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Abstract. Clustering or co-clustering techniques have been proved useful in many application domains. A weakness of these
techniques remains the poor support for grouping characterization. As a result, interpreting clustering results and discovering
knowledge from them can be quite hard. We consider potentially large Boolean data sets which record properties of objects
and we assume the availability of a bi-partition which has to be characterized by means of a symbolic description. Our generic
approach exploits collections of local patterns which satisfy some user-defined constraints in the data, and a measure of the
accuracy of a given local pattern as a bi-cluster characterization pattern. We consider local patterns which are bi-sets, i.e.,
sets of objects associated to sets of properties. Two concrete examples are formal concepts (i.e., associated closed sets) and
the so-calledδ-bi-sets (i.e., an extension of formal concepts towards fault-tolerance). We introduce the idea of characterizing
query which can be used by experts to support knowledge discovery from bi-partitions thanks to available local patterns. The
added-value is illustrated on benchmark data and three real data sets: a medical data set and two gene expression data sets.
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1. Introduction

Exploratory data analysis processes are often based on clustering techniques to get insights about
global patterns within the data. Clustering has been studied extensively, including for the special case
of Boolean data which record properties of objects (see a toy example in Table 1). Its main goal is to
identify a partition of objects and/or properties such that an objective function which specifies its quality
is optimized (e.g., maximizing intra-cluster similarity and inter-cluster dissimilarity) [16]. Looking
for optimal solutions is intractable but heuristic local search optimizations can be performed. As a
result, many efficient algorithms which compute good partitions are available and widely used. In this
paper, we assume that clustering results are available and we are interested in knowledge discovery from
such results. For example, in our running exampler, we could get{{{o1, o3, o4}, {o2, o5, o6, o7}} as a
partition on objects.

Our thesis is that expert users need symbolic descriptions to characterize the computed groups.
Indeed, it is well-known that using various settings for a given clustering algorithm and/or using different
algorithms can provide quite different clustering results. The interpretation phase is then tedious. In
fact, many clustering approaches suffer from the lack of an explicit cluster characterization. It has
motivated the research on conceptual clustering [12]. Among others, it has been studied in the context of
co-clustering (see [19] for a survey), including for the special case of categorical or Boolean data. The
goal is to identify bi-clusters or bi-partitions in the data, i.e., a mapping between a partition of objects and
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a partition of properties. For instance, an algorithm like COCLUSTER[11] can compute inr the interesting
bi-partition{{{o1, o3, o4}, {p1, p3, p4}}, {{o2, o5, o6, o7}, {p2, p5}}}. The first bi-cluster indicates that
the characterization for objects from{o1, o3, o4} is that they almost always share properties{p1, p3, p4}.
Also, properties{p2, p5} are characteristics for objects{o2, o5, o6, o7}.

Our experience is that this first step towards characterization is not sufficient, especially in high
dimensional data sets in which global patterns like bi-partitions do not reflect unexpected but strong
local associations between some sets of objects and some sets of properties. Our proposal is to combine
bi-clustering with a characterization phase based on collections of local patterns. We assume that a bi-
partition on a Boolean data set is available (e.g., computed using COCLUSTER[11]). Our contribution to bi-
partition characterization is as follows. First, we introduce an original and generic cluster characterization
technique which is based on constraint-based bi-set mining, i.e., mining bi-sets whose set components
satisfy some constraints. We show how to measure that a given bi-set is an accurate characterization
pattern for a given bi-cluster. Thanks to such accuracy measures, it is possible to consider characterizing
queries which can support knowledge discovery from co-clustering results. The method is illustrated on
two kinds of bi-sets, the well-known formal concepts (i.e., associated closed sets [25]) and a new class,
the so-calledδ-bi-sets. This later pattern type is new and it is based on a previous work about approximate
condensed representations for frequent patterns [7]. Intuitively, a formal concept is a maximal rectangle
of true values modulo arbitrary permutations of rows and columns. Following that perspective, aδ-bi-set
is a fault-tolerant extension of a formal concept for which a bounded number of exceptions (i.e., 0 values)
is accepted per column.

The added-value of our characterizing method is illustrated not only on a benchmark data set but also on
three real-life data sets. The obtained characterizations are consistent with the available knowledge. This
paper extends the preliminary version [21] by further developments on the motivation and the possible
applications of the method, the study of someδ-bi-set properties, and further experiments. Indeed, we
added the application of our approach to a gene expression data analysis task for which COCLUSTER

provides unstable bi-partitions.
Section 2 formally defines the characterizing framework. Section 3 discusses which type of local

pattern can be used. Section 4 is dedicated to our empirical validation of the proposed method. Finally,
Section 5 concludes.

