of data analysis through which
we aim at finding patterns in strings of symbols, sets or events [1]. One of the
simplest incarnations of this problem is finding, within a database of words, a set
of substrings that appear more frequently among them, e.g. prefixes or suffixes
are usually “frequent substrings”.

Traditional algorithms for sequence mining rely on prefix enumeration
[11–13] exploiting the fact that the longest a prefix is, the fewer words contain it
(e.g. prefix pr- is contained in prehistoric, prehispanic and primitive, while the
prefix pri- is only contained in primitive).

While these techniques are usually very efficient at finding frequent subse-
quences, there are some issues they do not address. Firstly, frequent sequences
are usually short and very simple in structure. Because of this, current sequence
miners are not able to find patterns with certain complexity restrictions such as
minimal length. Secondly, prefix enumeration techniques usually provide numer-
ous sequences as a result of the mining process. In this regard, we may be inter-
ested in a subset of the results using notions of maximality (what are known as
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closed subsequences) which provide a succinct representation of the patterns in
a database (CloSpan, ClaSP or BIDE [7,11,12]).

In this article we present a novel approach for rare subsequence mining using
the FCA framework. We adapt the pattern structures extension to deal with
complex object descriptions [6] to build a mining tool that naturally models
“closed sequences”. By defining a similarity operator between sequence sets we
are able to derive a rare sequence mining tool that is able to retrieve large
subsequences within a dataset.

The remainder of this article is organized as follows. Section 2 introduces the
main notions behind the problem of sequence mining. Section 3 models the prob-
lem in the framework of pattern structures. Section 4 formalizes the implementa-
tion of our mining technique. Section 5 presents a discussion on the state-of-the-
art algorithms for sequence mining. Section 6 presents the experimental evidence
to support our findings and a discussion about their implications. Finally, Sect. 7
concludes the article with a summary of our work.

2 Formalization

Before introducing our contributions, let us provide some basic definitions of
the sequence mining problem. Let M be a set of items or symbols, a sequence
of itemsets is an ordered set denoted as < α1, α2, α3..., αn > where αi ⊆ M,
i ∈ [1, n]. Alternatively, we will use a bar notation α1|α2|α3|...|αn. A sequence
with ID (SID) α is denoted as α := α1|α2|α3|...|αn and is referred as well as
sequence α. The size of sequence α is denoted as size(α) = n while its length
is denoted as len(α) =

∑ |αi| with i ∈ [1, n] where | · | indicates set cardinality.
A set of sequences A is called a sequence database. For the sake of simplicity we
will drop the set parentheses for the itemsets within a sequence using the bar
notation, e.g. {a, b}|{c, d} is denoted as ab|cd.

Definition 1. Subsequence. Sequence β := β1|β2|....|βm is a subsequence of
sequence α := α1|α2|...|αn (denoted as β � α) iff m ≤ n and if there exists a
a sequence of natural numbers i1 < i2 < i3 < ... < im such that βj ⊆ αij with
j ∈ [1,m] and ij ∈ [1, n]. We denote as β ≺ α when β � α and β �= α.

For example, consider sequence β := a|b|a and sequence with SID α2 in Table 1.
In this particular case, there exists a sequence of numbers 〈1, 3, 4〉 where we
have: The first itemset of β is a subset of the first itemset of α2 ({a} ⊆ {a, d}).
The second itemset of β is a subset of the third itemset of α2 ({b} ⊆ {b, c}).
The third itemset of β is a subset of the fourth itemset of α2 ({a} ⊆ {a, e}).
We conclude that β ≺ α2 (since β �= α2). Given a sequence database A we
will consider the set of all sub-sequences of elements in A denoted as S where
β ∈ S ⇐⇒ ∃α ∈ A s.t. β � α (A ⊆ S).

Definition 2. Support of a sequence. Let β ∈ S be a sequence. The support
of β w.r.t. A is defined as: σ(β) = |{α ∈ A | β � α}|
With β := a|b|a we have that β ≺ α1, α2 and thus σ(β) = 2.
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Definition 3. Closed Sequence. β1 ∈ S is a closed sequence w.r.t A iff
� β2 ∈ S such that β1 ≺ β2 and σ(β1) = σ(β2).

Consider sequences β1 := a|b|a and β2 := a|bc|a as subsequences of elements
in A of Table 1. It is easy to show that σ(β2) = 2. Given that β1 ≺ β2 and that
they have the same support, we conclude that β2 is not a closed sequence w.r.t.
A = {α1, α2, α3, α4}.

When mining subsequences, those that are closed in the sense of Definition 3
provide a succinct result, critically compacter than the set of all possible subse-
quences [11,12]. Consequently, in what follows we will be interested only in sets
of closed sequences.

3 The Pattern Structure of Sequences

The pair (S,�) composed of a sequence set and a subsequence order constitutes
a partially ordered set. However, it does not conform a proper lattice structure,
since in general, two sequences have more than one common subsequence (the
infimum of two sequences is not unique).

