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Jérémy Besson1,2, Ruggero G. Pensa1, Céline Robardet3, and
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Abstract. Thanks to an important research effort the last few years, in-
ductive queries on local patterns (e.g., set patterns) and complete solvers
which can evaluate them on large data sets have been proved extremely
useful. The more we use such queries on real-life data, e.g., biological data
(and thus intrinsically dirty and noisy), the more we are convinced that
inductive queries should return fault-tolerant patterns. In this work, we
consider user-defined constraints for a declarative specification of fault-
tolerance. We discuss the design of such constraints on bi-sets extracted
from Boolean data sets. Our starting point is the fundamental limita-
tion of formal concept discovery (i.e., closed set mining) from noisy data
and we propose a constraint-based mining approach for relevant fault-
tolerant bi-set mining. Formalizing three recent proposals, our frame-
work enables a better understanding of the needed trade-off between
extraction feasibility, completeness, relevancy, and ease of interpretation
of these fault-tolerant patterns. An original empirical evaluation on both
synthetic and real-life medical data is given. It enables a comparison of
the various proposals and it motivates further directions of research.

1 Introduction

According to the inductive database approach, mining queries can be expressed
declaratively in terms of constraints on the desired patterns or models [1–3].
Thanks to an important research effort the last few years, inductive queries on
local patterns (e.g., set or sequential patterns) and complete solvers which can
evaluate them on large data sets (Boolean or sequence databases) have been
proved extremely useful. Properties of user-defined constraints have been stud-
ied in depth (e.g., monotonicity, succinctness, convertibility) and sophisticated
pruning strategies enable to compute complete answer sets for many constraints
(i.e., Boolean combination of primitive constraints) of practical interest. How-
ever, the more we use these techniques on real-life data, e.g., biological or medical
data (and thus intrinsically dirty and noisy), the more we are convinced that in-
ductive queries should return fault-tolerant patterns. One interesting direction of
research is to introduce softness w.r.t. constraint satisfaction [4, 5]. We consider
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in this paper another direction which leads to crispy user-defined constraints in
which fault-tolerance is declaratively specified.

Our starting point is the fundamental limitation of formal concept discov-
ery (i.e., connected closed sets) from noisy data. Formal concept analysis has
been developed for more than two decades [6] as a way to extract knowledge in
Boolean data sets. Informally, formal concepts are maximal bi-sets/rectangles of
true values4. For instance, Table 1 is a toy example data set r1 and the bi-set
({t6, t7}, {g1, g2, g3, g4, g5}) is a formal concept in r1.

g1 g2 g3 g4 g5 g6 g7

t1 1 0 1 0 1 0 0

t2 1 1 1 1 0 1 0

t3 0 1 1 1 1 1 1

t4 0 0 0 1 1 1 0

t5 1 0 0 0 0 1 0

t6 1 1 1 1 1 0 0

t7 1 1 1 1 1 0 0
Table 1. A Boolean context r1

Some algorithms are dedicated to the computation of complete collections of
formal concepts [7]. Since, by construction, formal concepts are built on closed
sets, the extensive research on (frequent) closed set computation (see [8] for
a survey) has obviously open new application domains for formal concept dis-
covery. For instance, the formal concept ({t6, t7}, {g1, g2, g3, g4, g5}) in r1 is
built on the closed set {g1, g2, g3, g4, g5} whose frequency is 2 (i.e., |{t6, t7}|).
When considering very large and/or dense Boolean matrices, constraint-based
mining of formal concepts has been studied [9, 10]: every formal concept which
furthermore satisfies some other user-defined constraints (e.g., a minimal size
for set components) is computed. A formal concept associates a maximal set of
objects to a maximal set of properties which are all in relation. The strength of
such an association is often too strong in real-world data. Even though the ex-
traction might remain tractable, the needed post-processing and interpretation
phases turn to be tedious or even impossible. Indeed, in noisy data, not only
the number of formal concepts explodes but also many of them are not relevant
enough. It has motivated new directions of research where interesting bi-sets are
considered as dense rectangles of true values [11–15].