2. Bi-cluster characterization using bi-sets

Let us consider a set of objectsO = {o1, . . . , om} and a set of Boolean propertiesP = {p1, . . . , pn}.
The Boolean context to be mined isr ⊆ O × P, whererij = 1 if the propertypj is true for objectoi.
We assume that a co-clustering algorithm, e.g. [11], provides a bijective mapping betweenK clusters of
objects andK clusters of properties formingK bi-clusters{(C o

1 , C
p
1 ) . . . (Co

K , Cp
K)} with Co

k ⊂ O and
Cp

k ⊂ P. A first characterization comes from this mapping.
Our goal is to support each bi-cluster interpretation by collections of bi-sets which are locally pointing

out interesting associations between groups of objects and groups of properties. Formally, a bi-set is
an element of2O × 2P . Therefore, we assume that a collection ofN bi-setsB = b1, . . . , bN has been
extracted from the data. First, we associate each of them to one of theK bi-clusters. Each bi-set
characterizes the bi-cluster to which it is associated with some degree of accuracy. We can now define a
similarity measure between a bi-set(T,G) (T ⊆ O, G ⊆ P) and a bi-cluster(C o

k , C
p
k) as follows:

sim
(
(T,G), (Co

k , C
p
k)

)
=

|T ∩ Co
k | · |G ∩ Cp

k |
|T ∪ Co

k | · |G ∪ Cp
k |
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Table 1
A Boolean contextr

p1 p2 p3 p4 p5

o1 1 0 1 1 0
o2 0 1 0 0 1
o3 1 0 1 1 0
o4 0 0 1 1 0
o5 1 1 0 0 1
o6 0 1 0 0 1
o7 0 0 0 0 1

Intuitively, (T,G) and(Co
k , C

p
k) denote rectangles in the matrix (modulo permutations over the rows and

the columns) and we measure the area of the intersection of the two rectangles normalized by the area of
their union.

Each bi-setb which is a candidate characterization pattern can now be assigned to the bi-cluster
(Co

k , C
p
k) for whichsim(b, (Co

k , C
p
k)) is maximal. Doing so, we getK groups of potentially characterizing

bi-sets.

Example 1. In r from Table 1, a possible bi-partition is

{(Co
1 , C

p
1 ), (Co

2 , C
p
2 )} = {({o1, o3, o4}, {p1, p3, p4}), ({o2, o5, o6, o7}, {p2, p5})}

If we consider the bi-setb1 = ({o1, o3, o5}, {p1}), its similarity measures w.r.t.(Co
1 , C

p
1 ) and(Co

2 , C
p
2 )

are:

sim(b1, (Co
1 , C

p
1 )) =

2 · 1
3 · 1 + 3 · 3 − 2 · 1 = 0.2

sim(b1, (Co
2 , C

p
2 )) =

1 · 0
3 · 1 + 4 · 2 − 1 · 0 = 0

The bi-setb1 is then associated to the first bi-cluster. If we consider now the bi-setb2 = ({o5},
{p1, p2, p5}), we get:

sim(b2, (Co
1 , C

p
1 )) =

0 · 1
1 · 3 + 3 · 3 − 0 · 1 = 0

sim(b2, (Co
2 , C

p
2 )) =

1 · 2
1 · 3 + 4 · 2 − 1 · 2 = 0.22

This bi-setb2 is thus associated to the second bi-cluster.
Finally, we can use an accuracy measure to select the most relevant bi-sets. For that purpose, we

propose to measure the exception ratios for the two set components of the bi-sets. Given a bi-set(T,G)
and a bi-cluster(Co

k , C
p
k), it can be computed as follows:

εo(T,Co
k) =

|{oi ∈ T | oi �∈ Co
k}|

|T |

εp(G,Cp
k) =

|{pi ∈ G| pi �∈ Cp
k}|

|G|



460 R.G. Pensa et al. / Supporting bi-cluster interpretation in 0/1 data by means of local patterns

Example 2. In our toy example from Table 1, the bi-setb1 = ({o1, o3, o5}, {p1}) contains the objecto5

which does not belong toC o
1 : we have the exception ratioεo({o1, o3, o5}, Co

1 ) = 1
3 = 0.33. The bi-set

b2 contains propertyp1 which does not belong toC p
2 : we haveεp({p1, p2, p5}, Cp

2 ) = 1
3 = 0.33.

It is then possible to consider thresholds to select only the bi-sets that have small exception ratios, i.e.,
εo < εo andεp < εp whereεo, εp ∈ [0, 1]. There are several possible interpretations for these measures.
If we are interested in characterizing a cluster of objects (resp. properties), we can look for all the sets of
properties (resp. objects) for which theεo (resp.εp) values of the related bi-sets are less than a threshold
εo (resp.εp). Alternatively, we can consider the whole bi-cluster and characterize it with all the bi-sets
for which the two exception ratiosεo andεp are less than two thresholdsεo andεp.

3. Choosing a bi-set type for characterization

We now discuss the type of bi-sets which will be post-processed for bi-cluster characterization. It is
clear that bi-clusters are, by construction, interesting characterizing bi-sets but they only support a global
interpretation. We are interested in strong associations between sets of objects and sets of properties that
can locally explain the global behavior. Clearly, formal concepts are candidates.

