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Abstract. Thanks to an important research effort the last few years,
inductive queries on set patterns and complete solvers which can evaluate
them on large 0/1 data sets have been proved extremely useful. However,
for many application domains, the raw data is numerical (matrices of real
numbers whose dimensions denote objects and properties). Therefore,
using efficient 0/1 mining techniques needs for tedious Boolean property
encoding phases. This is, e.g., the case, when considering microarray
data mining and its impact for knowledge discovery in molecular biology.
We consider the possibility to mine directly numerical data to extract
collections of relevant bi-sets, i.e., couples of associated sets of objects
and attributes which satisfy some user-defined constraints. Not only we
propose a new pattern domain but also we introduce a complete solver
for computing the so-called numerical bi-sets. Preliminary experimental
validation is given.

1 Introduction

Popular data mining techniques concern 0/1 data analysis by means of set pat-
terns (i.e., frequent sets, association rules, closed sets, formal concepts). The huge
research effort of the last 10 years has given rise to efficient complete solvers, i.e., al-
gorithms which can compute complete collections of the set patterns which satisfy
user-defined constraints (e.g., minimal frequency, minimal confidence, closeness
or maximality). It is however common that the considered raw data is available as
matrices where we get numerical values for a collection of attributes describing a
collection of objects. Therefore, using the efficient techniques in 0/1 data has to
start by Boolean property encoding, i.e., the computation of Boolean values for
new sets of attributes. For instance, raw microarray data can be considered as a
matrix whose rows denote biological samples and columns denote genes. In that
context, each cell of the matrix is a quantitative measure of the activity of a given
gene in a given biological sample. Several researchers have considered how to en-
code Boolean gene expressionproperties like, e.g., gene over-expression [1,7,12,11].
In such papers, the computed Boolean matrix has the same number of attributes
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than the raw data but it encodes only one specific property. Given such datasets,
efficient techniques like association rule mining (see, e.g., [1,7]) or formal concept
discovery (see, e.g., [4]) have been considered.

Such a Boolean encoding phase is however tedious. For instance, we still lack
a consensus on how the over-expression property of a gene can be specified or as-
sessed. As a result, different views on over-expressionwill lead to different Boolean
encoding and thus potentially quite different collections of patterns. To overcome
these problems, we investigate the possibility to mine directly the numerical data
to find interesting local patterns. Global pattern mining from numerical data, e.g.,
clustering and bi-clustering, has been extensively studied (see [10] for a survey).
Heuristic search for local patterns has been studied as well (see, e.g., [2]). How-
ever, very few researchers have investigated the non heuristic, say complete, search
ofwell-specified local patterns from numerical data. In this paper, we introduce the
Numerical Bi-Sets as a new pattern domain (NBS). Intuitively, we specify collec-
tions of bi-sets, i.e., associated sets of rows and columns such that the specified cells
(for each row-column pair) of the matrix contain similar values. This property is
formalized in terms of constraints, and we provide a complete solver for computing
NBSpatterns. We start from a recent formalizationof constraint-basedbi-setmin-
ing from 0/1data (extension of formal concepts towards fault-tolerance introduced
in [3]) both for the design of the pattern domain and its associated solver. The next
section concerns the formalization of the NBS pattern domain and its properties.
Section 3 sketches our algorithm and Section 4 provides preliminary experimental
results. Section 5 discusses related work and, finally, Section 6 concludes.

2 A New Pattern Domain for Numerical Data Analysis

Let us consider a set of objects O and a set of properties P such that |O| = n
and |P| = m. Let us denote by M a real valued matrix of dimension n × m
such that M(i, j) denotes the value of property j ∈ P for the object i ∈ O (see
Table 1 for an example). Our language of patterns is the language of bi-sets,
i.e., couples made of a set of rows (objects) and a set of columns (properties).
Intuitively, a bi-set (X, Y ) with X ∈ 2O and Y ∈ 2P can be considered as a
rectangle or sub-matrix within M modulo row and column permutations.

Definition 1 (NBS). Numerical Bi-Sets (or NBS patterns) in a matrix are
the bi-sets (X, Y ) such that |X | ≥ 1 and |Y | ≥ 1 (X ⊆ O, Y ⊆ P) which satisfy
the constraint Cin ∧ Cout:

Cin(X, Y ) ≡ | max
i∈X, j∈Y

M(i, j) − min
i∈X, j∈Y

M(i, j)| ≤ ε

Cout(X, Y ) ≡ ∀y ∈ P \ Y, | max
i∈X, j∈Y ∪{y}

M(i, j) − min
i∈X, j∈Y ∪{y}

M(i, j)| > ε

∀x ∈ O \ X, | max
i∈X∪{x}, j∈Y

M(i, j) − min
i∈X∪{x}, j∈Y

M(i, j)| > ε

where ε is a user-defined parameter.

