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Abstract. This paper provides a framework for the extraction of frequent 
sequences satisfying a given regular expression (RE) constraint. We take 
advantage of the information contained in the hierarchical representation of an 
RE by abstract syntax trees (AST). Interestingly, pruning can be based on the 
anti-monotonicity of the minimal frequency constraint, but also on the RE 
constraint, even though this latter is generally not anti-monotonic. The AST 
representation enables to examine the decomposition the RE and to choose 
dynamically an adequate extraction method according to the local selectivity 
of the sub REs. Our algorithm, RE-Hackle, explores only the candidate space 
spanned over the regular expression, and prunes it at each level. Due to the 
dynamic choice of the exploration method, this algorithm surpasses its 
predecessors. We provide an experimental validation on both synthetic data 
and a real genomic sequence database. Furthermore, we show how this 
framework can be extended to regular expressions with variables providing 
context-sensitive specification of the desired sequences.  

1. Introduction 
Frequent sequential pattern mining in a database of sequences is an important 
data mining technique [1,11]. Its application domains span from the analysis of 
biological data to the discovery of WWW navigation paths or alarm analysis. In 
most of these applications, the lack of user control in specifying the interesting 
patterns beforehand leads to intractable extraction or costly post-processing 
phases. Considering other user-defined constraints, in conjunction with the 
minimal frequency constraint, has been proved useful [10,3,12,9]. Not only it 
limits the number of returned patterns but also it can reduce extraction cost to an 
acceptable extent. In this paper, we consider constraints expressed by regular 
expressions (RE). Thanks to REs, the user can specify the language of desired 
patterns in a rather flexible way. We consider that a sequence (or string) is an 
ordered list of items taken from a finite alphabet A. ||S|| denotes the length of S, 
i.e., the number of items it contains. A database of sequences (D) is an unordered 
collection of sequences. S’= s’1s’2...s’m is called a sub-sequence of S = s1 s2 ... sn 
(m<n) if ∃ k s.t. s’1 s’2 ... s’m = sk+1 sk+2 ... sk+m . The frequency of a sequence S 
Freq(S,D) is the number of the sequences S’ in D s.t. S is a sub-sequence of S’. 
Problem statement: Given a database D, a regular expression E and a positive 
integer minsup, find all the sequences S which satisfy the following properties: 

• Freq(S,D) ≥ minsup 
• S ∈ L(E), L(E) being the language specified by the regular expression E.  
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Constraint-based mining is difficult. Efficient algorithms are often ad-hoc, i.e., 
they are optimized for specific constraints and/or a specific kind of data. Several 
algorithms exploit efficiently the minimal frequency constraint thanks to its anti-
monotonicity [1,6,4,8,11]. Pushing constraints that involve other user-defined 
constraints has been studied as well, e.g., in [3,11,9,7]. A RE-constraint is 
generally neither anti-monotonic nor monotonic and thus can not be used directly 
for pruning the search space. Furthermore, if a non anti-monotonic (nAM) 
constraint is “pushed” inside an extraction algorithm, the requirement that the 
sequences must satisfy both the minimal frequency and the nAM constraint can 
lack of pruning [3]. To tackle RE-constraints, the authors of the SPIRIT 
algorithms have proposed in [3] several relaxations of RE constraints. These 
relaxations have led to four ad-hoc algorithms that use different pruning strategies 
and perform unequally depending on the selectivity1 of the constraint. In other 
terms, the choice of a given SPIRIT algorithm must be based on the selectivity of 
the RE constraint which is a priori unknown. We would like a robust algorithm 
which depends weakly of the selectivity of the constraint and the characteristics 
of the data, i.e., an algorithm which would consider the individual selectivity of 
the sub-expressions and choose the best pruning strategy during the extraction 
according to the sequences in the database. This would be a major step towards 
efficient sequence mining for many application domains.  
We proposed in [2] the RE-Hackle (Regular Expression-Highly Adaptive Local 
Extraction) framework. It is based on a hierarchical abstract syntax tree (AST) of 
the RE that can collect much more information on the local properties of the 
constraint than the previous methods based on Finite State Automata [3]. The 
collected information is used to examine each sub-expression of the initial RE 
and the RE-Hackle algorithm chooses the extraction strategy to favor pruning on 
the minimal frequency constraint or on the RE-constraint. For that purpose, 
candidate sequences are assembled during a bottom-up processing of the AST. 
Each node of this tree, the Hackle-tree, encodes a part of the RE and, when the 
algorithm reaches a node, it has information about the frequent sequences 
generated by its sub-tree. The number of these sequences, the structure of the tree 
in the neighborhood of the node and global information such as the cost per 
candidate evaluation and per database scan can be used to determine a candidate 
generation strategy and to optimize the execution time.  

