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Abstract
It is extremely useful to exploit labeled datasets not only to learn models and perform pre-
dictive analytics but also to improve our understanding of a domain and its available targeted
classes. The subgroup discovery task has been considered for more than two decades. It
concerns the discovery of patterns covering sets of objects having interesting properties, e.g.,
they characterize or discriminate a given target class. Thoughmany subgroup discovery algo-
rithms have been proposed for both transactional and numerical data, discovering subgroups
within labeled sequential data has been much less studied. First, we propose an anytime
algorithm SeqScout that discovers interesting subgroups w.r.t. a chosen quality measure.
This is a sampling algorithm that mines discriminant sequential patterns using a multi-armed
bandit model. For a given budget, it finds a collection of local optima in the search space of
descriptions and thus, subgroups. It requires a light configuration and is independent from
the quality measure used for pattern scoring. We also introduce a second anytime algorithm
MCTSExtent that pushes further the idea of a better trade-off between exploration and
exploitation of a sampling strategy over the search space. To the best of our knowledge, this
is the first time that the Monte Carlo Tree Search framework is exploited in a sequential
data mining setting. We have conducted a thorough and comprehensive evaluation of our
algorithms on several datasets to illustrate their added value, and we discuss their qualitative
and quantitative results.
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1 Introduction

In many data science projects, we have to process labeled data and it is often valuable to
discover descriptions, say patterns, that discriminate well some classes. This can be used to
support various machine learning techniques aiming at predicting the class label for unseen
objects (i.e., learning models). It is also interesting per se since the language for descriptions
is, by design, readable and interpretable by analysts and data owners. Therefore, it can be used
to explore and better understand a given phenomenon thanks to collected labeled data, and
it can also provide a solid foundation for building new relevant features [43]. The search for
such patterns has been referred to under different names, among which subgroup discovery,
emerging pattern mining or contrast set mining [30]. Hereafter, we will use the terminology
of the subgroup discovery framework [38].

Labeled sequential data are ubiquitous. This makes subgroup discovery applicable to
many application domains, for instance, text or video data analysis [31], industrial process
supervision [40], biomedical genomics sequential data analysis [35], web usage mining [32],
video game analytics [8], etc. Let us consider amaintenance scenario for a cloud environment.
Data generated by such a system are sequences of events and can be labeled with failure,
i.e., breakdown presence or absence. Applying classification techniques helps answering to:
“will a failure event occur?” (see, e.g., [39]), while applying sequential event prediction helps
determining “what is the next event to occur?” (see, e.g., [25]). Nevertheless, another need
is to explain, or at least, to provide hypotheses on the why. Addressing such a descriptive
analytics issue is the focus of our work. Given data sequences, labeled with classes, we aim at
automatically finding discriminative patterns for these classes. Considering again our cloud
environment example, the goal is to compute patterns “that tend to occur with breakdowns”.
Such patterns provide valuable hypotheses for a better understanding of the system. Once
validated by domain experts, the discovered patterns can then be used to support maintenance
planning tasks.

Subgroup discovery on labeled sequential data faces several challenges. Given a dataset
of object descriptions (e.g., objects described by discrete sequences), a sequential pattern is
a generalization of a description that covers a set of objects. An unusual class distribution
among the covered objects makes a pattern interesting. For example, when a dataset has
a 99–1% distribution of normal-abnormal objects, a pattern covering objects among which
50% are abnormal is highly relevant (w.r.t. a quality measure like, e.g., theWeighted Relative
Accuracy measureWRAcc [23]). However, such patterns cover generally a small number of
objects. They are difficult to identify with most of the algorithms that perform an exhaustive
exploration of the search space with the help of a minimal frequency constraint (see, e.g.,
SD-MAP [2] for categorical and numerical data only). Therefore, heuristic approaches that
are often based on beam search or sampling techniques are used to find only subsets of the
interesting patterns. Another fairly open problem concerns the computation of non-redundant
patterns, avoiding to return thousands of variations for Boolean and/or numerical patterns
[7].

Heuristic methods for sequential data have not yet attracted much attention. Diop et al.
[13] introduced a sampling approach that draws patterns according to the frequency measure
only. Egho et al. [16] propose a promising method: the sampling method misère can be
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used for any quality measure when exploiting sequences of events. Their key idea is to
draw patterns as strict random generalizations of object descriptions while a time budget
enables it, and to keep a pool of the best non-redundant patterns found so far. The strength
of this algorithm is that it finds patterns covering at least one element. However, it does not
exploit previous sampling to guide the search in the next iterations: it is an exploration-only
framework, without memory. Such a generic approach has been the starting point of our
research, though we were looking for further quality assessment of discovered subgroups.

Our research concerns search space explorationmethods for labeled sequences of itemsets
and not just sequences of items. We first describe the algorithm SeqScout that has been
introduced in our conference paper [26].

SeqScout is based on sampling guided by a multi-armed bandit model, followed by a
generalization step and a phase of local optimization. We show that it gives better results
than an adaptation of misère for the case of sequences of itemsets with the same budget
when considering huge search spaces. We then present the main contributions of this paper
summarized as follows:

– We introduce MCTSExtent, a significant evolution of SeqScout where the multi-
armed bandit model evolves toward a Monte Carlo Tree Search (MCTS). Doing so, we
look for a trade-off between exploration and exploitation during the search of interesting
patterns. Using MCTS for pattern discovery has been proposed recently in [7] as a
promising framework for pattern discovery in transactional and numerical data. Defining
the right policies about the different MCTS operators remains, however, open even in
such rather simple settings. To the best of our knowledge, our algorithm MCTSExtent
is the first attempt to apply MCTS for pattern mining in sequential data.

– To the best of our knowledge, there is no solution for the problem of the Longest Com-
mon Subsequence for sequences of itemsets, that is needed within MCTSExtent when
generalizing subsequences. Thus, we propose a new dynamic programming procedure
to solve it.

– We provide a thorough assessment of our claims via an exhaustive set of experiments
with benchmark data involving the comparison with the competitor algorithms, namely
misère, Beam Search and SeqScout.

– We describe a novel application of the problem of mining sequential discriminative pat-
terns in labeled sequences to the e-sport domain forwhich our algorithmhelps discovering
actionable play patterns. It exploits Rocket League video game data.1 We make our orig-
inal dataset publicly available for the purpose of a better evaluation and reproducibility.

Both presented algorithms have several advantages: They give results anytime and take
benefits from random search to limit redundancy of results and to increase subgroup diversity.
They are also agnostic w.r.t. the used quality measure. All source codes, original datasets and
experimental results are available online.2

The paper is organized as follows: Section 2 discusses the relatedwork.We formally define
the problem in Sect. 3. We then describe our solution algorithms SeqScout in Sect. 4 and
MCTSExtent in Sect. 5. Section 6 presents an empirical study on several datasets, including
experiments with Starcraft II and Rocket League data (game analytics). Section 7 concludes.

1 https://www.rocketleague.com/.
2 https://github.com/Romathonat/MCTSExtent.
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2 Related work

Sequential pattern mining is now a classical data mining task and was introduced by the
pioneer contribution of Agrawal et al. [1] that tackles frequent sequential pattern mining. It
remains a challenging task due to the size of the search space, that is, the set of all possible
sequential pattern, bounded by the length of the biggest sequence of the dataset. Thus, Raïssi
and Pei have shown in [33] that the number of sequences of length k is wk = ∑k−1

i=0 wi
( |I|
k−i

)
,

with |I| being the number of possible items. As an example, if we consider the well-known
UCI dataset promoters [14], with |I| = 4 and k = 57, the size of the search space is
approximately 1041.