In the context of sequence mining, this fact has been already noticed in [13],
where the space of sequences and their order is denominated a hyper-lattice.
In the context of FCA, this problem is analogous to the one introduced in [6]
for graph pattern mining. Indeed, we can properly embed the hyper-lattice of
partially ordered sequences into a lattice of sequence sets using the framework
of pattern structures.

Definition 4. Set of Closed Sequences. Let d ⊆ S be a set of sequences,
we call d+ ⊆ d a set of closed sequences iff d+ = {βi ∈ d | �βj ∈ d s.t. βi ≺ βj}.

The intuition behind Definition 4 is that given a set of sequences d, we can
consider every sequence inside it as having the same support. Thus, d+ contains
closed sequences in the sense of Definition 3.

Definition 5. Set of Common Closed Subsequences (SCCS). Consider
two sequences βi, βj ∈ S, we define their meet ∧ as follows:

βi ∧ βj = {β ∈ S | β � βi and β � βj}+

Intuitively, βi ∧ βj corresponds to a set of common subsequences to βi and
βj . As indicated by the notation, we will require this set to contain only closed
sequences (Definition 4) and thus we will denote it as the set of common closed
subsequences (SCCS) of βi and βj .

Definition 6. SCCS for sequence sets. Given two sets of closed sequences
d1, d2 ⊆ S, the similarity operator between them is defined as follows:

d1 � d2 =

{
⋃

βi∈d1

βj∈d2

βi ∧ βj

}+
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In a nutshell, � is the SCCS between the elements within two sets of closed
sequences. Let D = {d ⊆ S | d = d+} denominate the set of all sets of closed
sequences in S, then we have ∧ : S2 → D and � : D2 → D.

For a sequence β ∈ S, δ(β) = {βi ∈ S | βi � β}+ denotes its set of closed
subsequences. Trivially, the set of closed subsequences of a single sequence β
contains a single element which is itself, i.e. δ(β) = {β}. From this, it follows
that given any three sequences βi, βj , βk ∈ S we have that βi∧βj = δ(βi)�δ(βj)
and (δ(βi) � δ(βj)) � δ(βk) properly represents the SCCS of βi, βj and βk.
For example, consider sequences with α1 and α3 in Table 1.

δ(α1) � δ(α3) = {a|abc|ac|d|cf} � {ef |ab|df |c|b} = {ab|d|c, ab|f, a|b}
Clearly, � is idempotent and commutative as it inherits these properties from

∧. Furthermore, it can be easily shown that � is also associative. Using these
properties, we can provide a more complex example. Consider δ(α1) � δ(α2) �
δ(α3) � δ(α4) from Table 1. Since we already have the result for δ(α1) � δ(α3),
we re-arrange and proceed as follows:

δ(α1) � δ(α2) � δ(α3) � δ(α4) = (δ(α1) � δ(α3)) � (δ(α2) � δ(α4))

δ(α1) � δ(α3) = {ab|d|c, ab|f, a|b}
δ(α2) � δ(α4) = {a|c|b, a|c|c, e}

Now, we need to calculate {ab|d|c, ab|f, a|b} � {a|c|b, a|c|c, e} which requires 9
SCCS calculations. We show those with non-empty results.

ab|d|c ∧ a|c|b = {a|c, b} ab|d|c ∧ a|c|c = {a|c} ab|f ∧ a|c|b = {a, b}
ab|f ∧ a|c|c = {a} a|b ∧ a|c|b = {a|b} a|b ∧ a|c|c = {a}

The union of these results gives us {a, b, a|b, a|c} from which we remove a and b
which are not closed subsequences in the set. Finally, we have:

δ(α1) � δ(α2) � δ(α3) � δ(α4) = {a|b, a|c}
Indicating that the set of closed subsequences common to all sequences in

Table 1 only contains a|b and a|c.
Definition 7. Order in D. Let d1, d2 ∈ D, we say that d1 is subsumed by d2
(denoted as d1 � d2) iff:

d1 � d2 ⇐⇒ ∀βi ∈ d1 ∃βj ∈ d2 s.t. βi � βj

d1 � d2 ⇐⇒ d1 � d2 and d1 �= d2

Proposition 1. Semi-lattice of sequence descriptions. Let D be the set
of all sets of closed sequences (hereafter indistinctly referred to as “the set of
sequence descriptions”) built from itemset M. The pair (D,�) is a semi-lattice of
sequence descriptions where d1 � d2 ⇐⇒ d1 � d2 = d1 for d1, d2 ∈ D.

