Mining Frequent Sequential Patterns
under a Similarity Constraint

Matthieu Capelle, Cyrille Masson, and Jean-Francois Boulicaut*

Institut National des Sciences Appliquées de Lyon
Laboratoire d’Ingéniérie des Systémes d’Information
F-69621 Villeurbanne Cedex, France
{cmasson, jfboulic}@lisi.insa-lyon.fr

Abstract. Many practical applications are related to frequent sequen-
tial pattern mining, ranging from Web Usage Mining to Bioinformatics.
To ensure an appropriate extraction cost for useful mining tasks, a key
issue is to push the user-defined constraints deep inside the mining algo-
rithms. In this paper, we study the search for frequent sequential patterns
that are also similar to an user-defined reference pattern. While the ef-
fective processing of the frequency constraints is well-understood, our
contribution concerns the identification of a relaxation of the similarity
constraint into a convertible anti-monotone constraint. Both constraints
are then used to prune the search space during a levelwise search. Prelim-
inary experimental validations have confirmed the algorithm efficiency.

1 Introduction

Many applications domains need for the analysis of sequences of events, like the
design of personalized interface agents [A]. The extraction of frequent sequential
patterns in huge databases of sequences has been heavily studied since the design
of apriori-like algorithms [T6]. Recent contributions consider the use of other
criteria for the objective interestingness of the mined sequential patterns. Other
kinds of user-defined constraints (e.g., enforcing a minimal gap between events)
have been defined [310]. Provided a conjunction of constraints specifying the
potential interest of patterns, the algorithmic challenge is to make use of these
constraints in order to efficiently prune the search space.

In this paper, we are interested in the conjunction of two constraints: a
frequency constraint and a similarity constraint. Two patterns are considered
similar if the similarity measure between them is smaller than some threshold.
Many research have been done in that field (for a survey, see, e.g., [7]), and the
similarity measure we use allows us to identify a constraint that can be efficiently
used inside our levelwise mining algorithm. Indeed, by mining sequential patterns
satisfying a conjunction of an anti-monotone constraint (the frequency one) and a
convertible anti-monotone constraint (the similarity one), we improve the global
pruning efficiency during a levelwise exploration of the candidate patterns.

* Research partially funded by the European contract cInQ IST 2000-26469.

H. Yin et al. (Eds.): IDEAL 2002, LNCS 2412, pp. 16, 2002.
© Springer-Verlag Berlin Heidelberg 2002

2 M. Capelle, C. Masson, and J.-F. Boulicaut

In Section [2] we introduce the sequential patterns and some useful properties
of constraints. In Section [3, we define the distance measure and the similarity
constraint we use. In Section @] we demonstrate the relevancy of the approach
by practical experiments. Section [0l is a short conclusion.

2 Basic Notions

Given a finite alphabet Y| a sequential pattern M is an ordered list of symbols
of X. Ly denotes the set of patterns that can be built using symbols of X. A
sequential pattern M will be denoted M7 — ... — M, where M; is the ith
symbol of M and n is the length of M. M; — M;; means that the element

M; preceeds the element M, ;. M' = M{ — ... — M/, is a sub-pattern of
M = My — ... - M, if there exist some integers i; < ... < i, such that
M{ =M, ..., M), = M, . An event is denoted by a pair (A,t) where A €

P(X)\D and t € N (occurrence time of A). Several events can occur at the same
time. An event sequence is a list of events sorted by increasing occurrence times.
Generally, the support of a pattern M is its occurring rate in the data and a
pattern is said frequent if its support exceeds an user-defined threshold.

Classical methods for frequent sequential pattern mining relies on an adap-
tation of the apriori paradigm [1lJ6]. The extraction process consists in several
iterations of a levelwise algorithm, composed of three steps: generation of new
candidates of length k, safe pruning of this set by using the frequency constraint
(i.e., the extension of an infrequent pattern cannot be frequent), and counting
the support of the remaining candidates. At each iteration, we extract longer
patterns and it stops when no more candidates can be generated. Tractability
can then be obtained by increasing the frequency threshold. However, consid-
ering only a frequency constraint often leads to a lack of focus. Indeed, if the
user has an idea of some specific properties on the desired patterns, he might be
overwhelmed by many useless results. A naive approach would be to check them
in a post-processing phase: it means that the mined patterns will be among the
frequent ones for a given frequency threshold. The challenge is to make an active
use of the constraints, i.e., pushing them into the different steps of the extraction
process. For that purpose, the constraints must satisfy some properties.