Various methods have been proposed to mine interesting sequential patterns within a
constraint-based datamining approach.We review thembriefly andwediscuss their relevancy
when considering our need for discriminative patterns.

2.1 Enumeration-basedmethods

Many enumeration techniques enable to mine patterns from Boolean, numerical, sequential
and graph data [19]. They can be adapted for the case of discriminative pattern mining. For
instance, the SPADE algorithm [41] has been adapted for sequence classification based on
frequent patterns [42]. The main idea of such methods is to visit each candidate pattern
only once while pruning large parts of the search space. Indeed, we know how to exploit
formal properties (e.g., monotonicity) of many user-defined constraints (and not only the
minimal frequency constraint). Their quality measure is thus computed either during or after
the discovery of all frequent patterns [8]. This is inefficient for the discovery of the best
discriminative patterns only. To overcome this limitation and to support pruning the search
space, upper bounds on the quality measure can be used. However, they remain generally too
optimistic and are specific to a particular measure (see, e.g., [31], [18]). Moreover, enumer-
ation techniques coupled to upper bounds mainly aim at solving the problem of finding the
best pattern in the search space and not the best pattern set. [22] also proposed an interesting
approach based on search space pruning for finding the best discriminative subsequences
under a gap constraint. However, their work is also specific to only one discriminative qual-
ity measure. It requires to tune several parameters, including a minimum support, and it has
been designed for processing sequences of items, and not sequences of itemsets.

2.2 Heuristic methods

An interesting trend to support pattern discovery is to avoid exhaustive search and to provide
high-quality patterns available anytime during the search, ideally with some guarantees on
their quality. Examples of such guarantees are the distance to the best solution pattern [5] or
the guarantee that the best solution can be found given a sufficient budget [7]. Let us discuss
some of the heuristic approaches that have been proposed so far.

Beam Search is a widely used heuristic algorithm. It traverses the search space (often
structured as a lattice) level-wise from the most general to the most specific patterns, and it
restricts each level to a subset of non-redundant patterns of high quality [15]. The greedy
and exploitation-only nature of beam search is its major drawback, yet it allows to quickly
discover some interesting patterns.

Gsponer et al. used a different approach, where a linearmodel is trained on a set of features
extracted from sequences of the dataset [20]. Those features correspond to the search space of
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all possible subsequences. By minimizing a loss function, they can directly look at weights
of their model to determine the most predictive subsequences. However, this approach is
only applied on sequences of items, with numeric classes, and it cannot choose a quality
measure to optimize. For example, using this algorithm to find patterns corresponding to a
large subgroup, i.e., more generalistic predictive rule covering many instances of the dataset
with a lesser proportion of positive element, is not possible.

Boley et al. [6] proposed a two-step sampling approach giving the guarantee to sample
patterns (on itemsets) proportionally to different measures, namely frequency, squared fre-
quency, area, or discriminativity. However, this method only works on these measures. To
consider another measure, Moens and Boley had to design a new method [28]. Considering
sequences, Diop et al. proposed an approach which guarantees that the probability of sam-
pling a sequential pattern is proportional to its frequency [12,13]. It focuses on the frequency
measure only.

Egho et al. [16] have proposed the measure agnostic method misère. Given a time
budget, their idea is to generate random sequential patterns covering at least one object while
keeping a pool of the best patterns obtained so far. It provides a result anytime, empirically
improving over time, but there is no use of previous sampling: This is an exploration-only
strategy.

Pattern mining can be modeled as a multi-armed bandit problem enabling an exploita-
tion/exploration trade-off [3]. Each candidate sequence is an “arm” of a bandit. Bosc et al.
[7] have developed such a game theory framework usingMonte Carlo Tree Search to support
subgroup discovery from labeled categorical and numerical data. They proposed an approach
based on sampling, where each draw improves the knowledge about the search space. Such
a drawn object guides the search to achieve an exploitation/exploration trade-off.

To the best of our knowledge, the problem of mining discriminative sequences of itemsets
agnostic of the chosen quality measure with sampling approaches has not been addressed
yet in the literature, except in our recent conference paper [26]. Hereafter, we describe our
methods SeqScout and MCTSExtent that compute top-k non-redundant discriminative
patterns. For that purpose, we want to maximize the well-known quality measure called
WRAcc [23]. Even though we focus on it, our methods are generic enough for using any
quality measure, without requiring specific properties. For instance, we report the results
obtained for othermeasures inSect. 6.7.Note also that our algorithmsdonot require parameter
tuning, unlike Beam Search.

3 Formalizing the non-redundant subgroup discovery task

Let us now formalize our pattern mining task. Let I be a set of items. Each subset X ⊆ I
is called an itemset. A sequence s = 〈X1 · · · Xn〉 is an ordered list of n > 0 itemsets. The
si ze of a sequence s is denoted as n, and l = ∑n

i=1 |Xi | is its length. A database D is a set
of |D| sequences (see Table 2). Given a set of classes C, we denote by Dc ⊆ D the set of
sequences in D that are labeled by c ∈ C. We summarize the notations in Table 1.

Definition 1 (Subsequence) A sequence s = 〈X1 · · · Xns 〉 is a subsequence of a sequence
s′ = 〈X ′

1 · · · X ′
n′
s
〉, denoted s � s′, iff there exists 1 ≤ j1 < · · · < jns ≤ n′

s such that

X1 ⊆ X ′
j1

· · · Xns ⊆ X ′
jns
. In Table 2, 〈{a}{b, c}〉 is a subsequence of s1 and s2.

Definition 2 (Positive element/sequence/object)A sequence of the database labeled with the
target class is called a positive element.

123



444 R. Mathonat et al.

Table 1 Notations

Notation Description

I Set of possible items

m = |I| Number of possible items

x ∈ I Item

X ⊆ I Itemset

D Database

C Set of classes

S Set of all subsequences, i.e., search space

s = 〈X1 . . . Xn〉 sequence of itemsets

X j
i The i th itemset in s j

n Size of a sequence s = 〈X1 . . . Xn〉
l = ∑n

i=1 |Xi | Length of a sequence

c ∈ C Class

s � s′ s is a subsequence of s′
ext(s) Extent of s

supp(s) Support of s

f req(s) Frequency of s

ϕ Quality measure

Neighborhood(s) Neighborhood of s

Table 2 An example database D id s ∈ D c

s1 〈{a}{a, b, c}{a, c}{d}{c, f }〉 +
s2 〈{a, d}{c}{b, c}{a, e}〉 +
s3 〈{e, f }{a, b}{d, f }{c}{b}〉 −
s4 〈{e}{g}{a, b, f }{c}{c}〉 −

Definition 3 (Extent, support and frequency) The extent of a sequence s is ext(s) = {s′ ∈
D | s � s′}. The support of a sequence s is supp(s) = |ext(s)|. Its frequency is f req(s) =
supp(s)/|D|. Given the data in Table 2, we have ext(〈{a}{b, c}〉) = {s1, s2}.
Definition 4 (Set-extension) A sequence sb is a set-extension by x ∈ I of a sequence sa =
〈X1X2 · · · Xn〉 if ∃i, 1 ≤ i ≤ n + 1 such that sb = 〈X1 · · · {x}i · · · Xn+1〉. In other words,
we have inserted an itemset Xi = {x} in the i th position of sa .

Definition 5 (Item-extension) A sequence sb is an item-extension by x ∈ I of a sequence
sa = 〈X1X2 · · · Xn〉 if ∃i, 1 ≤ i ≤ n such that sb = 〈X1 · · · Xi ∪ {x}, . . . , Xn+1〉.

For example, 〈{a}{c}{b}〉 is a set-extension of 〈{a}{b}〉 and 〈{a, b}{b}〉 is an item-extension
of 〈{a}{b}〉.
Definition 6 (Reduction) A sequence sb is a reduction of sa if sa is an set-extension or item-
extension of sb.