The proof of d1 � d2 ⇐⇒ d1 � d2 = d1 in Proposition 1 is straightforward and
follows from Definitions 6 and 7.
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Definition 8. The pattern structure of sequences. Let A be a sequence
database, (D,�) the semi-lattice of sequence descriptions and δ : S → D a map-
ping assigning to a given sequence its corresponding set of closed subsequences
(recall that A ⊆ S). The pattern structure of sequences is defined as:

K = (A, (D,�), δ)

For the sake of brevity we do not provide the development of the pattern
structure framework which can be found in [6]. However, let us introduce some
concepts and notation that will result important in the remainder of the article.
The pair (A, d) with A ⊆ A and d ∈ D is a sequence pattern concept where
A� = d and d� = A. The derivation operator (·)� is defined dually for extents
and pattern descriptions. The order of sequence pattern concepts is denoted as
(A1, d1) ≤K (A2, d2) iff A1 ⊆ A2 and d2 � d1 where A1, A2 ⊆ A and d1, d2 ∈ D.
Finally, the set of all sequence pattern concepts with the order ≤K defines a
sequence pattern concept lattice denoted as (B(K),≤K).

Within a sequence pattern concept we have that d�� = d, i.e. the set of
sequences d is closed. This should not be confused with the notion of set of
closed sequences given in Definition 4 which is a property of the elements inside
d. Actually, d is a set of common closed subsequences (SCCS) when d+ = d.
With this new constraint, the correct denomination for d would be a closed set of
common closed subsequences. To avoid confusions, hereafter we will denominate
a set d such that d+ = d and d�� = d as a maximal SCCS.

A sequence pattern concept represents a set of sequences A in the database
and their maximal SCCS, i.e. closed subsequences of elements in A are contained
in d. Consider from the previous example that {e|a|c|b}� = {α3, α4}. Now, we
can calculate {α3, α4}� = {e|a|c|b, e|f |c|b, e|b|c, f |b|c}. From this it follows that
{e|a|c|b} is not a maximal SCCS and that ({α3, α4}, {e|a|c|b, e|f |c|b, e|b|c, f |b|c})
is a sequence pattern concept. Figure 1 shows the sequence pattern concept lat-
tice built from entries in Table 1. The bottom concept in the figure is a fake
element in the lattice since there is no definition for the meet between pattern
concepts. We have included it to show that it represents the concept with empty
extent, i.e. the “subsequences of no sequences”. The indefinition of the meet
between formal concepts also means that we can only join sequence pattern
concepts starting from object concepts γ(α) = ({α}, δ(α)). Consequently our
mining approach is a rare sequence mining technique.

The concept lattice structure allows proving a characterization of an impor-
tant property of sequences, namely we can show that all sequences in an intent
are closed w.r.t. the database A.

Proposition 2. Given a sequence pattern concept (A, d) any sequence β ∈ d is
not only closed w.r.t. A but it is also closed w.r.t. A.

Proof. Consider two sequence pattern concepts (A1, d1), (A2, d2) ∈ B(K) such
as (A1, d1) <K (A2, d2) (then A1 ⊂ A2 and d2 � d1). Particularly, the latter
relation indicates that ∀βj ∈ d2 ∃βi ∈ d1 s.t. βj � βi and d1 �= d2 (Definition 7).
In the case that βj ≺ βi, the fact that A1 ⊂ A2 =⇒ |A1| < |A2| secures that both
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sequences have different supports making βj closed. In the case that βj = βi,
there are two different cases. Either a third concept (A3, d3) ∈ B(K) exists
such that (A2, d2) <K (A3, d3) where βj ∈ d2 and βj /∈ d3 and thus, we fall in the
previous case and βj is closed, or βj ∈ A� and βj is closed with support |A|.
Indeed, since (A�) = (A�)+, any β ∈ A� is closed w.r.t. A, even when we may
not know the support for that particular sequence. Moreover, the support of any
closed sequence β is given by the cardinality of the extent of the concept (A1, d1)
where β ∈ d1 s.t. �(A2, d2) where (A1, d1) <K (A2, d2) and β ∈ d2.

For example, consider Fig. 1 and the concept labelled as {α1, α2} containing
sequence a|c|c. While we can be sure that a|c|c is a closed subsequence w.r.t. A,
the support is not 2. Actually, a|c|c exists also in the intent of the concept labelled
{α1, α2, α4}. Since it does not exists in the suprema (the only superconcept of
the latter), we can conclude that the support of a|c|c is 3.

Finally, we briefly mention the pattern complexity filtering capabilities of
our approach. For a relation (A1, d1) <K (A2, d2), sequences in d2 will be shorter
and with fewer items per itemset than those in d1. Given thresholds for size and
lenght, the sequence search space can be pruned similarly to support pruning.

4 Implementing the Similarity Operator �
So far we have taken for granted the ability to calculate the set of common closed
subsequences (SCCS) of two sequence sets (i.e. d1 �d2). In what follows, we will
describe and discuss our approach to achieve this.