Each NBS pattern defines a sub-matrix S of M such that the absolute value of
the difference between the maximum value and the minimum value on S is less



Mining Bi-sets in Numerical Data 13

Table 1. A real valued matrix; the bold rectangles indicate two NBS patterns

p1 p2 p3 p4 p5

o1 1 2 2 1 6
o2 2 1 1 0 6
o3 2 2 1 7 6
o4 8 9 2 6 7

or equal to ε (see Cin). Furthermore, no object or property can be added to the
bi-set without violating this constraint (see Cout). This ensures the maximality
of the specified bi-sets.

In Figure 1 (left), we can find the complete collection of NBS patterns which
hold in the data from Table 1 when we have ε = 1. In Table 1, the two bold
rectangles are two examples of such NBS patterns (i.e., the underlined patterns
of Figure 1 (left)). Figure 1 (right) is an alternative representation for them: each
cross in the 3D-diagram corresponds to an element in the matrix from Table 1.

The search space for bi-sets can be ordered thanks to a specialization relation.

Definition 2 (Specialization and monotonicity). Our specialization rela-
tion on bi-sets denoted 	 is defined as follows: (⊥O, ⊥P ) 	 (�O, �P ) iff ⊥O ⊆
�O and ⊥P ⊆ �P . We say that (�O, �P ) extends or is an extension of (⊥O, ⊥P ).
A constraint C is anti-monotonic w.r.t. 	 iff ∀B and D ∈ 2O × 2P s.t. B 	
D, C(D) ⇒ C(B). Dually, C is monotonic w.r.t. 	 iff C(B) ⇒ C(D).

Assume Wε denotes the whole collection of NBS patterns for a given threshold
ε. Let us now discuss some interesting properties of this new pattern domain:

– Cin and Cout are respectively anti-monotonic and monotonic w.r.t. 	 (see
Property 1).

– Each NBS pattern (X, Y ) from Wε is maximal w.r.t. 	 (see Property 2).
– If there exists a bi-set (X, Y ) with similar values (belonging to an interval of

size ε), then there exists a NBS (X ′, Y ′) from Wε such that (X, Y ) 	 (X ′, Y ′)
(see Property 3).

– When ε increases, the size of NBS pattern increases too, whereas some new
NBS patterns which are not extensions of previous one can appear (see
Property 4).

– The collection of numerical bi-sets is paving the dataset (see Corollary 1),
i.e., any data item belongs to at least one NBS pattern.

Property 1 (Monotonicity). The constraint Cin is anti-monotonic and the con-
straint Cout is monotonic.

Proof. Let (X, Y ) a bi-set s.t. Cin(X, Y ) is true, and let (X ′, Y ′) be a bi-set s.t.
(X ′, Y ′) 	 (X, Y ). This implies that Cin(X ′, Y ′) is also true:

| max
i∈X′, j∈Y ′

M(i, j) − min
i∈X′, j∈Y ′

M(i, j)|

≤ | max
i∈X, j∈Y

M(i, j) − min
i∈X, j∈Y

M(i, j)| ≤ ε
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Fig. 1. Examples of NBS

If (X, Y ) satisfies Cout and (X, Y ) 	 (X ′, Y ′), then Cout(X ′, Y ′) is also true:

∀y ∈ P \ Y, | max
i∈X, j∈Y ∪{y}

M(i, j) − min
i∈X, j∈Y ∪{y}

M(i, j)|

> ∀y ∈ P \ Y ′, | max
i∈X′, j∈Y ′∪{y}

M(i, j) − min
i∈X′, j∈Y ′∪{y}

M(i, j)| > ε

Property 2 (Maximality). The NBS patterns are maximal bi-sets w.r.t. our spe-
cialization relation 	, i.e., if (X, ⊥P ) and (X, �P ) are two NBS patterns from
Wε, then ⊥P �⊆ �P and �P �⊆ ⊥P .

Proof. Assume ⊥P ⊆ �P . (X, ⊥P ) does not satisfy Equation 2, because for
y ∈ �P \ ⊥P , | maxi∈X M(i, y) − mini∈X M(i, y)| ≤ ε.