In this paper, we consider a constraint-based mining approach for relevant
fault-tolerant formal concept mining. We decided to look for an adequate formal-
ization of three of recent proposals (i.e., CBS [11], FBS [15], and DRBS [14])
which have been motivated by a fault-tolerance extension to formal concepts.
We do not provide the algorithms which have been recently published for solving

4 We might say combinatorial bi-sets/rectangles since it is up to arbitrary permuta-
tions of lines and columns in the Boolean matrix.



inductive queries on such patterns [11, 15, 14]. The contribution of this paper is
to propose a simple framework to support a better understanding of the needed
trade-off between extraction feasibility, completeness, relevancy, and ease of in-
terpretation of these various pattern types. This formalization enables to predict
part of the behavior of the associated solvers and some formal properties can
be established. An original empirical evaluation on both synthetic and real-life
medical data is given. It enables to compare the pros and cons of each proposal.
An outcome of these experiments is that fault-tolerant bi-set mining is possible.
Used in conjunction with other user-defined constraints, this should support the
dissemination of relevant local set pattern discovery techniques for intrinsically
noisy data.

Section 2 provides the needed definitions. Thanks to the chosen constraint-
based mining approach, Section 3 is a discussion on important principles for
fault-tolerant formal concept mining. Section 4 provides not only experimen-
tal results on synthetic data when various levels of noise are added but also
experiments on a real-life medical data sets. Section 5 is a short conclusion.

2 Pattern domains

We now define the different classes of patterns to be studied in this paper.
Assume a set of objects O = {t1, . . . , tm} and a set of Boolean properties P =
{g1, . . . , gn}. The Boolean context to be mined is r ⊆ O × P, where rij = 1 if
property gj is satisfied by object ti, 0 otherwise. Formally, a bi-set is an element
(X,Y ) where X ⊆ O and Y ⊆ P. L = 2O × 2P denotes the search space for
bi-sets. We say that a bi-set (X,Y ) is included in a bi-set (X ′, Y ′) (denoted
(X,Y ) ⊆ (X ′, Y ′)) iff (X ⊆ X ′ ∧ Y ⊆ Y ′).

Definition 1. Let us denote by Zl(x, Y ) the number of false values of a row x on
the columns in Y : Zl(x, Y ) = ♯{y ∈ Y |(x, y) 6∈ r} where ♯ denotes the cardinality
of a set. Similarly, Zc(y,X) = ♯{x ∈ X|(x, y) 6∈ r} denotes the number of false
values of a column y on the rows in X.

Let us now give an original definition of formal concepts (see [6] for a classical
one). Sub-constraint 2.1 expresses that a formal concept contains only true val-
ues. Sub-constraint 2.2 denotes that formal concept relevancy is enhanced by a
maximality property.

Definition 2 (FC). A bi-set (X,Y ) ∈ L is a formal concept in r iff
(2.1) ∀x ∈ X, Zl(x, Y ) = 0 ∧ ∀y ∈ Y, Zc(y,X) = 0
(2.2) ∀x ∈ O \X, Zl(x, Y ) ≥ 1 ∧ ∀y ∈ P \ Y, Zc(y,X) ≥ 1

Example 1 Given r1, we have Zl(t6, {g4, g5, g6}) = 1 and Zc(g5,O) = 2.
({t3, t4, t6, t7}, {g4, g5}) and ({t3, t4}, {g4, g5, g6}) are FC patterns.

Definition 3 (DRBS [14]). Given integer parameters δ ≥ 0 and ǫ > 0, a bi-set
(X,Y ) ∈ L is called a DRBS pattern (Dense and Relevant Bi-Set) in r iff
(3.1) ∀x ∈ X, Zl(x, Y ) ≤ δ ∧ ∀y ∈ Y, Zc(y,X) ≤ δ



(3.2) ∀e ∈ O \X, ∀x ∈ X, Zl(e, Y ) ≥ Zl(x, Y ) + ǫ

∧ ∀e′ ∈ P \ Y, ∀y ∈ Y, Zc(e
′,X) ≥ Zc(y,X) + ǫ

(3.3) It is maximal, i.e., 6 ∃(X ′, Y ′) ∈ L s.t. (X ′, Y ′) is a DRBS pattern and
(X,Y ) ⊆ (X ′, Y ′).