4.1 Rationale

Sequences are composed of two parts, firstly the elements in the sequence and
secondly, the order they have. Considering the latter, we can think about how

Table 1. An example
sequence database.

sid Sequence

α1 a|abc|ac|d|cf
α2 ad|c|bc|ae

α3 ef |ab|df |c|b
α4 e|g|af |c|b|c

{α1}
{a|abc|ac|d|cf}

{α2}
{ad|c|bc|ae}

{α3}
{ef |ab|df |c|b}

{α4}
{e|g|af |c|b|c}

{α1, α3}
{ab|d|c,

ab|f, a|b}

{α1, α2}
{a|c|c,

a|bc|a, d|c}

{α1, α4}
{a|c|c, a|b|c}

{α2, α3}
{a|c|b,
d|c|b, e}

{α2, α4}
{a|c|b,
a|c|c, e}

{α3, α4}
{e|a|c|b, e|b|c,
e|f |c|b, f |b|c}

{α1, α2, α3}
{a|c, a|b, d|c}

{α1, α2, α4}
{a|c|c, a|b}

{α1, α3, α4}
{a|b, a|c, b|c, f}

{α2, α3, α4}
{a|c|b, e}

{α1, α2, α3, α4}
{a|b, a|c}

∅

Fig. 1. Extents and Intents of the sequence pattern struc-
ture built from Table 1.
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a “common subsequence” (an element in the SCCS) β of two sequences β1, β2

relates to them. Given the definition of subsequence (Definition 1), since β � β1

we have a sequence of integers i11 < i12 < i13 < ... < i1m such that βj ⊆ β1
ij

with i1j ∈ [1, n] and j ∈ [1,m] with size(β) = m, size(β1) = n, and m < n. A
similar sequence of integers can be derived from the relation β � β2, namely
i21 < i22 < i23 < ... < i2m. Since both sequence of integers have the same length,
we can arrange them in a sequence of tuples P = 〈(i11, i21), (i12, i22), . . . , (i1m, i2m)〉.
Furthermore, given that βj ⊆ β1

ij
and βj ⊆ β2

kj
, it is only natural to define

βj = β1
ij

∩ β2
kj

(notice that defining βj ⊂ β1
ij

∩ β2
kj

would render β not a closed
sequence). Consequently, tuple P is a possible characterization of β in terms of
its parents supersequences β1 and β2. Actually, given any set of sequences A, a
common subsequence of them β ∈ A� has one or more characterizations P .

Generally, we call P := 〈t1, t2, . . . , tm〉 an alignment with size m of sequences
in A where r = |A|, nk is the size of the k-th sequence in A with k ∈ [1, r],
tj = (ikj ), and j ∈ [1,m] (tj ∈ {1, 2, . . . , n}r). Furthermore, we will require that
with k ∈ [1, r] and j ∈ [1, (m − 1)] we have that: (i) (∃ik1 ∈ t1) s.t. ik1 = 1,
(ii) (∃ikm ∈ tm) s.t. ikm = nk, (iii) (∃ikj+1 ∈ tj+1) s.t. ikj+1 = ikj + 1, and (iv)
(∀ikj+1 ∈ tj+1) ikj < ikj+1. Conditions (i), (ii) and (iii) secure that alignments
always begin with the first element of at least one sequence in A, always end with
the last element of a least one sequence in A, and that they are maximal, e.g.
〈(1, 1), (3, 3)〉 is not a maximal alignment if 〈(1, 1), (2, 2), (3, 3)〉 exists. Condition
(iv) secures that alignments only consider incremental tuples, e.g. 〈(1, 2), (2, 1)〉
is not an alignment. Pr

n is the space of all maximal alignments of sequences in A.
It is possible to show that |A�| ≤ |Pr

n| provided that conditions (i), (ii),
(iii) and (iv) hold for alignments in Pr

n and that |M| = nr. This is demon-
strated by showing that there exists a scenario (however unlikely) where for
each different closed subsequence there exists a unique alignment, i.e. (∀β ∈
A�)(∃!〈t1, t2, . . . , tm〉 ∈ Pr

n) s.t. βj =
⋂

αi
tij

= π(tj) where π : Nr → N is pairing

function encoding tuples in {1, 2, . . . , n}r into M = {π(tj) | tj ∈ {1, 2, . . . , n}r}.
Thus, given a set of sequences A we only need to compute all possible alignments
in order to obtain their complete set of common closed subsequences A� (SCCS).

Notably, this relation allows calculating the number of possible closed subse-
quences between two sequences of arbitrary length1. Table 2 shows this number
with n ∈ [1, 10]. For example, for two sequences of size 10 we have a maximum
of 26797 alignments/closed subsequences (requiring |M| = 210 = 1024 items).

Enumerating all possible alignments may look an extremely naive strategy
considering how the space of alignment grows w.r.t. the number of sequences in A
and their size, however the way we encode alignments makes the representation
of subsequences more compact than simply listing them. In addition, the sparsity
of sequence element intersections (most βj = β1

ij
∩β2

kj
are empty) provides a very

efficient pruning method. In the following, we show how to encode alignments
in Pr

n as paths of a directed acyclic graph (DAG).