Property 3 (NBS patterns extending bi-sets of close values). Let I1, I2 ∈ R, I1 ≤
I2, and (X, Y ) be a bi-set such that ∀i ∈ X, ∀j ∈ Y, M(i, j) ∈ [I1, I2]. Then,
there exists a NBS (U, V ) with ε = |I1 − I2| such that X ⊆ U and Y ⊆ V .

Thus, if there are bi-sets of which all values are within a small range, there
exists at least one NBS pattern which extends it.
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Proof. V can be recursively constructed from Y ′ = Y by adding a property y
s.t. y ∈ P \Y ′ to Y ′ if | maxi∈X, j∈Y ′∪{y} M(i, j)−mini∈X, j∈Y ′∪{y} M(i, j)| ≤ ε,
and then continue until no further property can be added. At the end, Y ′ = V .
After that, we extend in a similar way the set X towards U . By construction,
(U, V ) is a NBS pattern with ε = |I1 − I2|. Notice that we can have several
(U, V ) which extend (X, Y ).

When ε = 0, the NBS pattern collection contains all maximal bi-sets of identical
values. As a result, we get a paving (with overlapping) of the whole dataset.

Property 4 (NBS pattern size is growing with ε). Let (X, Y ) be a NBS pattern
from Wε. There exists (X ′, Y ′) ∈ Wε′ with ε′ > ε such that X ⊆ X ′ and Y ⊆ Y ′.

Proof. Proof is trivial given Property 3.

Corollary 1. As W0 is paving the data, then Wε is paving the data as well.

3 Algorithm

The whole collection of bi-sets ordered by 	 forms a lattice whose bottom is
(⊥O, ⊥P ) = (∅, ∅) and top is (�O, �P ) = (O, P). Let us denote by B the
set of sublattices1 of ((∅, ∅), (O, P)): B = {((⊥O, ⊥P ), (�O, �P )) s.t. ⊥O, �O ∈
2O, ⊥P , �P ∈ 2P and ⊥O ⊆ �O, ⊥P ⊆ �P } where the first (resp. the second)
bi-set is the bottom (resp. the top) element.

Property 5. Let NBSF = ((⊥O, ⊥P ), (�O, �P )) ∈ B, for all (X, Y ) ∈ NBSF we
have the following properties:

– e ∈ ⊥O ⇒ e ∈ X
– e ∈ ⊥P ⇒ e ∈ Y
– e /∈ �O ⇒ e �∈ X
– e �∈ �P ⇒ e �∈ Y

NBSF = ((⊥O, ⊥P ), (�O, �P )) is the set of all the bi-sets (X, Y ) s.t. ⊥O ⊆ X ⊆
�O and ⊥P ⊆ Y ⊆ �P . A sublattice represents explicitly a search space for bi-sets.

Our algorithm NBS-Miner explores some of the sublattices of B built by
means of three mechanisms: enumeration, pruning and propagation. It starts
with the sublattice ((∅, ∅), (O, P)), i.e., the lattice containing all the possible
bi-sets. Table 2 introduces the algorithm NBS-Miner. We now provide details
about the three mecanisms.

3.1 Candidate Enumeration

The enumeration function splits recursively the current sublattice (the candi-
date), say NBSF , in two new sublattices containing all the bi-sets of NBSF .

1 X is a sublattice of Y if Y is a lattice, X is a subset of Y and X is a lattice with
the same join and meet operations than Y .
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Property 6. Let NBSF = ((⊥O, ⊥P ), (�O, �P )) ∈ B and e ∈ �O \ ⊥O, then
NBS1 = ((⊥O ∪ {e}, ⊥P ), (�O, �P )) and NBS2 = ((⊥O, ⊥P ), (�O \ {e}, �P ))
is a partition of NBSF . NBS1 contains all the bi-sets of NBSF which contain e
and NBS2 contains all the bi-sets of NBSF which do not contain e. If e ∈ �P \
⊥P , NBS1 = ((⊥O, ⊥P ∪{e}), (�O, �P )) and NBS2 = ((⊥O, ⊥P ), (�O, �P \e))
is a partition of NBSF as well.

The enumeration function selects an element of the set e ∈ �O\⊥P ∪�P \⊥P and
its generates two new sublattices. More formally, we use the following functions
Enum and Choose.