A constraint Cy,, is anti-monotone if, for all pattern M verifying Cym,,
all its sub-patterns verify C,,,. For instance, the frequency constraint is anti-
monotone thanks to safe pruning. Pushing anti-monotone constraints leads to
quite effective algorithms [RI6]. However, this strong property only characterizes
a few constraints. The concept of convertible constraint [9] allows to relax this
definition while keeping an efficient pruning. In the following, we consider an
equivalence relation R on the patterns. A constraint C.,,, is convertible anti-
monotone if, for all pattern M verifying C.4,, all its sub-patterns equivalents
to M by R verify Ciq.,. When considering the prefix equivalence relation, such
a constraint can be characterized with prefix decreasing functions [9] defined on
L. Let M, M’ € Ly such that M’ is a prefix of M, f is a prefix decreasing
function iff f(M’) < f(M).

Mining Frequent Sequential Patterns under a Similarity Constraint 3

Pushing non (convertible) anti-monotone constraints has been studied but
the benefit cannot be guaranteed [3]. In this paper, given a collection of event
sequences D and C' = Cfyeq ACsim (Mpg) where C,eq denotes the frequency con-
straint and Cg;p, (Mg) denotes a similarity constraint w.r.t. a reference pattern
Mg, find the collection of patterns from Lj; occurring in D and verifying C.

3 Similarity Constraint

Let us consider an user-defined reference pattern My and a set of operations
Og = {Ins, Del, Sub} to which we associate costs depending on the position
and the symbol on which they are applied. Cr,s(X,4) is the insertion cost of
symbol X at position ¢,0 < i < |[Mg|, Cpe(X,7) is the deletion cost of X at
position 7,1 < i < |[Mg|, and Csyp(X, Y, %) is the substitution cost of X by Y at
the position ¢,1 < i < |Mg|. Costs values belong to the interval [0, 1]. The more
its cost is close to 0, the more we consider the operation costly. Let M € Ly,
the cost c(an ay) of ans ay, an alignment of M and Mg, is the product of all
costs of its operations. The similarity score of a pattern M w.r.t. a pattern Mg
is sim(M, M) = maz{c(an, my)|anm, mp is an alignment of M and Mp}. Notice
that the maximal similarity of two patterns is 1. The algorithm that computes
sim(M, Mp) looks like the one used for editing distances [4]. It uses a matrix M.
However, we consider more complex operations and the cell M(0,0) is initialized
to 1 (we need a maximization criterion instead of a minimization criterion). More
precisely, computing M relies on the following equations:

Vj € {15) |M|}’M(Ovj) = M(Oaj - 1) * Cms(M[]]vO)
Vie {17 AR |MR|}’M(ZaO) = M(Z - 170) * Cdel(MR[i]vi)
M(Z -].,j —]_) * Csub(MR[’L],M[] ,i)
M(i,5) = max ¢ M(i,j —1) % Cins(M[j], 1)
M(i— 1,j) *Cdel(MR[i],i)

Finally, the similarity score is the value M(|Mg/|, |M|). To compute it, we can
use dynamic programming: M(i, j) is determined by M(i—1,5—1), M(i—1,7)
and M(i,7 — 1). Thus, we can compute sim(M, Mg) given the similarity score
of its prefixes of length |M| —1 The complexity of the algorithm is in O(|Mg|).

Table 1. Computation of sim(A—+ B - E —-C —- D,A— B — C)

A B E C D

0) 1 — 0.01 |— 0.001]— 107 *[— 107°]— 107°

1 | Jo.01 Nyl |[—=0.75|— 0.56]— 0.42]— 0.32

(2) [17,5107% 1075 Nl [N\ 0.67]10.32]—024

(3) 47,5107 7,5.1073] 1 0.01 [\, 0.01]\, 0.67[— 0.60
sim | 7,5.10°° [7,5.10°° | 0.01 0.01 | 0.67 | 0.60

sim-pot 1 1 1 0.67 0.67 0.60

4 M. Capelle, C. Masson, and J.-F. Boulicaut

Ezxample. Let Mp = A — B — C and assume the costs given below, table 1
describes a computation of sim(M, MRg).