1 https://oeis.org/A171155.
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Definition 9. DAG of Alignments. We call Gr
n = (V,E, λ) a directed acyclic

graph of alignments Pr
n (DAG of alignments) for a set of r sequences A ⊆ A of

size n, if the set of vertices,edges and labelling function λ : V → ℘(M) are:

V = {tj = 〈ikj 〉 | tj ∈ {1, 2, . . . , n}r} ∪ {0r, (n + 1)r}
E = {(ta, tb) ⇐⇒ (∃ikb ∈ tb) ikb = ika + 1 and (∀ikb ∈ tb) ika < ikb}

λ(tj) =
⋂

i∈[1,r]

αi
iij

0r, (n+1)r are r-tuples filled with 0 and n+1 values respectively. We denominate
0r the source vertex (or source node) and (n+1)r the sink vertex (or sink node).

Notice that conditions (iii) and (iv) for alignments in Pr
n described above

are encoded in the definition of edges E in Gr
n. The inclusion of the source and

sink nodes ensure that all paths between them corresponds to alignments in
Pr

n that also respect conditions (i) and (ii). Thus, the DAG Gr
n is designed so

that all possible maximal alignments among r sequences of size n correspond
to paths between the source and sink nodes. In addition, all possible common
subsequences can be read from the graph by means of the labelling function λ.
Trivially, for a set of sequences with different sizes, a DAG of alignments can
be built with n corresponding to the maximal sequence size in the set. Figure 2
shows the DAG G2

4 without labels, where the number of paths between (0, 0)
and (5, 5) is 27 (as predicted by Table 2).

4.2 Calculating δ(α1) � δ(α2)

Consider sequences α1 = ab|cd|e|f , α2 = b|ac|d|ef and their itemset intersec-
tions shown in Table 3 (empty cells indicate an empty intersection) Since both
sequences have size 4, we can use the DAG G2

4 shown in Fig. 2 to obtain all pos-
sible alignments between these sequences. Then, we can derive associated subse-
quences using the labelling function given by Table 3. In these subsequences the
SCCS must be included.

(0, 0)

(1, 1)

(2, 2)

(3, 3)

(4, 4)

(5, 5)

(1, 2)(2, 1) (1, 3)(3, 1) (1, 4)(4, 1)

(2, 3)(3, 2) (2, 4)(4, 2)

(3, 4)(4, 3)

Fig. 2. DAG for the alignments of two sequences
of size 4

Table 2. Number of maximal
alignments for n ∈ [1, 10].

n |P2
n|

1 1

2 3

3 9

4 27

5 83

6 259

7 817

8 2599

9 8323

10 26797
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In this case more than half the itemset intersections are empty which makes
the task of deriving paths easier. Figure 3 shows a subgraph of G2

4 , where vertex
(i, j) is labelled as λ((i, j)) = α1

i ∩ α2
j . Vertices v ∈ V for which λ(v) = ∅ were

removed from Fig. 3. We have also connected (2, 2) with (4, 4) since vertex (3, 3)
is among those vertices removed.

A path between (0, 0) and (5, 5) is 〈(1, 1), (2, 2), (4, 4)〉 (removing the source
and sink nodes). Thus, a subsequence can be derived using the labels of the
vertices in the path, i.e. β = λ((1, 1))|λ((2, 2))|λ((4, 4)) or β = b|c|f . All the
subsequences of α1 and α2 are shown in Table 4 from which we can derive that
the SCCS of α1 and α2 is δ(α1) � δ(α2) = {b|c|e, b|c|f, b|d|e, b|d|f, a|d|e, a|d|f}.

This result illustrates the usefulness of the DAG of alignments in Fig. 2.
Indeed, instead of enumerating all possible sequences (like in usual subsequence
mining algorithms) we just need to intersect the itemsets of two sequences and
later interpret them using the corresponding DAG.

To extend the example, let us consider a third sequence α3 = ab|c|d|ef and
the SCCS of α1, α2 and α3. We need to calculate the table of intersections
that in this case corresponds to a cube of intersections where the cell (i, j, k)
in the cube contains α1

i ∩ α2
j ∩ α3

k. While the construction of this cube requires
43 = 64 intersections, using the results in Table 4 we need only to calculate
24 intersections (those with empty intersections in Table 4 can be disregarded).
Using the DAG of alignments G3

4 , we can obtain the SCCS such that δ(α1) �
δ(α2) � δ(α3) = {b|c|e, b|c|f, b|d|e, b|d|f, a|d|e, a|d|f}.

4.3 Discussion

In the previous example, one important thing to notice is that we did not need to
interpret the sequences from the intersection table of d = {α1, α2}� in order to

Table 3. Intersection table for sequences
α1 = ab|cd|e|f and α2 = b|ac|d|ef .

α2
1 α2

2 α2
3 α2

4

α1
1 b a

α1
2 c d

α1
3 e

α1
4 f

Table 4. List of paths in the DAG of Fig. 3
and subsequences derived.