Let Enum : B × O ∪ P → B2 such that

Enum(((⊥O, ⊥P ), (�O, �P )), e)

=
{

(((⊥O ∪ {e}, ⊥P ), (�O, �P )), ((⊥O, ⊥P ), (�O \ {e}, �P ))) if e ∈ O
(((⊥O, ⊥P ∪ {e}), (�O, �P )), ((⊥O, ⊥P ), (�O, �P \ {e}))) if e ∈ P

where e ∈ �O \ ⊥O or e ∈ �P \ ⊥P . Enum generates two new sublattices which
are a partition of its input parameter.

Let Choose : B → O ∪ P be a function which returns one of the element
e ∈ �O \ ⊥O ∪ �P \ ⊥P .

3.2 Candidate Pruning

Obviously, we do not want to explore all the bi-sets. We want either to stop the
enumeration when one can ensure that none bi-set of NBSF is a NBS (Pruning)
or to reduce the search space when a part of NBSF can be removed witout loos-
ing any NBS pattern (Propagation). The sublattice allows to compute bounds
of any (anti-)monotonic constraints w.r.t. 	. For instance, Cmin area(X, Y ) ≡
#X ×#Y > 20 is a monotonic constraint and Cmax area(X, Y ) ≡ #X ×#Y < 3
is an anti-monotonic constraint, when #E denotes the size of the set E. If
NBSF = (({o1, o3}, {p1, p2}), ({o1, o2, o3, o4}, {p1, p2, p3, p4})) then none of the
bi-sets of NBSF satisfy Cmin area and Cmax area. Actually, we have #{o1, o3} ×
#{p1, p2} > 3 and #{o1, o2, o3, o4}×#{p1, p2, p3, p4} < 20. None bi-set satisfies
Cmin area and Cmax area, whatsoever the enumeration. Intuitively, the monotonic
constraints use the top of the sublattice to compute a bound whereas the anti-
monotonic constraints use its bottom.

For the pruning, we use the following function:
Let Prunem

C : B → {true,false} be a function which returns True iff the
monotonic constraint Cm (w.r.t. 	) is satisfied by the top of the sublattice.

Prunem
C ((⊥O, ⊥P ), (�O, �P )) ≡ Cm(�O, �P )

If Prunem
C ((⊥O, ⊥P ), (�O, �P )) is false then none of the bi-sets contained in

the sublattice satisfies Cm.
Let Pruneam

C : B → {true,false} be a function which returns True iff
the anti-monotonic constraint Cam (w.r.t 	) is satisfied by te bottom of the
sublattice:

Pruneam
C ((⊥G, ⊥M ), (�G, �M )) ≡ Cam(⊥G, ⊥M )
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If Pruneam
C ((⊥O, ⊥P ), (�O, �P )) is false then none of the bi-sets contained in

the sublattice satisfies Cam.
Let PruneCNBS : B → {true,false} be the pruning function. Due to Prop-

erty 1, we have

PruneCNBS((⊥O, ⊥P ), (�O, �P )) ≡ Cin(⊥O, ⊥P ) ∧ Cout(�O, �P )

When PruneCNBS((⊥O, ⊥P ), (�O, �P )) is false then no NBS pattern is con-
tained in the sublattice ((⊥O, ⊥P ), (�O, �P )).

3.3 Propagation

The propagation plays another role. It enables to reduce the size of the search
space, i.e., it does not consider the entire current sublattice NBSF but a smaller
sublattice NBSP ∈ B such that NBSP ⊂ NBSF . For instance, if ((⊥O ∪
{e1}, ⊥P ), (�O, �P )) and ((⊥O, ⊥P ), (�O, �P \ {e2})) do not contain any NBS
pattern, then we can keep going the enumeration process with ((⊥O, ⊥P ∪
{e2}), (�O \ e1, �P )) instead of NBSF . Cin and Cout can be used to reduce
the size of the sublattices by moving objects of �O \⊥O into ⊥O or outside �O,
and similarly on attributes. The following function is used to reduce the size of
the sublattice:

The function Propin B → B and Propout B → B are used to do it as follow:

Propin((⊥O, ⊥P ), (�O, �P )) = {((⊥1
O, ⊥1

P ), (�O, �P )) ∈ B |
⊥1

O = ⊥O ∪ {x ∈ �O \ ⊥O | Cout((⊥O, ⊥P ), (�O \ {x}, �P )) is false}
⊥1

P = ⊥P ∪ {x ∈ �P \ ⊥P | Cout((⊥O, ⊥P ), (�O, �P \ {x})) is false}}

Propout((⊥O, ⊥P ), (�O, �P )) = {((⊥O, ⊥P ), (�1
O, �1

P )) ∈ B |
�1

O = �O \ {x ∈ �O \ ⊥O | Cin((⊥O ∪ {x}, ⊥P ), (�O, �P )) is false}
�1

P = �P \ {x ∈ �P \ ⊥P | Cin((⊥O, ⊥P ), (�O, �P ∪ {x})) is false}}

Let Prop B → B s.t. Propin(Propout(L)) is recursively applied as long as its
result changes.