3.1. Using formal concepts

Definition 1. (formal concept [25]) If T ⊆ O andG ⊆ P, assumeφ(T, r) = {p ∈ P | ∀o ∈ T, (o, p) ∈
r} andψ(G, r) = {o ∈ O | ∀p ∈ G, (o, p) ∈ r}. A bi-set (T,G) is a formal concept inr when
T = ψ(G, r) andG = φ(T, r). By construction,G andT are closed sets, i.e.,G = φ ◦ ψ(G, r) and
T = ψ ◦ φ(T, r).

Formal concepts are maximal association of sets of objects and sets of properties: if one adds a
property (resp. an object) one might remove at least an object (resp. a property) to get only true values
in the encoded Boolean relation.

Example 3. Eight formal concepts hold inr from Table 1. ({o1, o3}, {p1, p3, p4}), ({o1, o3, o4}, {p3,
p4}), and({o5, o6}, {p2, p5}) are among them.

Efficient algorithms have been developed to extract complete collections of formal concepts which
satisfy also user-defined constraints (e.g., minimal size constraint on set components) [3,24]. Indeed,
the popular frequent closed set mining task for a frequency thresholdν fundamentally computes each
formal concept(T,G) such that|T | � ν.

A major problem with formal concepts is that the Galois connection(φ,ψ) is, in some sense, a too
strong one: we have to capture every maximal set of objects and its maximal set of associated properties.
As a result, the number of formal concepts even in small matrices can be huge. It is indeed common to
get several millions of formal concepts even from rather small matrices. A solution is to look for “dense”
rectangles in the matrix, i.e., bi-sets with mainly true values but also a bounded (and small) number of
false values or exceptions. Some approaches for dense bi-set mining have been recently discussed (see,
e.g., [4] for a starting point). We now propose a new type of bi-set which can be efficiently computed
and which is an extension of formal concepts towards fault-tolerance.
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3.2. Miningδ-bi-sets

We want to compute efficiently smaller collections of bi-sets which still capture strong associations.
We recall some definitions about the association rule mining task [1] since it is used for both the definition
of theδ-bi-set pattern type and for bi-cluster characterization.

Definition 2. (association rule) An association rule inr is an expression of the formX ⇒ Y , where
X,Y ⊆ P, Y �= ∅ andX ∩ Y = ∅. Its absolute frequency is|ψ(X ∪ Y, r)| and its confidence is
|ψ(X ∪ Y, r)|/|ψ(X, r)|.

In an association ruleX ⇒ Y with high confidence, the properties inY are almost always true for an
object when the properties inX are true. Intuitively,X ∪ Y associated toψ(X, r) is then a dense bi-set:
it contains few false values. We now consider our technique for computing association rules with high
confidence, the so-calledδ-strong rules [6,7].

Definition 3. (δ-strong rule) Given an integerδ, a δ-strong rule inr is an association ruleX ⇒ Y
(X,Y ⊂ P) s.t. |ψ(X, r)| − |ψ(X ∪ Y, r)| � δ, i.e., the rule is violated in no more thanδ objects.

Interesting collections ofδ-strong rules with minimal left-hand side can be computed efficiently from
the so-calledδ-free-sets [6,7,10] and theirδ-closures.

Definition 4. (δ-free set, δ-closure) Let δ be an integer andX ⊂ P, X is aδ-free-set inr iff there is no
δ-strong rule which holds between two of its own proper subsets. Theδ-closure ofX in r, hδ(X, r), is
the maximal supersetY of X s.t. ∀p ∈ Y \X, |ψ(X ∪ {p})| � |ψ(X, r)| − δ.

In other terms, the frequency of theδ-closure ofX in r is almost the same than the frequency ofX
whenδ << |O| andX is frequent. Moreover,∀p ∈ hδ(X) \X, X ⇒ p is aδ-strong rule.

Example 4. In the data from Table 1, the 1-free itemsets are{p1}, {p2}, {p3}, {p4}, {p5}, {p1, p2},
and{p1, p5}. An example of 1-closure for{p1} is {p3, p4}. The association rules{p1} ⇒ {p3} and
{p1} ⇒ {p4} have only one exception.
δ-freeness is an anti-monotonic property such that it is possible to computeδ-free sets (eventually

combined with a minimal frequency constraint) in very large data sets. Notice thath0 ≡ φ ◦ ψ, i.e., the
classical closure operator. Looking for a 0-free-set, sayX, and its 0-closure, sayY , provides the closed
setX ∪ Y and thus the formal concept(ψ(X ∪ Y, r),X ∪ Y ).

Definition 5. (δ-bi-set) A δ-γ-bi-set(T,G) in r is built on eachδ-free-setX ⊂ P with T = ψ(X, r)
andG = hγ(X, r). Whenδ = γ we call themδ-bi-sets.

Example 5. In the data from Table 1, the1-bi-sets derived from the1-free-sets{p3} and{p5} are
({o1, o3, o4}, {p1, p3, p4}) and({o2, o5, o6, o7}, {p2, p5}).