Path Sequence

〈(1, 1), (2, 2), (4, 4)〉 b|c|f
〈(1, 1), (2, 2), (3, 4)〉 b|c|e
〈(1, 1), (2, 3), (4, 4)〉 b|d|f
〈(1, 1), (2, 3), (3, 4)〉 b|d|e
〈(1, 2), (2, 3), (3, 4)〉 a|d|e
〈(1, 2), (2, 3), (4, 4)〉 a|d|f

(0, 0)

b(1, 1)

c(2, 2)

f(4, 4)

(5, 5)

a (1, 2)

d (2, 3)

e (3, 4)

Fig. 3. DAG for sequences
α1 = ab|cd|e|f, α2 = b|ac|d|ef .
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calculate d� δ(α3). This information is encoded in the table itself in the form of
index tuples of the itemsets we had intersected and can be recovered at any time
using the corresponding DAG. Nevertheless, we are not spared from interpreting
the sequences out of the table of intersections. This is because we still need the
sequences to establish the order between two sequence sets. We have not found
a property that would allow us to compare sequence sets from their intersection
tables or from their DAG of alignments. Actually, this may not be possible. In
this work we use the DAG of alignments just as a tool to explore and store
the space of common closed subsequences. Implementation details of the DAG
(such as the canonical order in the node tuples) were left out of the scope of
this article for the sake of brevity, as well as some other elements of the search
space exploration, e.g. the DAG allows filtering out sequences below a threshold
of size and length.

5 Related Work

Sequence mining is usually based on what is called “prefix enumeration” or
“pattern growth”. This is, given a vocabulary M and a lexicographical order
in it, we proceed by enumerating prefixes (using two main operations, namely
i-extension and s-extension of sequences) and counting in a sequence database
A how many elements contain them. The seminal paper in sequence mining is [1]
introduces an Apriori-based algorithm to cut down the search space in a similar
way to how it is done for standard itemset mining. A very popular extension of
this idea was implemented in the PrefixSpan algorithm [10] using the notion of
“projected databases” to decrease the number of comparisons in the database of
sequences to calculate pattern support. PrefixSpan inspired different extensions
such as CloSpan [6] to mine closed subsequences, OrderSpan [5] to mine partially-
ordered subsequences, and CCSpan [14] to mine subsequences with a restriction
of “contiguity” in the items they contain.

A different approach was taken in [13] using a “vertical database format” in
an algorithm called SPADE (PrefixSpan-based algorithms are considered based
on a “horizontal database format”). A rather interesting element of [13] is the
characterization of the sequence search space as a hyperlattice which can be fac-
tored allowing parallel computation of patterns. A similar approach was adopted
in BIDE [11] and ClaSP [7] for closed subsequence mining based on a vertical
database format.

Partially-ordered subsequences is an idea introduced in [4] based on the
notion that the subsumption order among sequences allows integrating different
subsequences into a single pattern by means of a directed acyclic graph, which
may provide a richer representation to an end user. This is closely related to
our own model for sequence mining. Indeed, our own representation of sequence
sets is through the DAG of alignments which are themselves partially-ordered
patterns. This work inspired Frecpo [10] and OrderSpan [5] for mining closed
partially-ordered subsequence patterns.

A comprehensive review on the sequence pattern mining techniques can be
found in [9]. To the author’s knowledge, our work is the first attempt to approach
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the problem of sequence mining in a general unrestricted manner using the frame-
work of formal concept analysis. In this regard, an interesting work is presented
in [2] where an FCA-based technique for mining Gradual patterns is introduced.
Gradual patterns consider a total order between attribute values generating
sequences of objects. The technique introduced allows characterizing sequences
derived from these gradual patterns. However, much like BIDE, sequences are
restricted to strings of elements, not sequences of itemsets. In [3], a different
sequence mining framework based on pattern structures is introduced for deal-
ing with medical records. These sequences contain complex elements composed
of taxonomical elements and attribute sets. The authors decided to simplify the
problem by considering subsequences containing just contiguous elements.

6 Experiments and Discussion

In this section, we present an experimental evaluation on our sequence mining
approach over a series of synthetic datasets generated using the IBM Quest
Dataset Generator software hosted in the SPMF Website2. Our approach was
implemented in Python and embedded into a system named Pypingen available
through a subversion repository3.

6.1 Datasets and Experimental Setup

Pypingen was applied over 34 different datasets in 4 four groups. Each group
allows showing how our algorithm handle different settings. The first group,
denoted as Dnseqi , i ∈ [1, 7], contains datasets of different size |A|, i.e. the
number of sequences inside a dataset. The second group, Dnitemsi

, i ∈ [1, 12],
contains datasets where the size of the itemset |M| varies. The third group,
Dsizei

, i ∈ [1, 9], contains datasets of sequences that have different average
sizes mean(size), i.e. number of itemsets in a given sequence. Finally, the last
group, Dlengthi

, i ∈ [1, 6], consists of datasets where sequences have a varying
average number of items by itemset, i.e. a variation in the length of sequences
mean(length/size) for a fixed size. Table 5 displays the different settings for each
synthetic dataset generated. The variation in the parameters is a consequence of
considering outputs that took less than 15min to calculate. Experiments were
performed on a 3.10 GHz processor with 8 GB main memory running Ubuntu
14.04.1 LTS.