DRBS patterns have at most δ false values per row and per column (Sub-
constraint 3.1) and are such that each outside row (resp. column) has at least
ǫ false values plus the maximal number of false values on the inside rows (resp.
columns) according to Sub-constraint 3.2. The size of a DRBS pattern increases
with δ such that when δ > 0, it happens that several bi-sets are included in each
other. Only maximal bi-sets are kept (Sub-constraint 3.3). Notice that δ and ǫ

can be chosen differently on rows and on columns.

Property 1 When δ = 0 and ǫ = 1, DRBS ≡ FC.

Example 2 If δ = ǫ = 1, (X,Y ) = ({t1, t2, t3, t4, t6, t7}, {g3, g4, g5}) is a DRBS

pattern in r1. Columns g1, g2, g6 and g7 contain at least two false values on X,
and t5 contains three false values on Y .

The whole collection of DRBS can be computed (in rather small data sets)
by using the correct and complete algorithm DR-Miner described in [14]. It is
a generic algorithm for bi-set constraint-based mining which is an adaptation
of Dual-Miner [16]. It is based on an enumeration strategy of bi-sets which
enables efficient anti-monotonic or monotonic pruning (Sub-constraint 3.1 in
conjunction with other user-defined constraints which have monotonicity prop-
erties), and partial pruning for Sub-constraint 3.2. Sub-constraint 3.3 is checked
in a post-processing phase.

We now consider a preliminary approach for specifying symmetrical fault-
tolerant formal concepts. Indeed, the DRBS type has been designed afterwards.

Definition 4 (CBS [11]). Given an integer parameter δ, a bi-set (X,Y ) ∈ L
is called a CBS pattern (Consistent Bi-Set) iff
(4.1) ∀x ∈ X, Zl(x, Y ) ≤ δ ∧ ∀y ∈ Y, Zc(y,X) ≤ δ

(4.2) No row (resp. column) outside (X,Y ) is identical to a row (resp. column)
inside (X,Y )
(4.3) It is maximal, i.e., 6 ∃(X ′, Y ′) ∈ L s.t. (X ′, Y ′) is a CBS pattern and
(X,Y ) ⊆ (X ′, Y ′).

Notice that again, parameter δ can be chosen with different values on rows
and on columns.

Example 3 If δ = 1, (X,Y ) = ({t1, t2, t3, t6, t7}, {g1, g3, g5}) is a CBS pattern
in r1. Columns g6 and g7 contain more than one false value on X, t4 and t5
contain more than one false value on Y . g2 and g4 contain only one false value,
but as they are identical on X, either we add both or they are both excluded. As
there are two false values on t1, we do not add them.



Property 2 When δ = 0, CBS ≡ FC. Furthermore, when ǫ = 1, each DRBS

pattern is included in one of the CBS patterns.

[11] proposes an algorithm for computing CBS patterns by merging formal
concepts which have been extracted beforehand. The obtained bi-sets are then
processed to keep only the maximal ones having less than δ false values per
row and per column. This principle is however incomplete: every bi-set which
satisfies the above constraints can not be extracted by this principle. In other
terms, some CBS patterns can not be obtained as a merge between two formal
concepts. CBS patterns might be extracted by a straightforward adaptation of
the DR-Miner generic algorithm but the price to pay for completeness might
be expensive.

Let us finally consider another extension of formal concepts which is not
symmetrical. It has been designed thanks to some previous work on one of the
few approximate condensed representations of frequent sets, the so-called δ-free
sets [17, 18]. δ-free sets are well-specified sets whose counted frequencies enable
to infer the frequency of many sets (sets included in their so-called δ-closures)
without further counting but with a bounded error. When δ = 0, the 0-closure
on a 0-free set X is the classical closure and it provides a closed set. The context
here is different but the idea is now to consider bi-sets built on δ-free sets with
the intuition that it will provide strong associations between sets of rows and
sets of columns. It has been introduced for the first time in [15] as a potentially
interesting local pattern type for bi-cluster characterization.