When δ << |T |, δ-bi-sets are dense bi-sets with a small number of exceptions per column. In
order to experiment, we implemented a straightforward extension of AC-MINER [7] which provides the
supporting set for each extractedδ-free-set. Let us now discuss some properties ofδ-bi-sets. It is clear
that0-bi-sets are formal concepts. However, some important properties of formal concepts do not hold
for δ-bi-sets whenδ > 0. In particular we lack of a function which associates the setG to the setT
and vice-versa. As a result, we do not have a Galois connection anymore. For example, in Table 1,
({o2, o5, o6, o7}, {p2, p5}) (the δ-bi-set generated by theδ-free set{p5}), and({o2, o5, o6}, {p2, p5})
(the δ-bi-set generated by theδ-fee set{p2}) have the same property set, while the first set of objects



462 R.G. Pensa et al. / Supporting bi-cluster interpretation in 0/1 data by means of local patterns

Table 2
Boolean contextr′
p1 p2 p3 p4

o1 0 1 1 1
o2 0 1 1 0
o3 1 0 0 0
o4 1 1 1 0
o5 1 1 1 1
o6 1 0 1 0
o7 0 0 1 0

Table 3
0-free sets,1-closures and supporting sets of objects inr′
X h1(X, r′) ψ(X, r′)
{∅} {p3} {o1, o2, o3, o4, o5, o6, o7}
{p1} {p1, p3} {o3, o4, o5, o6}
{p2} {p2, p3} {o1, o2, o4, o5}
{p3} {p3} {o1, o2, o4, o5, o6, o7}
{p4} {p1, p2, p3, p4} {o1, o5}
{p1, p2} {p1, p2, p3, p4} {o4, o5}
{p1, p3} {p1, p2, p3} {o4, o5, o6}
{p1, p4} {p1, p2, p3, p4} {o5}

Table 4
1-free sets,1-closures and supporting sets of objects inr′
X h1(X, r′) ψ(X, r′)
{∅} {p3} {o1, o2, o3, o4, o5, o6, o7}
{p1} {p1, p3} {o3, o4, o5, o6}
{p2} {p2, p3} {o1, o2, o4, o5}
{p4} {p1, p2, p3, p4} {o1, o5}
{p1, p2} {p1, p2, p3, p4} {o4, o5}

includes the second one. Among others, it makes the interpretation process (in terms of characterization)
less natural. We now consider how the parametersδ andγ influence the properties of theδ-γ-bi-set
collection.

Property 1. Given a Boolean contextr, two positive integersµ andδ such thatµ < δ. Let us denote
Freeδ(r) the collection of theδ-free sets onr, andFreeµ(r) the collection of theµ-free sets onr, we
have:Freeδ(γ, r) ⊆ Freeµ(γ, r).

Proof 1.X is aδ-free-set iff ∀Y ⊂ X|ψ(Y, r)| − |ψ(X, r)| > δ. Thus|ψ(Y, r)| − |ψ(X, r)| > µ and
X is also aµ-free-set.

As a consequence, any collection ofδ-free sets (δ > 0) is included in the collection of0-free sets.

Example 6. Let us consider the Boolean data set given in Table 2. The set of propertiesA = {p 1, p3}
is 0-free (see Tab. 3), but not1-free with (see Table 4). Its1-closure is{p1, p2, p3}. The corresponding
δ-bi-set isbA = ({o4, o5, o6}, {p1, p2, p3}) with one exception onp2. SinceA is not in the collection of
1-free sets, this bi-set can not be built usingA, and we have neither another1-free set which can generate
bA nor any other bi-set coveringbA (see Table 4).

Property 2. Given a Boolean contextr and two positive integersρ andγ such thatρ � γ. Given a set
X ⊆ P we have:hρ(X) ⊆ hγ(X).
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Table 5
A Boolean contextr1

p1 p2 p3 p4 p5 co1 co2
o1 1 0 1 1 0 1 0
o2 0 1 0 0 1 0 1
o3 1 0 1 1 0 1 0
o4 0 0 1 1 0 1 0
o5 1 1 0 0 1 0 1
o6 0 1 0 0 1 0 1
o7 0 0 0 0 1 0 1
cp1 1 0 1 1 0 − −
cp2 0 1 0 0 1 − −

When the parameterγ increases, then the size of the attribute component of theγ-δ-bi-set increases
too.

Property 3. Given aδ-free setX, ∀Y ⊂ X, thenX �⊆ hδ(Y, r), i.e.,X is not included in theδ-closure
of any of its own proper subsets.

Proof 2. If Y ⊂ X, andX ⊆ hδ(Y, r), then there existsZ ⊂ X, Z ∩ Y = ∅, s.t.Y ⇒ Z is aδ-strong
rule, i.e., there exists aδ-strong rule which holds between two own proper subsets ofX (Y andZ), but
this contradicts thatX is aδ-free set.