6.2 Performance Study - Comparison

All 34 datasets were also processed using “closed sequence pattern mining”
algorithms ClaSP, CM-ClaSP, CloSpan and BIDE implemented in the SPMF
software4 (written in Java) under the same conditions of the execution of

2 Open-source data mining library - http://www.philippe-fournier-viger.com/spmf/.
3 http://gforge.inria.fr/projects/pypingen.
4 Version 0.97d / 0.97e - 2015-12-06.
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Table 5. Characteristics of the datasets where |A| is the number of sequences in the
dataset, |M| the cardinality of the set of items or symbols, mean(size) the average size
of the sequences of the dataset and mean(length/size) the average number of items in
the itemsets of the sequences.

Group 1 Dnseqi
|M| 50

mean(size) 5
mean(lenght/size) 4

|A| {9, 27, 40, 54, 69, 84, 101}
Group 2 Dnitemsi

|M| {10, 20, 30, 40, 50, 100, 150, 200, 250, 300, 350, 400}
mean(size) 5

mean(lenght/size) 4
|A| 36

Group 3 Dsizei
|M| 50

mean(size) {2, 3, 4, 5, 6, 7, 8, 9, 10}
mean(lenght/size) 4

|A| 21

Group 4 Dlenghti
|M| 50

mean(size) 5
mean(lenght/size) {1, 2, 3, 4, 5, 6}

|A| 36

Pypingen. Algorithms were given a threshold value of 0 to obtain all closed
sequence patterns. From all four algorithms, only CloSpan and BIDE were able
to obtain results in less than 15 min. However, we do not report on these results
for two reasons. Firstly, with respect to CloSpan, it was only able to obtain
results for just a single dataset, namely Dlength1 which is the simplest. Secondly,
with respect to BIDE, even when it was able to obtain results in less time, these
results were incorrect and incomplete. This is due to the fact that even when
BIDE is catalogued as a “closed sequence miner”, its formalization actually cor-
responds to that of a “closed string miner”, that is, sequences where each itemset
has cardinality 1. This simplification of the problem greatly reduces the search
space and makes any comparison unfair. More importantly, in datasets where
this condition is not met such as those in our evaluation, it produces incorrect
(in the form of non-closed sequences) and incomplete results.

Execution times for Pypingen can be visualized in Fig. 4 (execution times
are given in logarithmic scale). The curves presented are consistent with the
description of the algorithm. Runtimes when varying the size of the sequences
(Fig. 4c) grow exponentially due to the fact that the search space grows w.r.t.
nr where |A| = r and n is the maximum size of the sequences in the dataset.
When varying the sequence length (Fig. 4d), the search space does not change
(it remains at nr which in this case is 536). However, the larger the itemset
cardinalities, the less empty intersections we can expect in the intersection table,
and thus, the more closed subsequences for a sequence set.

Figure 4a is very interesting because it is more related to scalability. We can
see that as the number of sequences grows, the time grows polynomially and not
exponentially, which is desirable for a mining technique. Finally, Fig. 4b shows
that the execution time gets lower as the cardinality of itemset M gets larger.
Indeed, since the remainder dataset parameters are left unchanged, the increase
in the number of possible items leads to sparser datasets where most intersections
are empty.
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(a) Runtimes for datasets in
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Fig. 4. Runtimes results for each dataset group.

Fig. 5. Number of closed subsequences vs execution time for 1200 datasets.

Figure 5 presents the relation between the number of closed subsequences and
the execution time to calculate them using Pypingen over 1200 different synthetic
datasets (each circle represents a dataset) created for 60 different configurations
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of vocabulary size (M), average size of sequences and average length of itemsets.
All datasets contained only 10 sequences (|A| = 10). Axes in the figure are
provided in logarithmic scale, while the curve is the best fit to the data w.r.t.
the coefficient of determination R2 = 0.97 (a quadratic curve has R2 = 0.78
while an exponential has R2 = 0.29). We can appreciate that the curve is a
power function with an exponent very close to 1 indicating a quasilinear relation
between the number of closed sequences in a dataset and execution time required
to calculate them, which is a desirable property for a pattern mining algorithm.
Nevertheless, the performance of the algorithm slowly degrades as the number of
patterns in a dataset increases. The radius of each point in the figure represents
the ratio between the number of closed sequences and the number of sequence
patterns found for that dataset.

6.3 Discussion

Algorithms CloSpan, ClaSP, CM-ClaSP and BIDE are frequent sequence min-
ers, while Pypingen is a rare sequence miner. This means that the only “fair”
comparison requires for all algorithms to explore the entire search space and
mine all possible closed sequences. Under this circumstances, Pypingen clearly
outperforms all of them as they are not able to achieve this task for all but one
dataset in our experiments.