Due to space limitation, we do not provide details on δ-freeness and δ-closures
[17, 18]. A set Y ⊆ P is δ-free for a positive integer δ if its absolute frequency in
r differs from the frequency of all its strict subsets by at most δ. For instance, in
r1, {g2} is a 1-free set. The δ-closure of a set Y ⊆ P is the superset Z of Y such
that every added property (∈ Z \Y ) is almost always true for the objects which
satisfy the properties from Y : at most δ false values are enabled. For instance,
the 1-closure of {g2} is {g1, g2, g3, g4, g5}. It is possible to consider bi-sets which
can be built on δ-free sets and their δ-closures on one hand, on the sets of objects
which support the δ-free set on the properties on another hand.

Definition 5 (FBS). A bi-set (X,Y ) ∈ L is a FBS pattern (Free-set based
Bi-Set) iff Y can be decomposed into Y = K ∪ C such that K is a δ-free set
in r, C is its associated δ-closure and X = {t ∈ O | ∀k ∈ K, (t, k) ∈ r}. By
construction, ∀y ∈ Y, Zc(y,X) ≤ δ and ∀y ∈ K,Zc(y,X) = 0.

Property 3 When δ = 0, FBS ≡ FC.

Example 4 If δ = 1, {g2} is a δ-free set and ({t2, t3, t6, t7}, {g1, g2, g3, g4, g5})
is a FBS pattern in r1. Another one is ({t3, t4}, {g2, g3, g4, g5, g6, g7}). We get
at most one false value per column but we have three false values on t4.

The extraction of FBS can be extremely efficient thanks to δ-freeness anti-
monotonicity. The implementation described in [18] can be straightforwardly
extended to output FBS patterns. Notice that FBS patterns are bi-sets with



a bounded number of exception per column but every bi-set with a bounded
number of exception per column is not necessarily a FBS pattern. An example
of a bi-set with at most 1 false value per column which is not a FBS pattern in
r1 is ({t1, t2, t3, t4, t6, t7}, {g3, g4, g5}).

3 Discussion

This section discusses the desired properties for formal concept extensions to-
wards fault-tolerant patterns. It enables to consider the pros and the cons of the
available proposals and to better understand related open problems.

• Fault tolerance Can we control the number of false values inside the
bi-sets?

• Relevancy Are they consistent w.r.t. the outside rows and columns? At
least two views on consistency exist. We might say that a bi-set B is weakly
consistent if it is maximal and if we have no row (resp. column) outside B

identical to one row (resp. column) inside B. B is called strongly consistent if
we have no row (resp. column) outside B with at most the same number of false
values than one row (resp. column) of B.

• Ease of interpretation For each bi-set (X,Y ), do we have a function
which associates X and Y or even better a Galois connection? If a function
exists which associates to each set X (resp. Y ) at most a unique set Y (resp.
XT ), the interpretation of each bi-set is much easier. Furthermore, if the two
functions are monotonically decreasing, when the size of X (resp. Y ) increases,
the size of its associated set Y (resp. X) decreases. This property is meaningful
since the more we have rows inside a bi-set, the less there are columns that can
be associated to describe them (or vice versa). One of the appreciated properties
of formal concepts is clearly the existence of such functions. If f1(X, r) = {g ∈
P | ∀t ∈ X, (t, g) ∈ r} and f2(Y, r) = {t ∈ O | ∀g ∈ Y, (t, g) ∈ r}, (f1, f2) is a
Galois connection between O and P: f1 and f2 are decreasing functions w.r.t.
set inclusion.

• Completeness and efficiency Can we compute the whole collection of
specified bi-sets, i.e., can we ensure a completeness w.r.t. the specified con-
straints? Is it tractable in practice?

The formal concepts satisfy these properties except the first one. Indeed,
we have an explicit Galois connection which enables to compute the complete
collection in many data sets of interest. These bi-sets are maximal and consistent
but they are not fault-tolerant.