Definition 7 (Quality measure) Let S be the set of all possible subsequences in a dataset. A
quality measure ϕ is an application ϕ : S → R that maps every sequence from s ∈ S with a
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Fig. 1 Sequence of itemsets seq1

Fig. 2 Sequence of itemsets seq2

Fig. 3 A pattern p appearing in sequence of itemsets s1. The items not belonging to the pattern are given in
light grey

Fig. 4 A pattern p appearing in
sequence of itemsets s2. The
items not belonging to the pattern
are given in light grey

real number to reflect its interestingness (quality score in the data). For instance, Precision,
defined by P(s → c) = supp(s,Dc)

supp(s,D)
, is a quality measure about the association of a class label

c with a sequence s.

Definition 8 (Local optimum) Let Neighborhood(s) be the neighborhood of s, i.e., the set
of all item-extensions, set-extensions and reductions of s. r� is a local optimum of S w.r.t.
the quality measure ϕ iff ∀r ∈ Neighborhood(r�), ϕ(r�) ≥ ϕ(r).

Definition 9 (Non θ -redundant subsequences)A set of patterns Sp ⊆ S is non θ -redundant
if given θ ∈ [0; 1] and ∀s1, s2 ∈ Sp , where s1 �= s2, we have: sim(s1, s2) ≤ θ , where sim
is a similarity function. We use here the Jaccard index as a similarity measure as in [24]:

sim(s1, s2) = |ext(s1) ∩ ext(s2)|
|ext(s1) ∪ ext(s2)| .

We can now precisely define the considered mining task.
Problem Statement For a databaseD, an integer k, a real number θ , a similarity measure sim,
a quality measure ϕ and a target class c ∈ C, the non-redundant subgroup discovery task
consists in computing the set Sp of the best non θ -redundant patterns of size |Sp| ≤ k, mined
w.r.t the quality measure ϕ.

This problem can be illustrated in a visual more visual way. A sequence of itemsets can be
represented as shown in Fig. 1. Each vertical slice corresponds to an itemset, and each square
of color represents an itemwithin this itemset. For instance, this sequence of itemsets could be
written as follows: s1 = 〈{greySquare}, {greySquare, brownSquare}, {greySquare},
{greySquare, blueSquare} · · · 〉. A dataset of sequences of itemsets is then composed of
different sequences like represented in Figs. 1 and 2. Our goal is then to extract patterns,
i.e., subsequences, appearing in dataset, whose quality is assessed with quality measures,
like the WRAcc. The pattern p (given in color) appears in both sequences, see Figs. 3
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Fig. 5 Illustration of SeqScout

and 4. Visually, we can see that a pattern appears in a sequence, if its itemsets are included
in itemsets of the sequence in the same order and with a potential gap between them.

4 Sequential patterns scouting

Our first algorithm is called SeqScout. It is a sampling approach that exploits gen-
eralizations of database sequences, and searches for local optima w.r.t. the chosen quality
measure. Figure 5 provides an illustration for the method.3 The main idea of the SeqScout
approach is to consider each sequence of the labeled data as an arm of a multi-armed bandit
when selecting the sequences for further generalization using the Upper Confidence Bound
(UCB) principle (see Algorithm 1). Briefly, the idea of the UCB is to give a score to each
sequence that quantifies an exploration-exploitation trade-off, and to choose the sequence
with the best one (details on this part will be given later).

First (Lines 2-4), priority queues, π and scores, are created. π stores encountered patterns
with their quality, and scores keeps in memory the list of UCB scores of each sequence
of the dataset, computed by using Equation 1 (see Sect. 4.1). data+ contains the list of
all sequences of the dataset labeled with the target class. Indeed, taking sequences having
the target class will lead to generalizations having at least one positive element. Then, the
main procedure is launched as long as some computational budget is available. The best
sequence w.r.t.UCB is chosen (Line 9). This sequence is ‘played’ (Line 10), meaning that it
is generalized (see Sect. 4.2) and its quality is computed (see Sect. 4.6). The created pattern
is added to π (Line 11). Finally, the UCB score is updated (Line 12). As post-processing
steps, the top-k best non-redundant patterns are extracted from scores using the filtering step
(see Sect. 4.3). Finally, these patterns are processed thanks to a local optimization procedure

3 In the context of sequential pattern mining, the search space is a priori infinite. However, we can define the
border of the search space (the bottom border in Fig. 5) by excluding patterns having a null support. We can
easily prove that each element of this border is a sequence within the database. Therefore, the search space
shape depends on the data.
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(see Sect. 4.4). Moreover, SeqScout needs other modules that concern the selection of the
quality measure (see Sect. 4.5) and the quality score computation (see Sect. 4.6).

4.1 SELECT policy: sequence selection

We propose to model each sequence of the dataset as an arm of a multi-armed bandit slot
machine. The action of playing an arm corresponds to generalizing this sequence to obtain a
pattern, and the reward then corresponds to the quality of this pattern. Following an exploita-
tion/exploration trade-off, sequences leading to bad quality patterns will be avoided, leading
to the discovery of better ones.

The multi-armed bandit model is well known in the game theory literature [10]. We
consider a multi-armed bandit slot machine with k arms, each arm having its own reward
distribution. Our problem is then formulated as follows. Having a number N of plays, what is
the best strategy to maximize the reward ? The more an arm is played, the more information
about its reward distributionweget.However, towhat extent is it needed to exploit a promising
arm (exploitation), instead of trying others that could be more interesting in the long term
(exploration)? Auer et al. [3] proposed a strategy called UCB1. The idea is to give each arm
a score, and to choose the one that maximizes it:

UCB1(i) = x̄i +
√
2ln(N )

Ni
, (1)

where x̄i is the empirical mean of the i th arm, Ni is the number of plays of the i th arm, and
N is the total number of plays. The first term encourages the exploitation of arms with good

Algorithm 1 SeqScout
1: function SeqScout(budget)
2: π ← Priori t yQueue()
3: scores ← Priori t yQueue()
4: data+ ← Filter Data()

5: for all sequence in data+ do
6: scoresucb.add(sequence,∞)

7: end for
8: while budget do
9: seq, qual, Ni ← scores.bestUCB()

10: seqp, qualp ← PlayArm(seq)

11: π.add(seqp, qualp)

12: scores.update(seq,
Ni ∗qual+qualp

Ni+1 , Ni + 1)
13: end while
14: π.add(OPT I M I Z E(π))

15: return π.topK NonRedundant()
16: end function
17:
18: function OPTIMIZE(π )
19: topK ← π.topK NonRedundant()
20: for all pattern in topK do
21: while pattern is not a local optima do
22: pattern, qual ← Best Neighbor(pattern)

23: end while
24: end for
25: return pattern, qual
26: end function
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reward, while the second encourages the exploration of less played arms by giving less credit
to the ones that have been frequently played.

Performing an exploitation/exploration trade-off for pattern mining has already been
applied successfully to itemsets and numerical vectors by means of Monte Carlo Tree Search
[7]. When dealing with a huge search space, using sampling guided by such a trade-off can
give good results. However, contrary to [7], we consider here the search space of extents, not
the search space of all possible patterns. Exploring the search space of extents guarantees to
find patterns with non-null support, while exploring the search space of all possible patterns
leads toward many patterns with a null support. This is a crucial issue when dealing with
sequences of itemsets.

4.2 ROLLOUT policy: pattern generalization

After the best sequence w.r.t. UCB1 is chosen, it is generalized, meaning that a new more
general pattern is built. It enables to build a pattern with at least one positive element. Indeed,
most of the patterns in the search space have a null support [33]. SeqScout generalizes a
sequence s in the following way. It iterates through each item within each itemset Xi ∈ s,
and it removes it randomly according to the following rule:

{
remain, if z < 0.5
remove, if z ≥ 0.5

, where z ∼ U(0, 1).