We call a leaf a sublattice L = ((⊥O, ⊥P ), (�O, �P )) which contains only one
bi-set i.e., (⊥O, ⊥P ) = (�O, �P ). NBS are these leaves.

Example 1. Here are examples of the function Prop with the data of Table 1.

– ((⊥O, ⊥P ), (�O, �P )) = (({o1}, {p1}), ({o1, o2, o3, o4}, {p1, p2, p3, p4, p5}))
Prop((⊥O, ⊥P ), (�O, �P )) = ((⊥O, ⊥P ), (�O \ {o4}, �P \ {p5}))

– ((⊥O, ⊥P ), (�O, �P )) = (({o1, o2}, {p1}), ({o1, o2, o3}, {p1, p2, p3, p4}))
Propout((⊥O, ⊥P ), (�O, �P )) = ((⊥O, ⊥P ), (�O, �P \ {p4}))
Propin((⊥O, ⊥P ), (�O, �P \ {p4})) =
(({o1, o2, o3}, {p1, p2, p3}), ({o1, o2, o3}, {p1, p2, p3}))
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Table 2. NBS-Miner pseudo-code

M is a real valued matrix, C a conjunction of monotonic
and anti-monotonic constraints on 2O × 2P and ε is a
positive value.

NBS-Miner

Generate((∅, ∅), (O, P))

End NBS-Miner
Generate(L)

Let L = ((⊥O, ⊥P ), (�O, �P ))
L ← Prop(L)
If Prune(L) then

If (⊥O, ⊥P ) �= (�O, �P ) then
(L1, L2) ← Enum(L, Choose(L))
Generate(L1)
Generate(L2)

Else Store L
End if

End if

End Generate

4 Experiments

We report a preliminary experimental evaluation of the NBS pattern domain and
its implemented solver. We have been considering the “peaks” matrix of matlab
(30*30 matrix with values ranging between -10 and +9). We used ε = 4.5 and we
obtained 1700 NBS patterns. On Figure 2, we plot in white one extracted NBS.
The two axes ranged from 0 to 30 correspond to the two matrix dimensions and
the third one indicates their corresponding values (row-column pairs).

In a second experiment, we enforced that the values inside the extracted
patterns to be greater than 1.95 (minimal value constraint). Figure 3 shows the
228 extracted NBS patterns when ε = 0.1. Indeed, the white area corresponds
to the union of 228 extracted patterns.

To study the impact of ε parameter, we used the malaria dataset [5]. It records
the numerical gene expression value of 3 719 genes of Plasmodium falciparum
during its complete lifecycle (a time series of 46 biological situations). We used
a minimal size constraint on both dimension, i.e., looking for the NBS patterns
(X, Y ) s.t. |X | > 4 and |Y | > 4. Furthermore, we have been adding a minimal
value constraint. Figure 4 provides the mean and standard deviation of the area
of the NBS patterns from this dataset w.r.t. the ε value.

As it was expected owed to Property 4, the mean area increases with ε.
Figure 5 reports on the number of NBS patterns in the malaria dataset. From

ε = 75 to ε = 300, this number decreases. It shows that the size of the NBS
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Fig. 3. Examples of extracted NBS

pattern collection tends to decrease when ε increases. Intuitively, many patterns
are gathered when ε increases whereas few patterns are extended by generating
more than one new pattern. Moreover, the minimal size constraint can explain
the increase of the collection size. Finally, when the pattern size increases with
ε, new NBS patterns can appear in the collection.