As a consequence, whenγ > δ, a setX can belong to theγ-closure of one of its subsets which is not
the case whenγ � δ.

Example 7. In the data from Table 1, we have eight1-free sets:{∅}, {p1}, {p2}, {p3}, {p4}, {p5},
{p1, p2}, and{p1, p5}. The collection of0-free sets contains two more sets{p1, p3} and{p1, p4} which
are contained in the1-closures of{p1} (i.e.,{p1, p3, p4} which is also the1-closure of{p3} and{p4}).
The supporting set of objects for both{p1, p3} and{p1, p4} is{o1, o3} and it is a subset of the supporting
set of objects for{p1} (i.e., {o1, o3, o5}), and the supporting set of objects for{p3} and{p4} as well.
Indeed, the two0-δ-bi-sets are already included in larger bi-sets obtained from1-free sets.

We have considered several settings for computingδ-bi-sets. As theγ-closure of a0-free setX is equal
to theγ-closure ofh0(X, r), by computing0-δ-bi-sets we get either formal concepts (0-closure of a0-free
set) or their extension towards fault-tolerance (number of exceptions bounded per column). Computing
formal concepts by extracting the free sets and their closure, may become intractable in some data sets,
while δ-free set mining forδ > 0 remains quite feasible at the price of missing some associations. On
the other hand, using a value ofδ greater thanγ may result in a further loss in information, even if the
size of collection of produced bi-sets could be reduced. Our answer to the previously given question, is
that using the sameδ value for computing the free sets and their closure is a good trade-off to preserve
information and to reduce both the search space and the size of the extracted bi-set collection.

3.3. Formal concepts vs.δ-bi-sets

To study the relevancy ofδ-bi-sets w.r.t. formal concepts, we have considered the addition of noise to
a synthetical data set. Hereafter,r denotes a reference data set from which we generate noisy data sets by
adding a given quantity of uniform random noise. Then, we compare the collection of formal concepts
which are “built-in” within r with various collections of formal concepts andδ-bi-sets extracted from
the noised matrices. To measure the relevancy of each extracted collection w.r.t the reference one, we
look for subsets of the reference collection in each of them. Since both set components of each formal
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concept can be changed when adding noise, we identify those having the largest area in common with
the reference ones, and we compute theσ measure which takes into account the common area:

σ(Cr, Ce) =
ρ(Cr, Ce) + ρ(Ce, Cr)

2

ρ is defined as follows:

ρ(C1, C2) =
1

|C1|
∑

(Xi,Yi)∈C1

max
(Xj ,Yj)∈C2

|Xi ∩Xj | · |Yi ∩ Yj |
|Xi ∪Xj | · |Yi ∪ Yj |

Cr is the collection of formal concepts computed on the reference dataset,Ce is a collection of patterns
in a noised dataset. Whenσ(Cr, Ce) = 1, all the bi-sets∈ Cr have identical instances inCe.

In the experiment,r has 30 objects and 15 properties and it contains 3 formal concepts of the
same size which are pair-wise disjoints: the built-in formal concepts are({o1, . . . , o10}, {p1, . . . , p5}),
({o11, . . . , o20}, {p6, . . . , p10}), and({o21, . . . , o30}, {p11, . . . , p15}). We generated 40 different data
sets by adding tor increasing quantities of noise (from 1% to 40% of the matrix). Then, for each data set,
we have extracted a collection of formal concepts and different collections ofδ-bi-sets with increasing
values ofδ (from 1 to 6). Finally, we looked for the occurrence of the 3 formal concepts in each of these
extracted collections by using ourσ measure. Results are in Fig. 1.

Theσ measure decreaseswhen the noise level increases. Interestingly, its values forδ-bi-set collections
are always greater or similar to the values for the collections of formal concepts. The collections of
δ-bi-sets contain always less patterns than the collections of formal concepts (for a noise level greater
than 7%). Forδ = 2, the size is halved. For greater values ofδ, noise does not influence the size of
the collections ofδ-bi-sets. This experiment confirms thatδ-bi-sets are more robust to noise than formal
concepts. Furthermore, it enables to reduce significantly the size of the extracted collections and this is
important to support the interpretation process.

3.4. Using association rules

Association rules can be derived from extracted bi-sets and used for bi-cluster characterization. For
characterization but also classification, heuristics have been studied which select relevant association
rules based on their frequency and confidence values [10,17,18,23]. In our case, we propose to use
exception ratios on the extracted bi-sets to provide characterization rules. They have the formX ⇒ k
whereX is a set of properties (resp. objects) andk is a property denoting a cluster of objects (resp. an
object denoting a cluster of properties). When considering formal concepts, deriving characterization
rules from them is straightforward.

Property 4. Given a bi-cluster(C o
k , C

p
k), if (T,G) is a formal concept, thenG ⇒ k (resp.T ⇒ k) is a

rule with frequency equal to|T | · (1 − εo(T,Co
k)) (resp. |G| · (1 − εp(G,Cp

k )) and confidence equal to
1 − εo(T,Co

k) (resp.1 − εp(G,Cp
k )).