The quality of the pattern is then computed, to update the UCB1 value of the sequence from
which the pattern has been generated.

4.3 Filtering step

To limit the redundancy of found patterns, a filtering process is needed. We adopt a well-
described set covering principle from the literature (see, e.g., [7,24]) that can be summarized
as follows. First, we take the best element, and then, we remove those that are similar within
our priority queue π . Then, we take the second best, and continue this procedure until the k
best non-redundant elements are extracted.

4.4 Local optimum search

Finally, a local optimum search is launched w.r.t. Definition 8. Various strategies can be
used. The first possible strategy is the Steepest Ascend Hill Climbing [34]. It computes
the neighborhood of the generalized pattern, i.e., all its item-extensions, set-extensions and
reductions. Then, it selects the pattern among those of the neighborhood maximizing the
quality measure. This is repeated until there is no more patterns in the neighborhood having
a better quality measure. Another possible strategy is the Stochastic Hill Climbing [34]:
A neighbor is selected at random if its difference with the current one is “large enough”.
Notice, however, that it introduces a new parameter. Depending on the dataset, the branching
factor can be very important. Indeed, for m items and n itemsets in the sequence, there are
m(2n + 1) patterns in its neighborhood (see Theorem 1). To tackle this issue, we use First-
Choice Hill Climbing [34]. We compute the neighborhood until a better pattern is created,
then we directly select it without enumerating all neighbors.
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Theorem 1 For a sequence s, let n be its size, l its length, and m the number of possible
items, the number of neighbors of s, denoted |Neighborhood(s)|, is m(2n + 1).

Proof The number of item-extensions is given by:

|I ext | =
n∑

i=1

|I| − |Xi | = nm −
n∑

i=1

|Xi | = nm − l.

We have now to sum the number of reductions, set-extensions and item-extensions:

|Neighborhood(s)| = l + m(n + 1) + |I ext | = m(2n + 1).

��

4.5 Quality measure selection

The choice of the quality measure ϕ is application dependent. Our approach can deal with
any knownmeasures that support class characterization, such as, among others, the F1 score,
informedness or the Weighted Relative Accuracy [23]. The later, the WRAcc, is commonly
used for discriminant pattern mining and subgroup discovery. It compares the proportion of
positive elements to the proportion of positive elements in the whole database. Let c ∈ C be
a class value and s be a sequence,

WRAcc(s, c) = f req(s) ×
(
supp(s,Dc)

supp(s,D)
− |Dc|

|D|
)

.

It is a weighted difference between the precisions P(s → c) and P(〈〉 → c). The weight
is defined as f req(s) to avoid the extraction of infrequent subgroups. Indeed, finding very
specific subgroups covering one positive element would result in a perfect quality value but
a useless pattern. WRAcc value ranges in [− 0.25, 0.25] in the case of a perfect balanced
data set, i.e., containing 50% of positive elements.

We consider objective quality measures that are solely based on pattern support in
databases (whole dataset, or restricted to a class). It enables a number of optimizations.
Using random draws makes it particularly difficult as each draw is independent: We cannot
benefit from the same data structures as classical exhaustive pattern mining algorithms do
(see, e.g., [4]).

4.6 Efficient computation of quality scores

To improve the time efficiency of support computing, bitset representations have been pro-
posed. For instance, SPAM uses a bitset representation of a pattern when computing an item-
or set-extension at the end of a sequence [4]. In our case, we consider that an element can
be inserted anywhere. Therefore, we use a bitset representation that is independent from
the insertion position. Its main idea lies in keeping all bitset representations of encountered
itemsets in a hash table (memoization), and then combining them to create the representation
of the desired sequence. The main idea of our strategy is given in Fig. 6. Assume we are
looking for the bitset representation of 〈{ab}, {c}〉. Let 〈{c}〉 be an already encountered pattern
(i.e., its representation is known) while 〈{ab}〉 was not. This cannot be handled by the SPAM
technique as a new element has to be added before a known sequence. The algorithmwill first
try to find the bitset representation of 〈{ab}〉. As it does not exist yet, it will be generated and
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Fig. 6 Bitset representation and support computing

Fig. 7 Steps of Monte Carlo Tree Search, inspired by [9]

added to the memoization structure. Then, position options for the next itemset are computed
(Line 2 in Fig. 6). The latter is then combined with a bitset representation of 〈{c}〉 using
bitwise AND (Line 4). The support of the generated sequence can then be computed.

5 Monte Carlo tree search for sequences

We now propose an extension of SeqScout that we call MCTSExtent. It is a significant
evolution of SeqScout when looking toward a better trade-off between exploration and
exploitation of a sampling strategy over the search space. It is based on the Monte Carlo
Tree Search framework that is a founded evolution of bandit-based methods [9]. Like for
SeqScout, our idea here is to explore the search space in a bottom-up way, contrary to
classical search space exploration in pattern discovery. Indeed, instead of beginning the
exploration by selecting general patterns, we start by isolating very specific patterns cover-
ing only few objects having the target label, and we construct better ones by adding other
interesting objects of the database. In other terms, we directly explore groups of instances of
the database, i.e., extents with at least one positive element.

5.1 Background

Monte Carlo Tree Search is a method originally used in games to explore vast search spaces
following an exploration-exploitation trade-off. The idea is to sequentially sample the search
space to get information about locations of promising areas (meaning good game configura-
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tions in the case of games), to guide the search. At each iteration, the algorithm starts from
the initial node, navigates through already discovered nodes, until it finds an interesting one
(SELECT). Then, it computes a specialization of the selected node (EXPAND), samples the
search space from this expanded node (ROLLOUT) and gives back the information about
the quality of the sampled area (UPDATE). The search can be stopped anytime. A schema
of the four steps of MCTS is given in Fig. 7.

5.2 MCTSExtent description

The pseudo-code of MCTSExtent is given in Algorithm 2. The main loop of the algorithm
runs as long as a computational budget is available (Lines 4-11)making the algorithmanytime.
Note that each node of the MCTS tree contains a list of positive instances, in other words its
extent, and a pattern covering them and only them.

The first step is to SELECT a node (Lines 15–23), i.e., choosing the best node in the tree
following the exploration-exploitation trade-off w.r.t. UCB value. This step helps to guide
the search toward promising areas of the search space, having good quality patterns, without
ignoring that other non-explored parts can also be interesting. Thus, at each iteration, the
algorithm checks if the current node is fully expanded, according to Definition 10. If not, it
is selected, and if yes, the SELECT procedure continues.

Definition 10 (Fully expanded Node) A fully expanded node is a node which has already
been expanded in all possible ways. It means there are no positive sequences to add to its
extent to compute an unseen Longest Common Subsequence (LCS).

Then, a new node is created with EXPAND (Lines 25–29) as follows:

– a new positive database object is added to the extent of the selected node;
– the Longest Common Subsequence (see Sect. 5.4) between this object and the pattern of

the selected node is computed;
– the extent of this LCS is then computed.

We need to perform this last step because the LCS can cover more objects of the database
than the union of the previous extent and the new positive object. It enables to get one of the
most specialized pattern covering at least selected node objects and the new positive object.
Notice that its computational cost is negligible compared to support computation. Moreover,
it creates a pattern having positive elements: It can lead to the creation of a good quality
pattern if it covers less negative elements.