In a FBS pattern, the number of false values are only bounded on columns.
They are not strongly consistent because we can have rows outside the bi-set
with the same number of false values than a row inside (one of this false value
must be on the δ-free set supporting set). On the columns, the property is sat-
isfied. These bi-sets are however weakly consistent. There is no function from
column to row sets (e.g., using δ = 1 in r1, ({t2, t6, t7}, {g1, g2, g3, g4, g5}) and
({t1, t6, t7}, {g1, g2, g3, g4, g5}) are two FBS with the same set of columns). How-
ever, we have a function between 2O to 2P . The definition of this pattern is not



symmetrical. In many data sets, including huge and dense ones, complete col-
lections of FBS can be extracted efficiently. Further research is needed for a
better characterization of more relevant FBS patterns which might remain easy
to extract from huge databases, e.g., what is the impact of different δ-thresholds
for the δ-free-set part and the δ-closure computation? how can we avoid an
unfortunate distribution of the false values among the same rows?

CBS are symmetrical on rows and columns. Indeed, the number of exceptions
is bounded on rows and on columns. CBS are weakly consistent but not strongly
consistent (see Example 3). There are neither a function from 2O to 2P nor from
2P to 2O (e.g., ({t1, t2, t3, t4}, {g1, g3, g4}) and ({t1, t2, t3, t4}, {g2, g3, g4}) are
two CBS with δ = 2 having the same set of rows in the reduction of r1 to the
black rectangle in Table 1). According to the implementation proposal in [11],
extracting these patterns can be untractable even in rather small data sets and
its extraction strategy is not complete w.r.t. the specified constraints.

By definition, a DRBS has a bounded number of exceptions per row and per
column and they are strongly consistent. Two new properties can be considered.

Property 4 (Existence of functions φ and ψ on DRBS (ǫ > 0)) For ǫ >
0, DRBS patterns are embedded by two functions φ (resp. ψ) which associate to
X (resp. Y ) a unique set Y (resp. X).

Property 5 (Monotonicity of φ and ψ on DRBS (δ fixed)) Let Lδ,ǫ the
collection of DRBS patterns and L′

ττ ′ the subset of Lδ,ǫ s.t. (X,Y ) ∈ L′
ττ ′

iff (X,Y ) contains at least a row (resp. column) with τ (resp. τ ′) false values in
Y (resp. X), and such that no row (resp. column) contains more. Then, φ and
ψ are decreasing functions on L′

ττ ′ .

Unfortunately, the functions loose this property on the whole DRBS collection.
Furthermore, we did not identified yet an intentional definition of these functions.
As a result, it leads to a quite expensive computation of the complete collection.
Looking for such functions is clearly one of the main challenges for further work.

Let us come back to other related work. Co-clustering (bi-clustering) can be
applied to Boolean data [19]. It provides linked partitions on both dimensions
and it tends to compute rectangles with mainly true (resp. false) values. Heuristic
techniques (i.e., local optimization) enable to compute one bi-partition, i.e., a
quite restrictive collection of dense bi-sets. In fact, bi-clustering provides a global
structure over the data while fault-tolerant formal concepts are typical local
patterns which can lead to the discovery of unexpected but yet relevant local
associations. Another approach for dense rectangle mining (geometric tiles) has
been proposed in [12]. It is however limited to the special case where a built-in
order exists on both dimensions. We could also consider previous approaches
to fault-tolerant mono-dimensional set pattern mining [20, 21]. The extension of
such dense sets to bi-sets is difficult: the connection which associates objects to
properties and vice-versa is neither increasing nor decreasing.