Example 8. Consider the toy example from Table 1 with two new columns (resp. rows) to denote the
values of the object cluster variablevo ∈ {co1, co2} (resp. the property cluster variablevp ∈ {cp1, cp2}). For
each object belonging toC o

1 (resp. Co
2 ), we haveco

1 = 1 andco
2 = 0 (resp. co

1 = 0 andco
2 = 1). We

obtain the Boolean data in Tab. 5. Bi-setb1 = (T1, G1) = ({o1, o3, o5}, {p1}) is a formal concept that
can be used to form the association rulep1 ⇒ co1. Its relative frequency is|T1| · (1− εo(T1, C

o
1))/|O| =
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Fig. 1. Size of different collections of bi-sets (top) and related values ofσ (bottom) depending on noise level.

3 · (1 − 1/3)/7 = 29%, its confidence is(1 − εo(T1, C
o
1)) = (1 − 1/3) = 67%. The formal concept

b2 = (T2, G2) = ({o5}, {p1, p2, p5}) forms the association ruleo5 ⇒ cp2. Its relative frequency is
|G2| · (1−εp(G2, C

p
2 ))/|P| = 3 · (1−1/3)/5 = 40%, its confidence is(1−εp(G2, C

p
2 )) = (1−1/3) =



466 R.G. Pensa et al. / Supporting bi-cluster interpretation in 0/1 data by means of local patterns

67%.
When we useδ-bi-sets instead of formal concepts, Property 3.4 does not hold because|ψ(G, r)| < |T |.

However, if we are interested in characterizing a cluster of objects, we can use the following property.

Property 5. Given a clusterC o
k, if (T,G) is aδ-bi-set, andX ⊆ G is aδ-free-set thenX ⇒ k is a rule

with frequency equal to|T | · (1 − εo(T,Co
k)) and confidence equal to1 − εo(T,Co

k).

Example 9. Consider our toy example in Table 1, and its extension (Table 5). Bi-setb δ = (Tδ, Gδ) =
({o1, o3, o4}, {p1, p3, p4}) is a 1-bi-set generated by the 1-free setXδ = {p3}. It is associated with
(Co

1 , C
p
1 ) sincesim(bδ, (Co

1 , C
p
1 )) = 0, andεo(Tδ , C

o
1) = 0. Indeed,Xδ forms an association rule

p3 ⇒ co1 with relative frequency|Tδ| · (1 − 0)/|O| = 43% and confidence 100%.
Such rules are interesting in practice becauseX is often a rather small set such that its interpretation

is easier. However, this approach can not be applied to data sets with large numbers of properties (e.g.,
for gene expression data sets where we can have thousands of properties). In such cases, we propose to
use theεo andεp measures. Notice however that a recent work studiesδ-free set mining for very large
numbers of properties [15].

4. Experimental validation

4.1. Mining a benchmark data set

First, we applied our characterization method to the well-known benchmarkvoting-records [5]. It
contains 435 objects and 48 Boolean attributes (removing class variables). We used COCLUSTER[11] to
get 2 bi-clusters:

bi-cluster |τ | rep. dem. |γ|
bi-cluster1 193 153 40 16
bi-cluster2 242 15 227 32

total 435 168 267 48

To characterize each bi-cluster, we used D-MINER [3] to extract all formal concepts, and our slight
extension of ACMINER to extract two collectionsδ-bi-sets (δ = 1,2). We obtained 227 031 formal
concepts, 130 313 1-bi-sets and 66 908 2-bi-sets. The collections have been post-processed by looking
for rules with increasing values of the relative minimal frequency (15% up to 40%) and confidence
(90% up to 100%). Results for the first bi-cluster are in Fig. 2. Results for the second one look
similar. The number of characterizing rules decreases when we increase the frequency and confidence
thresholds. When we useδ-bi-sets, we have to process significantly smaller collections. Two examples
of characterizing rules which are consistent with the domain knowledge associated tovoting-records
are now given. The first one (resp. the second) has a 42% relative frequency (resp. 31%) and both have
a 100% confidence, i.e., we haveεo = 0.
el-salvador-aid = yes ∧ anti-satellite-test-ban = yes

∧ aid-to-nicaraguan-contras = yes⇒ bi-cluster2
handicapped-infants = no ∧ physician-fee-freeze = yes

∧ el-salvador-aid = yes⇒ bi-cluster1
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Fig. 2. Characterizing patterns for bi-cluster1 invoting-records w.r.t. different values of minimal frequency and confidence.