5 Related Work

[14,6,13] propose to extend classical frequent itemset and association rule def-
initions for numerical data. In [14], the authors generalize the classical notion
of itemset support in 0/1 data when considering other data types, e.g., numeri-
cal ones. Support computation requires data normalization, first translating the
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values to be positive, and then dividing each column entry by the sum of the
column entries. After such a treatment, each entry is between 0 and 1, and the
sum of the values for a column is equal to 1. The support of an itemset is then
computed as the sum on each row of the minimum of the entries of this itemset. If
the items have identical values on all the rows, then the support is equal to 1, and
the more the items are different, the more the support value decreases toward 0.
This support function is anti-monotonic, and thus the authors propose to adapt
an Apriori algorithm to compute the frequent itemsets according to this new
support definition. [6] proposes new methods to measure the support of itemsets
in numerical data and categorical data. They adapt three well-known correlation
measures: Kendall’s τ , Spearman’s ρ and Spearman’s Footrule F. These
measures are based on the rank of the values of objects for each attribute, not the
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values themselves. They extend these measures to sets of attributes (instead of
2 variables). Efficient algorithms are proposed. [13] uses an optimization setting
for finding association rules in numerical data. The type of extracted association
rules is: “if the weighted sum of some variables is greater than a threshold then a
different weighted sum of variables is with high probability greater than a second
threshold”. They propose to use hyperplanes to represent the left-hand and the
right-hand sides of such rules. Confidence and coverage measures are used. It is
unclear wether it is possible to extend these approaches to bi-set computation.

Hartigan proposes a bi-clustering algorithm that can be considered as a spe-
cific collection of bi-sets [8]. He introduced a partition-based algorithm called
“Block Clustering”. It splits the original data matrix into bi-sets and it uses the
variance of the values inside the bi-sets to evaluate the quality of each bi-set.
Then, a so-called ideal constant cluster has a variance equal to zero. To avoid
the partitioning of the dataset into bi-sets with only one row and one column
(i.e., leading to ideal clusters), the algorithm searches for K bi-sets within the
data. The quality of a collection of K bi-sets is considered as the sum of the
variance of the K bi-sets. Unfortunately, this approach uses a local optimization
procedure which can lead to unstable results.

In [15], the authors propose a method to isolate subspace clusters (bi-sets)
containing objects varying similarly on subset of columns. They propose to com-
pute bi-sets (X, Y ) such that given a, b ∈ X and c, d ∈ Y the 2 × 2 sub-matrix
entries ((a, b), (c, d)) included in (X, Y ) satisfies |M(a, c)+M(b, d)− (M(a, d)+
M(b, c))| ≤ δ. Intuitively, this constraint enforces that the change of value on
the two attributes between the two objects is confined by δ. Thus, inside the
bi-sets, the values have the same profile. The algorithm first considers all pairs
of objects and all pairs of attributes, and then combines them to compute all
the bi-sets satisfying the anti-monotonic constraint.

Liu and Wang [9] have proposed an exhaustive bi-cluster enumeration algo-
rithm. They are looking for order-preserving bi-sets with a minimum number of
rows and a minimum number of columns. This means that for each extracted
bi-set (X, Y ), there exists an order on Y such that according to this order and
for each element of X the values are increasing. They want to provide all the
bi-clusters that, after column reordering, represent coherent evolutions of the
symbols in the matrix. This is achieved by using a pattern discovery algorithm
heavily inspired in sequential pattern mining algorithms. These two local pat-
tern types are well defined and efficient solvers are proposed. Notice however
that these patterns are not symmetrical: they capture similar variations on one
dimension and not similar values.

Except for the bi-clustering method of [8], all these methods focus on one of
the two dimensions. We have proposed to compute bi-sets with a symmetrical
definition which is one of the main difficulties in bi-set mining. This is indeed one
of the lessons from all the previous work on bi-set mining from 0/1 data, and,
among others, the several attempts to mine fault-tolerant extensions to formal
concepts instead of fault-tolerant itemsets [3].
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6 Conclusion

Efficient data mining techniques tackle 0/1 data analysis by means of set pat-
terns. It is however common, for instance in the context of gene expression data
analysis, that the considered raw data is available as a collection of real numbers.
Therefore, using the available algorithms needs for a beforehand Boolean prop-
erty encoding. To overcome such a tedious task, we started to investigate the
possibility to mine set patterns directly from the numerical data. We introduced
the Numerical Bi-Sets as a new pattern domain. Some nice properties of NBS

patterns have been considered. We have described our implemented solver NBS-

Miner in quite generic terms, i.e., emphasizing the fundamental operations for
the complete computation of NBS patterns. Notice also that other monotonic
or anti-monotonic constraints can be used in conjunction with Cin ∧ Cout, i.e.,
the constraint which specifies the pattern domain. It means that search space
pruning can be enhanced for mining real-life datasets provided that further user-
defined constraints are given. The perspectives are obviously related to further
experimental validation, especially the study of scalability issues. Furthermore,
we still need for an in-depth understanding of the complementarity between
NBS pattern mining and bi-set mining from 0/1 data.
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