4 Empirical evaluation

Experiments on artificially noised data Let us first discuss the evaluation
method. We call r2 a reference data set, i.e., a data set which is supposed to be
noise free and with built-in patterns. Then, we derive various data sets from it
by adding some quantity of uniform random noise (i.e., for a X% noise level, each
value is randomly changed with a probability of X%). Our goal is to compare the
collection of formal concepts extracted from the reference data set with several
collections of fault-tolerant formal concepts extracted from the noised matrices.
To measure the relevancy of each extracted collection w.r.t the reference one, we
test the presence of a subset of the reference collection in each of them. Since
both sets of objects and properties of each formal concept can be changed when
noise is introduced, we identify those having the largest area in common with
the reference. Our measure, called σ, takes into account the common area and
is computed as follows:

σ(Cr, Ca) =
σ1(Cr, Ca) + σ2(Cr, Ca)

2

σ1 and σ2 are defined as follows:

σ1(Cr, Ca) =
1

Nr

Nr
∑

i=1

maxj

(

(Ti, Gi)r ∩ (Tj , Gj)a

(Ti, Gi)r ∪ (Tj , Gj)a

)

σ2(Cr, Ca) =
1

Na

Na
∑

j=1

maxi

(

(Ti, Gi)r ∩ (Tj , Gj)a

(Ti, Gi)r ∪ (Tj , Gj)a

)

where Cr is the collection of formal concepts computed on the reference data,
Ca is a collection of patterns in a noised data set, (Ti, Gi)r and (Tj , Gj)a are
bi-sets belonging to Cr and Ca respectively, and Nr and Na are respectively
the size of the reference formal concept collection and the size of the noised
collection. When σ1(Cr, Ca) = 1, all the bi-sets belonging to Cr have identi-
cal instances in the collection Ca. Analogously, when σ2(Cr, Ca) = 1, all the
bi-sets belonging to Ca have identical instances in the collection Cr. Indeed,
when σ = 1, the two collections are identical. High values of σ, mean not
only that we can find all the formal concepts of the reference collection in
the noised matrix, but also that the noised collection does not contain many
bi-sets that are too different from the reference ones. In this experiment, r2 con-
cerns 30 objects (rows) and 15 properties (columns) and it contains 3 formal
concepts of the same size which are pair-wise disjoints. In other terms, the for-
mal concepts in r2 are ({t1, . . . , t10}, {g1, . . . , g5}), ({t11, . . . , t20}, {g6, . . . , g10}),
and ({t21, . . . , t30}, {g11, . . . , g15}). Then, we generated 40 different data sets by
adding to r2 increasing quantities of noise (from 1% to 40% of the matrix). A
robust technique should be able to capture the three formal concepts concepts
even in presence of noise. Therefore, for each data set, we have extracted a col-
lection of formal concepts and different collections of fault-tolerant patterns with



Fig. 1. Size of different collections of bi-sets and related values of σ w.r.t. noise level
for all types of bi-sets (a, b) and for different instances of DRBS collections (c, d)

different parameters. For FBS collections, we considered δ values between 1 and
6. Then we extracted two groups of CBS collections given parameter δ (resp. δ′)
for the maximum number of false values per row (resp. per column): one with
δ = 1 and δ′ = 1 . . . 3 and the second with δ′ = 1 and δ = 1 . . . 3. Finally we
extracted DRBS collections for each combination of δ = 1 . . . 3 and ǫ = 1 . . . 3.

In Fig. 1(a,c), we only report the best results w.r.t. σ for each class of pat-
terns. Fig. 1a presents the number of extracted patterns in each collection. Fault-
tolerant bi-set collections contain almost always less patterns than the collection
of formal concepts. The only exception is the CBS class when δ = 1. The DRBS

class performs better than the other ones. The size of its collections is almost
constant, even for rather high levels of noise. The discriminant parameter is ǫ.
In Fig. 1c, the values of the σ measure for DRBS collections obviously decrease
when the noise ratio increases. In general, every class of fault-tolerant bi-set
performs better than the formal concept one. In terms of relevancy, the DRBS

pattern class gives the best results as well. Notice that the results for FBS and
CBS classes are not significantly different when their parameters change. The
parameter that mostly influences the value of σ is the ǫ parameter for the DRBS

class. For reasonable levels of noise (< 15%), it makes sense to use DRBS. For
higher levels, CBS and FBS perform slightly better. In Fig. 1(b,d) we report the



experiments on the extraction of DRBS collections with δ = 3 and ǫ = 1 . . . 3.
Fig. 1b shows the number of extracted patterns. The size of the collections is
considerably reduced when ǫ grows. Fig. 1d presents the σ measure for these
collections. Using a higher ǫ value improves the quality of the results because
less patterns are produced. When the noise level is smaller than 5%, the collec-
tion of DRBS, with ǫ = 2..3, is the same as the three formal concepts in the
reference data r2. This experiment confirms that fault-tolerant bi-sets are more
robust to noise than formal concepts, and that the provided collection for the
crucially needed expert-driven interpretation is considerably reduced.