The contribution of this paper is threefold. We provide an introduction to the RE-
Hackle algorithm defined in [2] and we introduce a new optimization technique 
based on Hackle-trees. Also, we provide experimental results on both synthetic 
data and real biological data that were missing from [2]. It shows that our 
algorithm adapts dynamically its pruning strategy and tends to take the shape of 
the best SPIRIT algorithm without any prior knowledge of constraint selectivity. 
Finally, we show that the framework can be extended to regular expressions with 
variables. Adding variables clearly increases the expressive power of the 
exploration language and reaches beyond the scope of context free grammars.  
                                                           
1 Selectivity is an intuitive characterization of REs which is roughly speaking inversely 
proportional to the number of sequences in the database that match the initial constraint. 



 

The paper is organized as follows. Section 2 provides the needed definitions. The 
RE-Hackle basic algorithm is described in Section 3. An original optimization 
technique is described in Section 4. Section 5 overviews the experimental results 
and it compares RE-Hackle to our fair implementation of two SPIRIT algorithms. 
Section 6 introduces an extension of the framework to regular expressions with 
variables. Section 7 concludes. 

2. Definitions 
A RE constraint in a kind of a regular expression built over an alphabet of 
sequences using the following operators: union (denoted +), concatenation 
(denoted ¤k and sometimes “.” when k is 0) and Kleene closure (denoted *). The 
empty set and the empty sequence are noted Ø and ε. 
The k-telescoped concatenation of two sequences S=s1 s2 ...s||s|| and P= p1 p2 ...p||P|| 
is a new sequence. This operator requires that the sequences overlap in k 
positions. When k is zero, we get the usual concatenation. It is used for candidate 
generation. 

Op¤k(S, P)= S ¤k P = { s1 s2 ... s||s||-k p1 p2 ...p||p||} if  for all 0<j≤k we have 
pj=s||s||-k+j and ||S|| > k and ||P|| > k. If  ∃ 0<j≤k s.t. pj<>s||s||-k+j Op¤k(S, P)=ε. 
Concatenating two sets of sequences {S1, S2, …, Sn} and {P1, P2, …, Pm} gives a 
new set of sequences that contains all the sequences resulting from the Cartesian 
product of the sequences from the two sets.  
 {S1, …, Sn} ¤k {P1,…, Pm} = { Si ¤k Pj | 0<i ≤ n et 0<j ≤ m} 
The k-telescoped concatenation of n sequences S1, S2, …, Sn is:  
 Op¤k(S1, S2,…, Sn) = Op¤k(S1, Op¤k(S2,…, Sn))  
E.g., Op¤3(ACDE,CDEF,DEFD) = Op¤3(ACDE,Op¤3(CDEF, DEFD)) = 
Op¤3(ABCD,CDEFD) = ACDEFD. 
The union of n sequences S1, S2, … Sn is the set of sequences:  

Op+( S1, S2,…, Sn) = {S1, S2, …, Sn)}  
The union of two sets of sequences is the union of these sets: 

{S1,…, Sn} + {P1,…, Pm} = {S1,…, Sn, P1,…, Pm} 
The Kleene closure applies to a set of sequences and denotes all the sequences 
one can build from them using concatenations. It includes the empty set Ø. 
 Op*{S1,…, Sn} = { Ø, {S1, …, Sn} ¤k {S1, …, Sn},   
    Op*({S1,…, Sn} ¤k {S1,…, Sn}, S1,…, Sn)} 
Moreover, the function frequent applied to a set of sequences {S1,…, Sn} scans 
the database and returns a set that contains the frequent sequences. 
The operators have a variable arity. The priority increases from + to ¤k and from 
¤k to *. The concatenation can be distributed over the union. The union and the 
concatenation are associative. When all the possible concatenations have taken 
place, the resulting sequence is called an atomic sequence. Consider the RE-
constraint B.CD.E.A(H+F) which can be transformed into BCDEA(H+F) by 3 
concatenations. According to our definition, BCDEA is a newly formed atomic 



 

sequence. H and F were already atomic sequences as they cannot be concatenated 
to their neighbors, but B, CD, E and A are not as they can be packed together to 
form a longer sequence. The building bricks of our RE-constraints are the atomic 
sequences, i.e., the smallest elements considered during the extraction phase.  