The next step is the ROLLOUT (Lines 31–38), where the node is generalized the same
way as explained in Sect. 4.2. Finally, the score of the ROLLOUT is used to update the quality
of the path followed to reach it: the expanded node, the selected node, and all its parents until
the root. This step can be seen as a back-propagation of the result: The search space has been
sampled, and we update the quality of nodes of the tree to indicate if this area is interesting
or not for the next iterations.

Finally, once the time budget is reached, the algorithm returns the top-k non-redundant
elements, i.e., it performs the same redundancy filtering step as SeqScout (see Sect. 4.3).

5.3 Example

An example of MCTSExtent steps is given in Fig. 9. First, the SELECT function starts from
the root node and it selects the best node to expand thanks to UCB. Node containing Object
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Algorithm 2MCTSExtent
1: function MctsExtent(budget)
2: π ← Priori t yQueue()
3: create s0 empty root having all instances as children
4: while computational budget do
5: ssel ← Select(s0)
6: sexp, qualexp ← Expand(ssel )
7: sroll , Δ ← Rollout(sexp)
8: Update(sexp, Δ)

9: π.add(sexp, qualexp)
10: π.add(sroll ,Δ)

11: end while
12: return π.topK NonRedundant()
13: end function
14:
15: function Select(s)
16: while s is not root do
17: if s is not fully expanded then
18: return s
19: else
20: s ← BestChild(s)
21: end if
22: end while
23: end function
24:
25: function Expand(s)
26: s+ ← randomly choose a posi tive instance not in s
27: sexp ← extent(LCS(s, s+))

28: return sexp, rewardsexp
29: end function
30:
31: function Rollout(s)
32: for item in each itemset in s do
33: if random > 0.5 then
34: s.remove(i tem)

35: end if
36: end for
37: return s, rewards
38: end function
39:
40: function Update(s, Δ)
41: while s �= s0 do
42: Q(s) ← N (s)∗Q(s)+Δ

N (s)+1
43: N (s) ← N (s) + 1
44: end while
45: end function
46:
47: function BestChild(s)
48: return argmaxs′ in children of s UCB(s, s′)
49: end function
50:

3 is not fully expanded, so it is selected. Then, the EXPAND function first takes a random
positive element, which is 2 in this case, and adds it to the node. Then, the LCS between the
pattern of the selected node and Object 2 is computed: the extent of the node is now {1,2,3}.
From this node, we can nowmake a ROLLOUT and the pattern is generalized. Finally, nodes

123



Anytime mining of sequential discriminative patterns... 453

Fig. 8 MCTSExtent Principle

Fig. 9 Illustration of MCTSExtent

from the path are updated with the reward of the ROLLOUT to provide feedback about the
quality of this area of the search space.
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5.4 Computing a longest common subsequence

MCTSExtent needs the classical concept of Longest Common Subsequence (LCS).
Hirschberg et al. have described a dynamic programming algorithm that solves this problem
in polynomial time for sequences of items [21]. However, it does not work on sequences
of itemsets. Vlachos et al. [37] introduced an algorithm for sequences of multidimensional
real-values items, having parameters to enforce constraints on the difference between real
values. This is a different problem. Egho et al. [17] have proposed an algorithm to compute
the number of distinct common subsequences between two sequences of itemsets. Such an
algorithm does not generate the needed longest common subsequence.

Theorem 2 Let two sequences of itemsets S1 and S2 of size n and m. We denote S1≤i the

prefix of S1, i.e., S1≤i = 〈X1 · · · Xi 〉. Let LCS(S1, S2) be the set of the longest common
subsequences of S1 and S2, or more formally:

LCS(S1, S2) = argmax
s∈CS(S1,S2)

length(s)

with length(s) the length of s, and CS(S1, S2) the set of all common subsequences between
S1 and S2.

We then have:

LCS(S1≤i , S
2≤ j ) = argmax

s∈χ
length(s)

with

χ =
⋃

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

LCS(S1≤i−1, S
2≤ j−1) ∪ (X1

i ∩ X2
j ) (CaseA)

LCS(S1≤i−1, S
2≤ j ) (CaseB)

LCS(S1≤i , S
2≤ j−1) (CaseC)

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

Note that it generalizes the theorem of LCS for sequences of items from [21], where X1
i ∩

X2
j is an itemset of size 1. If last items are equal, LCS(S1≤i−1, S

2≤ j ) and LCS(S1≤i , S
2≤ j−1)

are less or equally long than LCS(S1≤i−1, S
2≤ j−1)) + 1, so it is not necessary to look at it to

compute the LCS.
To prove this theorem, we will need the following lemma.

Lemma 1 ∀s1, s2 ∈ S2, s1 � S1, s2 � S2:

LCS(s1, s2) ∈ CS(S1, S2)

This comes from the fact that LCS(s1, s2) � s1 and LCS(s1, s2) � s2, so by transitivity,
LCS(s1, s2) � S1 and LCS(s1, s2) � S2.

Proof Reductio ad absurdum: Let us assume we have an LCS which is not in a case of this
theorem. We are not in Case B, a LCS(S1≤i−1, S

2≤ j ). The LCS can then finish with an item

of X1
i . Let us assume this is the case for this demonstration. Symmetrically, it can finish with

an item of X2
j for Case C.

The considered LCS then finishes with an itemset composed of elements from X1
i ∪ X2

j
(it must be common, by definition). As it must be the longest, the last itemset of this LCS
is X = X1

i ∩ X2
j . We then have a LCS of the form Y + X , with Y /∈ LCS(S1≤i−1, S

2≤ j−1),
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Fig. 10 An example of the
dynamic programming for LCS

because we cannot be in the Case A. There is then only two possibilities for Y : whether Y is
not common to S1 and S2, or Y is smaller than LCS(S1≤i−1, S

2≤ j−1). In both cases, it violates
the definition of LCS. Thus, we showed by contradiction that:

LCS(S1≤i , S
2≤ j ) ⊆ A ∪ B ∪ C . (2)

Knowing that S1≤i−1 � S1≤i and given Lemma 1, we can derive that

LCS(S1≤i−1, S
2≤ j ) ∈ CS(S1≤i , S

2≤ j ) (3)

Symmetrically,

LCS(S1≤i , S
2≤ j−1) ∈ CS(S1≤i , S

2≤ j ) (4)

LCS(S1≤i−1, S
2≤ j−1) ∈ CS(S1≤i , S

2≤ j ) (5)

X1
i ∩ X2

j ∈ CS(S1≤i , S
2≤ j ) (6)

We can deduce from (3), (4), (5) and (6) that:

A ∪ B ∪ C ⊆ CS(S1≤i , S
2≤ j ) (7)

From (2) and (7), we can conclude that the theorem is proven. ��
The pseudo-code of the dynamic programming procedure computing a LCS of two

sequences of itemsets is presented in Algorithm 3. First thematrixC is filled with 0. Then, we
use a bottom-up approach to fill the matrix with correct values, using the previous theorem.
Note that a i, j cell contains the length of LCS(S1≤i−1, S

2≤ j−1). Once the computation of the
length of the LCS is done, a backtracking procedure is launched, to construct the solution
(Lines 1-21). We begin by looking at the “bottom-right” of the matrix (Line 32). We then
check if there is an intersection between itemsets i and j (Line 5). If this is the case, we check
if the sub-problem at rank i − 1 or j − 1 has the same LCS (those cases are here to check
what path the LCS procedure took). Else, we add the intersection to the LCS, and we jump
to the sub-problem of size i − 1, j − 1. If the intersection is null, we go to the sub-problem
i − 1 or j − 1 having the maximum LCS (Lines 17–21). The procedure stops if we reach a
sub-problem of 0 (Lines 2–3).

An example is given in Fig. 10. The matrix is filled from the top-left cell to the bottom-
right. At each step, following the theorem, we take the maximum value between the left cell,
the upper cell, and the cell in the upper-left diagonal plus the length of the intersection of
current itemsets.