Experiments on a medical data set It is important to get a qualitative
feedback about fault-tolerant pattern relevancy in a real case. For this purpose,
we have considered the real world medical data set meningitis [22]. These data
have been gathered from children hospitalized for acute meningitis over a period
of 4 years. The pre-processed Boolean data set is composed of 329 patients
described by 60 Boolean properties encoding clinical signs (e.g., consciousness
troubles), cytochemical analysis of the cerebrospinal fluid (e.g., C.S.F proteins)
and blood analysis (e.g., sedimentation rate). The majority of the cases are
viral infections, whereas about one quarter of the cases are caused by bacteria.
It is interesting to look at the bacterial cases since they need treatment with
suitable antibiotics, while for the viral cases a simple medical supervision is
sufficient. A certain number of attribute-variable pairs have been identified as
being characteristic of the bacterial form of meningitis [22, 23]. In other terms,
the quality of the fault-tolerant patterns can be evaluated w.r.t. available medical
knowledge. Our idea is that by looking for rather large fault-tolerant bi-sets,
the algorithms will provide some new associations between attribute-value pairs
(Boolean properties) and objects. If the whole sets of objects and properties
within bi-sets are compatible (e.g., all the objects are of bacterial type, and all
the properties are compatible with bacterial meningitis), then we can argue that
we got new relevant information.

Formal Concepts

size 354 366
time 5s

FBS

δ 1 2 3 4 5 6

size 141 983 67 898 39 536 25 851 18 035 13 382
time 19s 10s 6s 4s 3s 2s

DRBS (δ=1)

ǫ 1 2 3 4 5 6

size - 75 378 22 882 8 810 4 164 2 021
time - 1507s 857s 424s 233s 140s

Table 2. Size and extraction time for FBS and DRBS in meningitis.



A straightforward approach to avoid some irrelevant patterns and to reduce
the pattern collection size is to use size constraints on bi-set components. For
this experiment we set a minimal size of 10 for sets of objects and 5 for sets
of properties. Using D-Miner [10], we computed the collection of such large
enough formal concepts and we got more than 300 000 formal concepts in a
relatively short time (see Table 2). It is obviously hard to exploit such a quantity
of patterns. For instance, we were not able to post-process this collection to
produce CBS according to [11]. Then, we tried to extract different collections
of FBS and DRBS. For FBS, with δ = 1 (at most one exception per column),
we got a 60% reduction on the size of the computed bi-sets. Using values of δ
between 2 and 6, this size is reduced at each step by a coefficient between 0.5
and 0.3. We finally used DR-Miner to extract different collections of DRBS.
The δ parameter was set to 1 (at most one exception per row and per column).
The ǫ parameter enables to further reduce the size of the computed collection.
Setting ǫ = 1 leads to an untractable extraction but, with ǫ = 2, the resulting
collection is 80% smaller than the related formal concept collection. Moreover,
with δ = 1 and ǫ = 2 the size of the DRBS collection is considerably smaller
than the computed FBS collection for the same constraint (i.e., δ = 1). On the
other hand, computational times are sensibly higher.

We now consider relevancy issues. We have been looking for bi-sets containing
the property “presence of bacteria detected in C.S.F. bacteriological analysis”
with at least one exception. This property is typically true in the bacterial type
of meningitis [22, 23]. By looking for bi-sets satisfying such a constraint, we ex-
pect to obtain associations between bacterial meningitis objects and properties
characterizing this class of meningitis. First we analyzed the collection of FBS