VX € E,CDBI(X, 1) = 0.0l,CDel(X, 2) = 0.75,CD31(X, 3) 0.01

VX € 5, rns(X,0) = 0.01, ¢ns (X, 1) = 0.75, c1ns (X, 2) = 0.01, ¢15 (X, 3) = 0.9
lif X =Y

Vi€ {1,2,3), (X, Y,8) = 4 0.91f (X,Y) € {(A,D),(D, A), (B, E). (E, B)}
0.01 else

Given a reference pattern Mg € Ly, operations costs and a similarity threshold
min-sim€ [0, 1], a pattern M is similar to Mg if sim(M, M) > min-sim. We
can now define the similarity constraint Cy;,, (Mpg) as follows: M € L), satisfies
Coim(Mpg) iff M is similar to Mg.

Our algorithm (see [2] for details) is a variant of ¢<SPADE [10]. However, it
differs from it on some points:

— It does not consider any non (convertible) anti-monotone constraints.

— It supports the potential similarity constraint (defined below), i.e. a relax-
ation of Cyim(MR).

— It uses the prefix equivalence classes, instead of the suffix ones. This choice
is due to the fact that our similarity constraint is based on prefix relations.

However, our constraint Cj;,,(Mg) is neither anti-monotone, nor convert-
ible anti-monotone. We have been looking for a relaxation of Cg;,(Mp) that
would be convertible anti-monotone. Assume R, denotes the equivalence re-
lation “is prefix of”. We define the potential similarity of a pattern M w.r.t.
Mp as the maximal similarity score that its extensions can reach. Formally,
sim-pot(M, Mg) = max{sim(M’', Mr)|M' € Ly and R,(M,M’)}. A corollary
of this definition is that for all M’ € Ly; sim-pot(M', Mr) > sim(M', Mg).
To compute sim-pot(M, Mp), we can take the largest value of the (|M|+ 1)th
column of M. Indeed, it is not possible to increase this value since the cost of a
further editing operation on M is smaller than 1.

Our first idea was to consider the potential similarity of a pattern as the
result of the sim-pot function. As it can be shown that sim-pot is a prefix
anti-monotone function, that would have lead to a convertible anti-monotone
constraint ensuring a safe pruning, i.e. without affecting the correction of the
mining algorithm. However, we have shown that its completeness is lost (see [2]
for details). Thus, we defined a new function sim-pot-comp based on sim-pot.
The idea is to consider this “complete” potential similarity of a pattern M as
the potential similarity of its prefix of length |M|—1. Let M’, M € Lj; such that
R,(M’',M) and |M| = |M’'| + 1, the function sim-pot-comp is defined by: sim-
pot-comp(M, Mr) = sim-pot(M’, Mg). Given a similarity threshold min-sim,
we now say that a pattern M € L), is potentially similar to Mg if sim-pot-
comp(M, Mg) > min-sim. Thus, we can define a similarity constraint as fol-
lows: VM € Ly, M satisfies Cgim—pot(Mp) iff M is potentially similar to Mg.
sim-pot-comp is still a prefix anti-monotone function, and thus Cyim—pot(Mr),
which is a relaxation of the initial constraint Cj;m,(Mpg), is convertible anti-
monotone and is used in our complete and correct extraction algorithm.

Mining Frequent Sequential Patterns under a Similarity Constraint 5

Table 2. Files used for our experiments

Parameter|Description of the parameter File F1|File F2|File F3
|D| Number of event sequences 25k 50k | 100k
IC| Average number of elements per event sequence| 10 10 10
|T| Average element size 10 10 10
|S| Average size of maximal sequential patterns 10 10 10
[Ns| |Number of maximal sequential patterns 5k 5k 5k
|N| Number of items 100 100 2k

4 Experiments

Our prototype has been implemented in JAVA and experiments have been run
on a Pentium IIT 800 Mhz with 512Mb of memory. We used 3 synthetic data
sets (Table 2) obtained with the Quest generator . Experiments aim at showing
the relevancy of the active use of the conjunction of similarity and frequency
constraints, compared to its use during post-processing. To simplify, we con-
sider a fixed frequency threshold and only inclusions and deletions operations
with uniform costs. Thus, the similarity threshold corresponds to a maximum
number of operations allowed to align a pattern on the reference one. We are
mainly interested in execution time, number of constrained and generated can-
didates, and respective selectivities of C'yreq and Cg;p (Mp) constraints. Results
are depicted on Figure [l When the similarity threshold is 0, it means that the
similarity constraint is taken into account in a post-processing phase. When it
is equal to 1, it means that no editing operations are allowed. First, we can re-
mark that the higher the similarity threshold is, the better the performances are.
Moreover, we can see that the number of generated candidates and the execution
time globally follow the same trends. Notice an exception for the file F3 with
a similarity threshold of 1. Indeed, performances increase whereas the number
of generated candidates remains the same. We can explain that by the decrease
of the selectivity of support-based pruning and the increase of the selectivity
of similarity-based pruning, whose validity is not difficult to check. Finally, we
observe that the selectivity of the similarity-based constraint is inversely pro-
portional to the selectivity of the support-based constraint.