Complexity Let l1 and l2 be the length of S1 and S2. Let Xmax be the largest itemset present
in the dataset. The computing of each cell of the matrix requires to look at 3 cells and to
compute the intersection of two itemsets. This operation has a complexity of O(3+|Xmax |),
so the time complexity of LCS is O(l1 ∗ l2 ∗ |Xmax |). The worst case of the backtracking
procedure is O(l1 + l2), which is negligible comparing to the complexity of LCS. The space
complexity is O(l1 ∗ l2).
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Algorithm 3 LCS

1: function backtrack_LCS(C, S1, S2, i, j, lcs)
2: if i = 0 or j = 0 then
3: return
4: end if
5: inter ← S1i ∩ S2j
6: if inter �= ∅ then
7: if C(i − 1, j) = C(i, j) then
8: return backtrack_LCS(C, S1, S2, i − 1, j, lcs)
9: end if
10: if C(i, j − 1) = C(i, j) then
11: return backtrack_LCS(C, S1, S2, i, j − 1, lcs)
12: else
13: lcs.insert(0, inter)
14: return backtrack_LCS(C, S1, S2, i − 1, j − 1, lcs)
15: end if
16: else
17: if C(i, j − 1) > C(i − 1, j) then
18: return backtrack_LCS(C, S1, S2, i, j − 1, lcs)
19: else
20: return backtrack_LCS(C, S1, S2, i − 1, j, lcs)
21: end if
22: end if
23: end function
24:
25: function LCS(budget)
26: Initialize C with dimensions si ze(S1) ∗ si ze(S2) filled with 0’s
27: for i=1 to si ze(S1) + 1 do
28: for j=1 to si ze(S2) + 1 do
29: inter ← S1i ∩ S2j
30: C(i, j) ← max(C(i − 1, j − 1) + length(inter),C(i − 1, j),C(i, j − 1))
31: end for
32: end for
33: f inal_lcs ← list()
34: backtrack_LCS(C, S1, S2, length(S1), length(S2), f inal_lcs)
35: return f inal_lcs
36: end function

6 Experiments

Let us now discuss an extensive empirical evaluation of SeqScout and MCTSextent.
First, we present our evaluation protocol in terms of: (1) the datasets used (see Sect. 6.1),
including our original dataset on the popular “Rocket League” video game (see Sect. 6.2),
and (2) the baseline algorithms we use for comparison (see Sect. 6.3). We then report the
results of our evaluation using multiple datasets in Sects. 6.5–6.14, and provide qualitative
assessment of the performance of our proposed algorithms on Starcraft II and Rocket League
datasets in Sects. 6.15 and 6.16, respectively. All the experiments were performed on a
machine equipped with Intel Core i7-8750H CPU and 16GB RAM. Algorithms mentioned
hereafter are implemented in Python 3.6. The source code of all algorithms and experiments
are available online.4

4 https://github.com/Romathonat/MCTSExtent.
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Table 3 Datasets Dataset |D| |I| lmax Search Space Size

Promoters [14] 106 4 57 1.59 ∗ 1041

Context [14] 240 47 123 5.25 ∗ 10224

Splice [14] 3190 8 60 3.29 ∗ 1062

sc2 [8] 5000 30 30 6.48 ∗ 1048

Skating [29] 530 41 120 1.16 ∗ 10212

Jmlr [36] 788 3836 228 1.84 ∗ 10853

rl 148 16 157 2.77 ∗ 10212

6.1 Datasets

We used several popular benchmark datasets to evaluate the behavior of our algorithms,
namely promoters [14], context [14], splice [14] and skating [29].

We also apply our algorithms on the real-life dataset sc2 that has been used in [8]. It was
extracted from Starcraft II games. Starcraft II is a Real-Time Strategy (RTS) game that is well
knownwithin theAI community. Recently, it has attractedmore attention after the publication
of the Google DeepMind AlphaStar results, an AI defeating human players [11]. The goal
of each Starcraft match is to destroy units and buildings of the opponent. Three different
factions exist, each with its own features (i.e., combat units, buildings, strategies). Roughly
speaking, there is a duality between economy andmilitary forces. Investing in military forces
is important to defend or attack an opponent, while building economy is important to have
more resources to invest into military forces. Sequences in sc2 correspond to the buildings
constructed during a game, and the class corresponds to the winner’s faction. Once the target
class (i.e., the winning faction) has been chosen, our algorithm will look for patterns of
construction that characterize the victory of this faction.

We also use jmlr, a dataset consisting of abstracts of articles published in the Journal
of Machine Learning Research [36]. In this dataset, we consider sequences of words. As
class labels, we used the occurrence of the word “svm” in a sequence, i.e., we label by “+”
sequences of words containing the word “svm”, removing words after it, and “-” for others.

Finally, we propose an original dataset rl for Rocket League.5 game analytics. Notice
that e-sport will be considered for the first time at the 2021 Olympic Games in Tokyo and a
Rocket League tournament with nation-based teams will be organized at this occasion.

Table 3 summarizes the statistics of the used datasets.

6.2 The rocket league use case

Rocket League is a video game where each player controls a “rocket-powered” car on a
football field. The goal is then to score more than the adverse team by hitting a ball into
their goal. Each of the two teams can be composed of 1, 2 or 3 players. The game is very
competitive, with international competitions and professional players. Each player is ranked
using a score increasing with victories and decreasing with defeats.

One of the particularity of the game is the lack of semantics of the player actions during the
game. Indeed, players control their car by using very basic instructions like “accelerate”, “turn

5 https://www.rocketleague.com/.
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Fig. 11 A sequence generated by two buttons

left”, “jump”, “slide”, and these sequences of instructions can create special “skills”. These
skills are easily recognizable by spectators or analysts, but the game (we mean its computer
program) cannot currently recognize them. Note that such a problem does not occur for a
game like Starcraft II where, for instance, construction of a certain building implies a single
user’s action, which is, therefore, associated to an explicit semantics (however discovery of
players strategies is similar). It is also important to note here that the same player will not
generate exactly the same sequence of controls two times for the same skill. Indeed, positions
of the ball and player’s car vary and it is impossible for a human to be perfectly regular on
a skill, her timing varies, and there are a lot of micro-adjustments to the trajectory of the
car. This is illustrated in Figs. 1 and 2. Each sequence represents an instance of the same
shot (the “ceiling shot”), performed by the same player. Clearly, sequences from the same
class can be very different, making the discovery of interesting patterns difficult. In other
words, there is a lot of noise in collected data. However, sequences of controls pressed by
the player obviously hide patterns related to particular skills (see pattern p in Figs. 3 and 4,
for example), and that is exactly what we want to discover here.

Extracting patterns from sequences of input is interesting to better understand what play-
ers are performing, e.g., in terms of skills/figures, for example in the process of learning
from examples. Those patterns could also be used as features for a classification system to
automatically reward players who perform skills, or to improve the score of the player as
some skills are difficult to perform.

To generate the dataset, we implemented a key logger to get inputs of the controller of the
player. We then asked her to perform some skills among 6 different ones. After doing a skill,
we labeled the generated sequence by the selected skill. The goal is then to extract pattern
discriminative of a target skill. Note that here we are in the case of sequences of itemsets as
the player can press different controls at the same time. For example, she can use “boost” and
“jump” to make her car fly in the air. In our study, we use a controller with sixteen buttons.

The schema given in Fig. 11 illustrates how a sequence is constructed for a controller with
two buttons a and b. The black lines correspond to the time the buttons are pressed. We use
three filling colors to depict three possible combinations of buttons pressed, namely (1) blue,
when button a is pressed, (2) yellow, when button b is pressed, and (3) red, when a and b are
pressed together. The corresponding itemsets are given underneath. The dataset is available
online with the rest of our work.