when δ = 1. 763 FBS satisfy the chosen constraint. Among these, 124 FBS con-
tain only one viral meningitis object. We got no FBS containing more than one
viral object. Properties belonging to these FBS are either characteristic features
of the bacterial cases or non discriminant (but compatible) features such as the
age and sex of the patient. When δ = 2, the number of FBS satisfying the con-
straint is 925. Among them, 260 contain at least one viral case of meningitis, and
about 25 FBS contain more than one viral case. For δ = 5 the obtained bi-sets
are no longer relevant, i.e., the exceptions include contradictory Boolean prop-
erties (e.g., presence and absence of bacteria). We performed the same analysis
on DRBS for ǫ = 2. We found 24 rather large DRBS. Among them, 2 contain
also one viral object. Only one DRBS seems irrelevant: it contains 3 viral and 8
bacterial cases. Looking at its Boolean properties, we noticed that they were not
known as discriminant w.r.t. the bacterial meningitis. If we analyze the collec-
tion obtained for ǫ = 3, there is only one DRBS satisfying the constraint. It is a
rather large bi-set involving 11 Boolean properties and 14 objects. All the 14 ob-
jects belong to the bacterial class and the 11 properties are compatible with the
bacterial condition of meningitis. It appears that using DRBS instead of FBS

leads to a smaller number of relevant bi-sets for our analysis task (24 against
763). Notice however that DRBS are larger than FBS (for an identical number
of exceptions): it means that the information provided by several FBS patterns



might be incorporated in only one DRBS pattern. Moreover we got no DRBS

pattern whose set of properties is included in the set of properties of another
one. This is not the case for FBS. To summarize this experiment, let us first
note that using size constraints to reduce the size of the collection is not always
sufficient. meningitis is a rather small data set which leads to the extraction of
several hundreds of thousands of formal concepts (about 700 000 if no constraint
is given). By extracting fault-tolerant bi-sets, we reduce the size of the collec-
tion to be interpreted and this is crucial for the targeted exploratory knowledge
discovery processes. In particular, for DRBS, the ǫ parameter is more stringent
than the δ parameter. Then, the relevancy of the extracted patterns can be im-
proved if a reasonable number of exceptions is allowed. For instance, extracting
FBS with a low δ (1 or 2) leads to relevant associations while a high δ (e.g.,
5) introduces too many irrelevant bi-sets. From this point of view, the DRBS

class leads to the most interesting results and their quality can be improved by
tuning the ǫ parameter. On the other hand, FBS are easier to compute, even in
rather hard contexts, while computing DRBS is in many cases untractable.

5 Conclusion

Looking for strong associations between sets of objects and sets of properties in
possibly large and noisy Boolean data sets, we have discussed a fundamental lim-
itation of formal concept mining. We lack from consensual extensions of formal
concepts towards fault-tolerant patterns and it has given rise to several ad-hoc
proposals. Also, relevancy issues are crucial to avoid too many irrelevant pat-
terns during the targeted data mining processes. It is challenging to alleviate the
expensive interpretation phases while we still want to promote unexpectedness of
the discovered (local) patterns. Considering three recent proposals, we have for-
malized fault-tolerant bi-dimensional pattern mining within a constraint-based
approach. It has been useful for a better understanding of the needed trade-off
between extraction feasibility, completeness, relevancy, and ease of interpreta-
tion. An empirical evaluation on both synthetic and real-life medical data has
been given. It shows that fault-tolerant formal concept mining is possible and
this should have an impact on the dissemination of local set pattern discovery
techniques in intrinsically noisy Boolean data. DRBS pattern class appears as a
well-designed class but the price to pay is computational complexity. The good
news are that (a) the submitted inductive queries on DRBS patterns might in-
volve further user-defined constraints which can be used for efficient pruning,
and (b) one can look for more efficient data structures and thus a more effi-
cient implementation of the DR-Miner generic algorithm. A pragmatic usage
of available algorithms is indeed to extract some bi-sets, e.g., formal concepts,
and then select some of them (say B = (X,Y )) for further extensions towards
fault-tolerant patterns: it becomes, e.g., the computation of a DRBS pattern
(say B′ = (X ′, Y ′) such that the constraint B ⊆ B′ is enforced. Also, a bet-
ter characterization of FBS pattern class might be useful for huge database
processing.
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