4.2. Mining a medical data set

We applied the method to the real world medical data setmeningitis already used in [23]. It has
been gathered from children hospitalized for acute meningitis. The pre-processed Boolean data set is
composed of 329 examples described by 60 Boolean attributes encoding clinical signs (hemodynamic
troubles, consciousness troubles,. . .), cytochemical analysis of the cerebrospinal fluid (C.S.F proteins,
C.S.F glucose,. . .), and blood analysis (sedimentation rate, white blood cell count,. . .). In meningitis,
the majority of the cases are known to be viral infections whereas about one quarter are are known
to be caused by bacteria. Furthermore, medical knowledge is available which can be used to assess
characterization relevancy. Using COCLUSTER, we got two bi-clusters:

bi-cluster |τ | bact. vir. |γ|
bi-cluster1 100 81 19 21
bi-cluster2 229 3 226 39

total 329 84 245 60

The first bi-cluster contains a majority of bacterial cases while the second one contains almost only
viral cases. We selected characterization rules based on a collection of formal concepts and 2 collections
of δ-bi-sets (δ = 1,2). We obtained the results in Fig. 4. Here again, usingδ-bi-sets leads to smaller
collections of candidate characterization patterns. The number of characterization rules for the first
bi-cluster is always very low and it does not significantly change when usingδ-bi-sets instead of formal
concepts. If we select the rules with a minimal body, a 10% frequency threshold, a 98% confidence
threshold, and for which the property exception ratioεp is zero, we obtain only 9 rules which are
consistent with the medical knowledge (see [23] for details). Examples of rules are:
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presence of bacteria in C.S.F. analysis = yes⇒ bi-cluster1
polynuclear percent > 80 ∧ C.S.F. proteins > 0.8⇒ bi-cluster1
C.S.F. proteins > 0.8 ∧ C.S.F. glucose < 1.5⇒ bi-cluster1

4.3. Mining Boolean gene expression data

An other experiment concerns the analysis ofplasmodium, a public gene expression data set con-
cerning Plamodium falciparum (i.e., a causative agent of human malaria) described in [9]. It records the
expression profile of 3 719 genes in 46 biological samples. Each sample corresponds to a time point of
the developmental cycle. It is divided into 3 phases: the ring, the trophozoite and the schizont stages.
The numerical expression data have been preprocessed by using one of the property encoding methods
described in [22]. We used COCLUSTERto get the following bi-clusters:

bi-cluster |τ | ring troph schiz. |γ|
bi-cluster1 20 15 5 0 558
bi-cluster2 16 0 5 11 1699
bi-cluster3 10 6 0 4 1462

total 46 21 10 15 3719

We extracted collections of bi-sets to characterize clusters of samples by means of sets of genes. Here,
the number of properties was too large and we extracted theδ-bi-sets on the transposed matrix. It means
that the frequency and the confidence measures can not be used since they are computed on samples while
we are looking for patterns on genes. Therefore, to evaluate a bi-set(T,G), we have considered|T |, |G|,
εo, andεp. Results for a minimal size from 10% up to 25% of|O| and for maximal values ofεo from
0% up to 10% are in Fig. 3. Considering bi-cluster1, we analyzed the characterizing 2-bi-sets when the
minimal size for their sets of objects was 25% of|O| and for a maximal exception ratioεo = 0. Among
the 442 bi-sets characterizing bi-cluster1, only 4 of them concern genes that belong to the same bi-cluster.
In each of them, we found at least one gene belonging to the cytoplasmic translation machinery group
which is known to be active in the ring stage (see [9] for details), i.e., the main developmental phase
corresponding to bi-cluster1.

4.4. Characterization of unstable bi-partitions

In some application, clustering results are quite ambiguous. Algorithms generally return local optimum
solutions for the considered objective function. Usually, such local optima are close to the global one, and
the computed bi-partitions are quite similar after many randomly initialized executions of the algorithm.
However, in some cases, the local optima may give rise to very different bi-partitions. How does our
technique behave in this particular situation? How does characterization changes between two different
bi-partitions? Does bi-partition quality influence the relevancy of the characterizing patterns? To answer
such questions, we have analyzed the data set described in [2]. It concerns the expression profiles of
3 433 genes during 10 time points of adult drosophila melanogaster life cycle. The expression levels are
measured for both males and females, i.e., the data involve 20 biological situations. We applied again a
discretization method from [22] for gene expression property encoding. We then executed 100 randomly
initialized instances of COCLUSTER(to find 2 bi-clusters), and compared the results by considering both
the Goodman-Kruskal’sτ coefficient [14] and the loss in mutual information [11]. Notice that this
later is the objective function which COCLUSTERwants to minimize. Both coefficient are evaluated in
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Fig. 3. Characterizing bi-sets for bi-cluster1 inplasmodium w.r.t. different values of minimal size and maximal exception
ratio.

a contingency tablep. Let pij be the frequency of relations between an object of a clusterC o
i and a

property of a clusterCp
j , andpi. =

∑
j pij andp.j =

∑
i pij. The Goodman-Kruskal’sτ coefficient,

which evaluates the proportional reduction in error given by the knowledge ofC o on the prediction of
Cp and vice versa, is defined as follows:

τ =
1
2

∑
i

∑
j (pij − pi.p.j)

2 pi.+p.j

pi.p.j

1 − 1
2

∑
i p

2
i. − 1

2

∑
j p

2
.j

The mutual information, which compute the amount of informationC o contains aboutCp, is:

I(Co;Cp) =
∑

i

∑

j

pij log
pij

pi.p.j

Then, given two different bi-partitions(Co, Cp) and(Ĉo, Ĉp), the loss in mutual information is given
by:

I(Co;Cp) − I(Ĉo; Ĉp)

When computing such coefficients on the 100 bi-partitions returned by COCLUSTER, we found that
results were significantly unstable (see Table 6). It seems that there are two optimum points for which
the two measures are distant. For 56 runs, we got a highτ coefficient (the mean is about 0.5605), for the
other 44 ones theτ coefficient was sensibly smaller (about 0.1156). If we consider each group of results
separately, the standard deviation is significantly smaller. It means that these two results are two local
optima for the COCLUSTERheuristics.
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Table 6
Clustering results on adult drosophila individuals

τ I − Î

bi-partition instances mean std.dev mean std.dev
males vs. females 56 0.5605 0.0381 1.6615 0.0390
mixed 44 0.1156 0.0166 2.0256 0.0258
overall 100 0.3648 0.2240 1.8217 0.1847

Fig. 4. Characterizing patterns for the bi-cluster2 inmeningitis w.r.t. different values of minimal frequency and confidence.

From a semantical point of view, the first group of solution reflects the male and female repartition
of the individuals, while in the second group each cluster contains both male and female individuals.
Indeed, it seems that the the first co-clustering is more relevant w.r.t. the biological knowledge. We
use then our characterization technique to post-process the collection of all formal concepts contained
in the matrix. Obviously the characterization changes, but we want also to evaluate this change in
co-clustering interpretation. To do that, we computed the means of all our interestingness measures
(frequency, confidence), one instance for each group of solutions. The two instances have been chosen
by considering those with the minimum deviation from the mean. The interestingness measures were
computed on all the 5 936 formal concepts, without setting any frequency or confidence constraint.
Results are in Table 7.

In the first bi-partition, the average frequency and confidence of the characterizing rules are higher
than in the second one. This is true for rules computed on both objects and properties clusters. This
means that local patterns (formal concepts) reflects more the first bi-partition than the second one. In
other words, the consistency of the first global model is validated by the local associations within the
matrix. The fact that both Goodman-Kruskal and mutual information loss measures are better in the first
group of solutions, is a further mean to link global and local consistency. It means that, characterizing a
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Table 7
Characterization interestingness measures on adult drosophila data

bi-partition |B1|/|B2| P-freq P-conf O-freq O-conf
males vs. females 0.87 0.6% 91% 6% 78%
mixed 0.97 0.4% 73% 3% 47%

global bi-partition by means of local patterns makes sense, and could be a new way to assess bi-partition
quality.

5. Conclusion

We presented a new (bi-)cluster characterization method based on extracted local patterns, more
precisely formal concepts andδ-bi-sets. It is now possible to use quite efficient constraint-based mining
techniques for computing various local patterns. While a bi-partition provides a global and somehow
expected characterization, selected collections of characterizing bi-sets point out local association which
might lead to more unexpected but yet relevant information. Global and local patterns are both useful
during a knowledge discovery process, and it is important to support these intrinsically interactive
processes. Our approach suggest the use of characterizing queries, i.e., queries in which analysts can
used the proposed accuracy measures to select relevant characterizing patterns. Examples of typical
characterizing queries are as follows:

– Select all the bi-sets which characterize bi-cluster(C o, Cp) with a maximum exception ratio ofε
for both objects and properties;

– Select all the association rules with minimal body characterizing bi-cluster(C o, Cp) with a minimal
frequencyf , a minimal confidencec, and a maximal exception ratioε for the set of properties;

– Select all the association rules with minimal body characterizing bi-cluster(C o, Cp) with a minimal
frequencyf , a minimal confidencec, and a minimal exception ratioε for the set of properties.

The two first types of queries are obviously useful for bi-cluster characterization. The third one
concerns knowledge discovery thanks to unexpectedness. Indeed, it might return patterns that are
exceptions, i.e., they concern objects belonging to bi-cluster(C o, Cp) that are characterized by some
properties from other bi-clusters. If a global pattern like a bi-partition captures some important structures
in the data, it seems also interesting to look at the collections of local associations which are somehow
far from it. Assume that the popular associationR which points out frequent transactions with beers and
diapers among male customers is somehow valid. A co-clustering on a complete basket data set may
group beer together with male customers within one bi-cluster, and diapers with female customers in a
second bi-cluster. In such a case, a query which would select frequent and high-confidence association
rules with a high exception ratio on properties (ε > ε) would support the discovery of the “unexpected”
associationR. Characterizing queries might be studied further. They are interesting examples of queries
which have to process both the data and multiple types of patterns holding in the data, i.e., interesting
objects for the study of the promising inductive database framework [8,20]. An other perspective is
also to better understand the convergent techniques developed for (conceptual) clustering, subgroup
discovery [13], and association rule discovery.
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