123



Anytime mining of sequential discriminative patterns... 459

6.3 Baselines

To the best of our knowledge, we are the first to address the problem of discriminative pattern
mining in sequences of itemsets, and therefore, there are not available algorithms that can
be used directly as baselines for the evaluation. However, there are several algorithms for
processing sequences of items. Therefore, to evaluate SeqScout and MCTSExtent, we
have modified two algorithms, namely misère [16] and BeamSearch [24], such that they
process sequences of itemsets.

First, we implemented an extension of misère [16], the original version of which was
handling sequences of events only but not sequences of itemsets. Second, we implemented
BeamSearch as a sequence-oriented version of a beam search algorithm. To deal with
sequences of itemsets, we consider item-extensions and set-extensions at each given depth.
Moreover, for the sake of non-redundancy in the returned patterns, we modify its best-first
search nature so that the expanded nodes get diverse as defined in [24]. Moreover, to ensure
fair comparisons, we removed the post-processing optimization ofSeqScout that is studied
more precisely in Sect. 6.14.

6.4 Settings

If not stated otherwise, we use the following settings. Each algorithm has been launched 5
times, and the reported results are averaged over these runs. For BeamSearch, we empiri-
cally set the parameter width = 50. For all algorithms, we set θ = 0.5, time_budget = ∞,
i teration_num = 10, 000, and top_k = 5. Note that instead of giving a fixed time bud-
get for running an algorithm on each dataset, we chose to limit the number of iterations
i teration_num, one iteration corresponding to a single computation of the quality measure.
Indeed, this computation is the most time consuming one as such objective measures need
to compute the extent w.r.t. the whole dataset. Therefore, using the same time budget on
different datasets would not provide a fair comparison: having 50,000 iterations on a small
dataset versus 50 on a larger one with the same time budget is not relevant.

6.5 Performance evaluation usingWRAcc

To assess the performance of the algorithms, let us first use the mean of the WRAcc of
the top-k non redundant patterns computed with misère, BeamSearch, SeqScout and
MCTSExtent. Figure 12provides absolute results.MCTSExtent is clearly the best solution
on each dataset. Interestingly, we can note that BeamSearch is sometimes inefficient (see
on splice).

We can clearly see that MCTSExtent andSeqScout performparticularlywell on splice
compared to BeamSearch. Overall, MCTSExtent provides better results.

To achieve a comprehensive evaluation, we fixed a relatively small time budget of 60 sec
to compare the performance of algorithms, i.e., the limiting factor here is not the number of
iterations but the given time budget. Results can be seen in Fig. 13. MCTSExtent generally
outperforms other algorithms in terms of averageWRAcc. We can also note that similarly to
misère, SeqScout shows a significant decrease of performance on jmlr. Indeed, it seems
that the strategy of taking a sequence and generalizing it is not efficient in a short time budget
on this dataset. In contrast, MCTSExtent guides the search toward promising patterns more
quickly, resulting in better performance.
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Fig. 12 Mean WRAcc of top-5 best patterns (10K iterations)

Fig. 13 Mean WRAcc of top-5 best patterns (time budget: 60 s)

6.6 Quality w.r.t. number of iterations

We show the result quality in terms of WRAcc over the number of iterations. Fig-
ures 14, 15, 16, 17, 18, 19 and 20 depict the results for the top-5 non-redundant patterns
on each dataset. Note that for the same data, the results may vary from run to run, due to
the random nature of misère and SeqScout. It explains some fluctuations of the quality.
Nevertheless, for each i teration_num setting, MCTSExtent has shown better results.
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Fig. 14 Average WRAcc for top-5 patterns w.r.t. iterations (promoters)

Fig. 15 Average WRAcc for top-5 patterns w.r.t. iterations (context)

6.7 Using other quality measures

Toempirically illustrate themeasure agnostic characteristic ofSeqScout andMCTSExtent,
we have used other quality measures, namely F1-score and I n f ormedness. The results are
shown in Table 4. Our algorithms generally give better results.
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Fig. 16 Average WRAcc for top-5 patterns w.r.t. iterations (splice)

Fig. 17 Average WRAcc for top-5 patterns w.r.t. iterations (sc2)

6.8 Performance study under varying�

We also evaluate performance of the algorithms when varying the value of the similarity
threshold θ . Figure 21 shows the performance on the dataset context (results are similar
on other datasets). We did not include the results for θ = 0 because it would mean finding
patterns with totally disjoint extents. It results in finding a number of patterns lesser than k
for all algorithms, such that the mean would be misleading. We can see from the plot that
relative performance of algorithms are approximately the same for all θ values.
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Fig. 18 Average WRAcc for top-5 patterns w.r.t. iterations (skating)

Fig. 19 Average WRAcc for top-5 patterns w.r.t. iterations (jmlr)

6.9 Performance study under varying k (top-k)

We investigate the performance of the search for top-k patterns when changing the k param-
eter. Figure 22 shows the results when considering the sc2 dataset (the behavior is similar
on other datasets). MCTSExtent gives better results. Note that the meanWRAcc decreases
for all algorithms, as increasing k leads to the selection of lower quality patterns.
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Fig. 20 Average WRAcc for top-5 patterns w.r.t. iterations (rl)

Fig. 21 Mean WRAcc of top-5 patterns vs. similarity threshold θ (context)

6.10 Quality versus search space size

We evaluate the average WRAcc of top-5 patterns w.r.t. the maximum length of sequences
(see Fig. 24). To do so, we have truncated the dataset to control the maximum lengths of
sequences. We demonstrate it on the rl dataset. The plot shows that MCTSExtent gives
generally better mean WRAcc values whatever the search space size is. We also note a
general increase of quality when increasing the search space size. Indeed, some patterns that
are bad for a smaller maximum length can appear in positive elements for larger maximum
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Fig. 22 Mean WRAcc of top-k patterns vs. k (sc2)

Fig. 23 Length of top-5 best patterns - 10K iterations

lengths, resulting in an increasing quality of patterns. Note that the opposite phenomenon
can also appear.

6.11 Sequence lengths

The pattern lengths on all datasets are reported in Fig. 23. Let us consider the splice dataset:
BeamSearch gives short patterns (max 8), which is significantly less than MCTSExtent,
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Fig. 24 Mean WRAcc w.r.t. the maximum length of sequences on rl

Fig. 25 Additional cost of local optima search

SeqScout and misère. This may explain why the BeamSearch result quality is bad on
this dataset (see Fig. 12). One hypothesis could be that it does not have enough iterations to go
deep enough in the search space. Another hypothesis is that BeamSearch cannot find good
patterns having bad parents w.r.t.WRAcc: Its good patterns are short ones. Another interest-
ing observation is that on jmlr, the length of sequences is 1 or 2. This means that interesting
patterns of this dataset are short ones, and are in fact itemsets: that is why BeamSearch
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Table 5 WRAcc for top-5
patterns on diversified vs.
non-diversified BeamSearch

BeamSearch Diversified Non-Diversified

Promoters 0.075 X

Context 0.073 0.073

Splice 0.002 0.002

Sc2 0.116 0.119

Skating 0.043 0.044

Jmlr 0.036 0.036

Rl 0.092 0.099

Table 6 Number of iterations in
Bitset vs. Integer set
representation

Dataset Integer set Bitset Variation(%)

Promoters 7185 8858 24

Context 4651 2667 −47

Splice 289 254 −12

Sc2 943 605 −36

Skating 4001 1283 −68

Jmlr 704 31 −95

Rl 8839 7799 −12

performs very well on it. In fact, using a subgroup discovery algorithm exploiting itemset
descriptions should give similar results.