Arguably, our comparison can be understood as “fair” considering that all
the algorithms are set to the worst case scenario. Frequent mining algorithms are
designed under the assumption that results are in the “upper” part of the search
space. Thus, asking them to explore the entire search space goes against the
very assumption behind their designs and it becomes unfair to evaluate their
performance under the worst of the conditions. On the other hand, Pypingen
was designed to begin its search from the “bottom” part of the search space
and thus, it is also an evaluation in the worst case scenario. The conclusion that
follows is that, compared with the state-of-the-art algorithms, Pypingen is able
to explore a much larger region of the search space.

It is clear nonetheless that given a large enough dataset Pypingen will not be
able to explore the entire search space and thus, it will be unable to mine frequent
subsequences. Under these circumstances, frequent miners have the advantage of
obtaining a set of results out of reach for a rare pattern miner such as Pypingen.
In this light, we highlight the benefits of our approach. Like frequent miners use a
threshold for support, we can provide a threshold for sequence size to mine large
sequences. Using a proper value for this threshold, we can obtain all sequences for
this restriction and particularly, those that are most frequent. Mining this type
of frequent large sequences is not possible for frequent miners. Another threshold
that Pypingen can easily support is the minimum cardinality per itemset of a
sequence pattern, adding in the capabilities of restricting the complexity of the
desired patterns.

Finally, one of the main features of Pypingen is its flexibility. Consider the
intersection table that we use to generate the DAG of alignments such as the one
shown in Table 3. In here, the intersection operation may be easily replaced by an
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abstract similarity operator that holds under idempotence, commutativity and
associativity to support sequences of elements other than itemsets, in the same
way that it is done when defining pattern structures. Such adaptation would
allow supporting sequences of complex elements such as intervals, taxonomical
elements or heterogeneous representations [8]. This kind of sequences of complex
elements would be hard to mine in current sequence mining algorithms designed
for prefix enumeration.

7 Conclusions

In this article we have introduced the main notions behind rare sequence pat-
tern mining using the framework of formal concept analysis, particularly the
“pattern structures” extension to deal with complex object descriptions. Indeed,
we have modelled patterns as sequence sets where the similarity operator allows
formalizing an algorithm for extracting closed subsequences.

We have shown how the similarity operator can be implemented using a
directed acyclic graph (DAG) of sequence alignments where a set of sequences
can be easily encoded. The DAG of alignments also allows for an easy interpre-
tation of sequence patterns as well as for pruning procedures that allows cutting
down the search space.

We have implemented our approach in a system called Pypingen and showed
that w.r.t. state-of-the-art closed sequence mining algorithms, it performs better
in the worst of the cases, this is, when obtaining the full set of closed subsequences
from a database.

Finally, we have discussed the implications of our system and its possible
extensions regarding the mining of sequences composed by elements other than
itemsets.
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Abstract. Discovering sequential patterns in sequence databases is an
important data mining task. Recently, hierarchies of closed partially-
ordered patterns (cpo-patterns), built directly using Relational Concept
Analysis (RCA), have been proposed to simplify the interpretation step
by highlighting how cpo-patterns relate to each other. However, there are
practical cases (e.g. choosing interesting navigation paths in the obtained
hierarchies) when these hierarchies are still insufficient for the expert. To
address these cases, we propose to extract hierarchies of more informative
cpo-patterns, namely weighted cpo-patterns (wcpo-patterns), by extend-
ing the RCA-based approach. These wcpo-patterns capture and explicitly
show not only the order on itemsets but also their different influence on
the analysed sequences. We illustrate how the proposed wcpo-patterns
can enhance sequential data analysis on a toy example.

1 Introduction

Searching for sequential patterns [1] is a well-known data mining task whose aim
is to find regularities and tendencies in sequential data that can be interpreted
and assessed by experts. Various algorithms have therefore been proposed [9] and
many of them focus on extracting efficiently concise representations of sequential
patterns (e.g. closed sequential patterns [15]). To obtain a more compact set of
such sequential patterns, efficient algorithms for directly mining closed partially-
ordered patterns (cpo-patterns, [2]) were proposed in [5,12]. Precisely, a cpo-
pattern summarises a set of closed sequential patterns, which coexist in the same
sequences, and it has a graphical representation that facilitates the interpretation
step. However, regardless of the fewer number of obtained cpo-patterns, the
interpretation step remains difficult since these cpo-patterns are unorganized.

In [10], Relational Concept Analysis (RCA, [13]) is used to directly extract
hierarchies of cpo-patterns that help the interpretation step by highlighting
the relationships between cpo-patterns. Indeed, RCA classifies sets of objects
described by attributes and relations, allowing the discovery of hierarchies of
patterns. Nica et al. have proposed to extract cpo-patterns by navigating only
the intents of the interrelated concepts from the RCA result, i.e. a family of con-
cept lattices, beginning with concept intents from the main lattice. The extracted
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