5 Conclusion

We studied how to push a similarity constraint into a frequent sequential patterns
mining algorithm. Experimental results confirm the relevancy of the approach.
There are many possible extensions of this work: first, it worths to study the
impact of more complex alignments methods (such as the Viterbi algorithm).
Moreover, we have to use the prototype against real data sets and study the
influence of the choice of editing operations costs.

! http://www.almaden.ibm.com/cs/quest/index.html

6 M. Capelle, C. Masson, and J.-F. Boulicaut
Number of generated candidates Execution Time
3e+0¢ T % T F1-10% — ﬁm T T F1.10% —
2 F2 = 50 smen S F2 = 5% wmen
£ 25000 F3-1% | 3 F3 - 1% wwm
b} g
2
8 2er06 B
g 10
g 1.5e+06 _§
c 8
&l £
5 o ge
3 , =
£ sooo0 o, g K
Sewel e 3
............. @
..... 2
‘0 04 06 1 W o. 04 06 08 1
Similarity Threshold Similarity Threshold
Number of constrained patterns Constraints selectivities
" FL-10% — e Similarity Selectivity F1 - 10% —
) F2 - 5% e D 14 Similarity Selectivity F2 - 5% v
g o F3-1%] & Similarity Selectivity F3 - 1% w...
= k= Support Selectivity F1 - 10% mmm
8 5000 2 Support Selectivity F2 - 5% wum
3 g Support Selectivity F3 - 1%
- 3
ﬁ § 08
§ a0 g
< S os
5
g | g0
g 5
3 1w 202
% 04 “ 06 08 1 On. 02 04 - 06 08 1
Similarity Threshold Similarity Threshold
Fig. 1. Extractions results on the three files
References
1. R. Agrawal and R. Srikant. Mining sequential patterns. In Proc. ICDE’95, pages

2.

10.

3-14. IEEE Press, March 1995.

Matthieu Capelle. Extraction de motifs séquentiels sous contraintes (in french).
Master’s thesis, DEA ECD, INSA Lyon, Villeurbanne, France, September 2001.
M. N. Garofalakis, R. Rastogi, and K. Shim. SPIRIT: Sequential Pattern Mining
with Regular Expression Constraints. In Proc. VLDB’99, pages 223-234. Morgan
Kaufmann, September 1999.

Levenshtein. Binary codes capable of corecting deletions, insertions, and reversals,
1966.

J. Liu, Kelvin Chi Kuen Wong, and Ka Keung Hui. Discovering user behavior
patterns in personalized interface agents. In Proc. IDEAL 2000, pages 398—403.
Springer Verlag LNCS 1983, December 2000.

H. Mannila, H. Toivonen, and A. I. Verkamo. Discovery of frequent episodes in
event sequences. Data Mining and Knowledge Discovery, 1(3):259-289, 1997.

P. Moen. Attribute, Event Sequence, and Event Type Simarity Notions for Data
Mining. PhD thesis, Dept. of Computer Science, University of Helsinki, Finland,
February 2000.

R. T. Ng, L. V.S. Lakshmanan, J. Han, and A. Pang. Exploratory mining and
pruning optimizations of constrained associations rules. In Proc. SIGMOD’98,
pages 13-24. ACM Press, June 1998.

J. Pei, J. Han, and L. V.S. Lakshmanan. Mining frequent itemsets with convertible
constraints. In Proc. ICDE’01, pages 433-442. IEEE Computer Press, April 2001.
M. J. Zaki. Sequence mining in categorical domains: Incorporating constraints. In
Proc. CIKM’00, pages 422-429. ACM Press, November 2000.

	Introduction
	Basic Notions
	Similarity Constraint
	Experiments
	Conclusion