6.12 Non diversified BeamSearch

Leeuwen et al. [24] proposed to filter redundant patterns during the beam-search proce-
dure.Wewanted to check if this strategy remains efficient in the case of sequences of itemsets.
In fact, the main issue with the classical BeamSearch approach is that when filtering is
done in post-processing, we can get less than k patterns, depending on the configuration. In
fact, a classical BeamSearch is not relevant to solve our problem. A comparison of the two
BeamSearch strategies is given in Table 5. We added a “X” when the number of found
patterns is lower than k.

6.13 Bitset versus integer set representation

We investigate the usefulness of bitset representation by comparing it against an integer set
representation where each item is represented by an integer. Therefore, we have compared
the number of iterations SeqScout made for a fixed time budget on each dataset. We set
time_budget = 10 sec. The results are summarized in Table 6. We can see that the bitset
representation tends to give a performance gain for datasets with smaller search space size
upper bound, but leads to a decrease of performance for the majority of the datasets. For
example, context, skating and jmlr have sequences of large lengths leading to large bitset
representations. Those bitsets are then split into different parts to be processed by the CPU.
If the number of splits is too large, the bitset representation becomes inefficient, and using a
classical integer set representation is a better option.
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Fig. 26 Added value of local optima search for 1000 iterations

6.14 Local optima search

The local optima search uses more iterations. This over cost depends on the dataset. In Fig.
25, we plot the ratio of the additional iterations necessary for local optima search w.r.t. the
number of iterations given in themain search (also referred to as the cost). Themore iterations
we have, the more negligible the ratio is. However, note that we did not plot the additional
cost of jmlr. Indeed, in the particular case of text data, the number of possible items is
large, leading to a very long local optima search (110,000 iterations for 5 patterns in our
experiments). Consequently, we note that the local optima search may not be the relevant
choice with this kind of dataset.

We also added it as a post-processing step to each of our algorithm to compare general
quality increase depicted in Figs. 26, 27, 28 and 29. As we can see, the more initial iterations
are given, the better the mean quality is, and the lesser the local optima search is interesting.
This emphasizes on the fact that MCTSExtent performs a good exploration of the search
space. Note that on some dataset, like promoters, this local search generally leads to an
important quality increase.

6.15 Qualitative evaluation on sc2

As MCTSExtent clearly gives the best results, let us now discuss the quality of a discov-
ered pattern extracted from the dataset sc2. The question that we aim at answering can be
formulated as follows. Given a faction, what are the best strategies to win? In other words,
MCTSExtent will look for patterns of construction which are characteristic to the victory
of this faction.

For example, let us consider the “Terran” faction. One of the best computed patterns is:
〈{Hatchery(Z)}, {Supply(T )}, {Factory(T )}, {Supply(T )}〉. In this example, we use the
colors as indicators of fractions, i.e., blue for “Terran” and purple for “Zerg”. We can see
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Fig. 27 Added value of local optima search for 3000 iterations

Fig. 28 Added value of local optima search for 6000 iterations

that the “Terran” player is investing in military units ({Supply(T )} and {Factory(T )}). The
“Zerg” player chooses to invest in its economy by creating a {Hatchery(T )}: She fosters
the so-called late game, sacrificing its military forces in the so-called early game. In such a
scenario, the “Terran” strikes in early game, knowing its military advantage, and she tends
to win the match. This example shows that our algorithm can provide relevant patterns that
may be useful, e.g., to identify unbalanced strategies [8].
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Fig. 29 Added value of local optima search for 10,000 iterations

Fig. 30 Decomposition of the “slide shoot”

6.16 Qualitative evaluation on rl

Looking at extracted patterns for the original rl dataset can also validate the relevance of
our algorithm. We recall that each sequence of the dataset is composed of inputs of the
player, and the class to the name of the skill she performed. Sequence lengths are between
20 and 150. Moreover, as there is a lot of noise in the data due to human behavior (micro-
adjustments of trajectory, difficulty to replay exactly the same sequence with same timing),
finding discriminative patterns of a skill is challenging.
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Fig. 31 Decomposition of the “musty flick”

Interestingly, MCTSExtent can cope with this problem. In the experiment, we selected
one target skill at a time. First, we focused on what we call the “slide shoot”. The sequence
of movements of a car is described in Fig. 30. The top-3 patterns obtained are:

1. 〈{boost}, {slide}, {right boost}, {boost}〉 (WRAcc = 0.102),
2. 〈{boost}, {slide}, {le f t boost}, {boost}〉 (WRAcc = 0.101),
3. 〈{boost}, {le f t}, {slide}, {boost}〉 (WRAcc = 0.098).

This example shows the interest of looking at a pattern set. Indeed, this skill can be
executed in two ways: by coming from the left part of the ball and sliding to the right, or
coming from the right and sliding to the left. These top-3 patterns reflect this: The first one
corresponds indeed to a right slide, while the second one corresponds to a left slide. Note that
we removed the item “accelerate” which is non informative because Rocket League players
use it nearly all the time: It is present in 79.3% of itemsets.

Another popular skill when playingRocket League is called themusty flick. The sequence
ofmovements of the car is described in Fig. 31. The top-3 patterns obtained byMCTSExtent
are:

1. 〈{boost}, {boost}, {up jump}, { jump down}〉 (WRAcc = 0.131),
2. 〈{boost}, {up}, {up jump}, { jump down}〉 (WRAcc = 0.131),
3. 〈{up jump}, {down}〉 (WRAcc = 0.125).

As we can see, those sequences, particularly the first one, correspond indeed to the per-
formed skill. Note that commands are inverted on the vertical axis: Pressing “up” makes the
car orientate to the ground.

We can also get other useful information from those patterns. We can see that the second
pattern is interesting because it represents a part of the skill, but is not sufficient to reproduce
it. However, it is discriminative of it in this dataset, because this sequence of inputs is present
only in this skill, leading to the well-known conclusion that data quality and variety is a top
priority to extract useful knowledge.

Moreover, one may notice that the first and the second patterns are quite similar. However,
the non-redundancy constraint guarantees us that the extents of each of the found patterns are
not toomuch overlapping.We can deduce that the player tends to initiate the down orientation
of the car at the same time that she jumps more often than she does it before jumping. Those
examples show that having a set of patterns is more relevant than using a single one. For the
same skill, there are variations that can be captured.
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7 Conclusion

We have discussed the problem of finding discriminative patterns in labeled sequences of
itemsets. We have presented two algorithms SeqScout and MCTSExtent to discover
relevant subgroups in sequences of itemsets. Thoughwe are not aware of available algorithms
to solve the same problem, we have implemented the adaptations of two other algorithms,
namelymisère andBeamSearch, such that they could be applied for the case of sequences
of itemsets. This has been useful to support our empirical evaluation.

Furthermore, to implement MCTSExtent, we have also introduced a new algorithm to
compute a Longest Common Subsequence between two sequences. Our experiments have
shown that MCTSExtent outperforms all other algorithms, without the need for additional
parameter tuning as needed in the case of Beam Search.

Moreover, we have created a new dataset, containing sequences of inputs of a player of
Rocket League video game, labeled with particular skills she performed. We have used this
dataset in our evaluation procedure, together with other various benchmark datasets.

Our future work will aim at exploring the application of MCTSExtent to other pattern
languages and contexts. Indeed, the method of MCTSExtent can be easily adapted to other
pattern languages, by redefining the “rollout” step (or generalization) and the “Common
pattern” step, i.e., the Longest Common Subsequence here. Finally, in the context of game
analytics, we will focus on the classification of players’ actions, which are often recognizable
only by human game experts, and on grasping a better understanding of the system in general
by extracting and interpreting valuable patterns [27].
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