Canonical form We say that a regular expression is in a canonical form if it 
contains only atomic sequences. In the following, we assume that all the REs are 
in the canonical form. 

Examples of RE-constraints and their associated  derivation phrases: 
A+BE+CF+D = Op+(A, BE, CF, D) 
A(B)*(CF+D) = Op¤0(A, Op*(B), Op+(CF,D)) 

Sub-constraints are taken from the initial RE-constraint: they correspond to terms 
of the derivation phrase. Extraction must not break the priorities of the operators. 
E.g., B+C can not be extracted from A¤0B+C as the priority of the concatenation 
prevails over the union. Besides, a sub-constraint must contain as many terms as 
the arity of the operator in the initial constraint. A maximal sub-constraint is a 
sub-constraint, which is not contained in any other sub-constraint except the 
initial constraint. E.g., A¤0B+C has two maximal sub-constraints: A¤0B and C. 
The maximal sub-constraints naturally define partitions over the initial RE. The 
active operator connects the maximal sub-constraints of a given constraint. E.g., 
the active operator for A¤0B+C is the union.  

Hackle-tree. A Hackle-tree is an AST which encodes the structure of the 
canonical form of a RE-constraint. Every inner node of this tree corresponds to an 
operator, and the leaves contain atomic sequences of (possibly) unequal lengths. 
The tree reflects the way in which these atomic sequences are assembled by the 
operators to form the initial RE-constraint. Figure 1 provides such a tree for the 
RE-constraint C((C(A+BC)D)+(A+B+C)*)C. Nodes are marked with roman 
numbers to support the discussion. Attributes associated to each node have been 
described in [2] and are given in the following table: 

Attribute Semantics 
type Type of the node: ⊥  leaf, ¤ concatenation, + union, * Kleene closure. 

siblings List of the siblings. NULL for the leaves. 
parent Parent of the node. NULL for the root. 
ξth ,ξexp Theoretical and experimental cardinality of the node. 
items Frequent legal sequences found by the node. 
state Unknown – The exploration of the node has not yet begun.  

Satisfied – Exploration has found frequent legal sequences.  
Violated – The node did not generated a frequent sequence.  

explored Coupled to the attribute State. True if the exploration is completed. 
K Parameter for the k-telescoped concatenation: ¤k 

age Only for Kleene closures: counts the times the  node has been visited. 
seq Only for the leaves: encoded atomic sequence or symbol. 

The construction of the tree is not trivial. The RE has to be transformed in its 
canonical form and arities have to be computed from the number of the maximal 
sub-constraints. Then a node is created for the active operator as well as a sibling 



 

for each maximal sub-constraint, which is expanded recursively. This method 
minimizes the height of the tree and can be encoded efficiently.  

The intuitive notion of selectivity can be formalized using cardinalities [2]. The 
theoretical cardinality of a constraint is the number of sequences it can generate 
after the expansion of all the operators if every possible sequence is in the 
database. The experimental cardinality of a constraint is the number of sequences 
extracted from the database. While the theoretical cardinality refers only to the 
constraint, the experimental cardinality takes into account the database instance, 
i.e., the results of the counting phases.  

 
Figure 1 Hackle-tree encoding constraint C((C(A+BC)D)+(A+B+C)*)C. 

The extraction phrase Ψ is the list of the nodes one must examine at a given step. 
The whole extraction process is controlled by this phrase: its modification defines 
a new generation and thus a new database scan. When the extraction starts, 
Ψ contains all the leaves of the tree collected from left to right. It is updated after 
each database scan by replacing the explored nodes with their parents.  

The extractor functions (denoted C) are applied to the nodes of the Hackle-tree, 
and return the candidates that have to be counted. They are defined as follows:  

• Leaves: C(N) = N.seq 
• Concatenation: all siblings of N must be explored,  

C(N) = ¤k M.items, for all M∈N.siblings , k comes from the 
node N 

• Union: all siblings of N must be explored,  
  C(N) = ∪ M.items, for all M∈N.siblings 

• Kleene closure: the sub-tree of N must be explored,  
  U

0

age)C(N,C(N)
>
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 with C(N,age+1)=¤age-1frequent{C(N,age)}and C(N,1)=N.siblings.items 



 

3. The RE-Hackle Algorithm 
RE-Hackle extracts all the frequent sequences which match a given regular 
expression, i.e., which are valid w.r.t. the root of its Hackle-tree. Details about the 
basic algorithm are given in [2]. Here, we just provide informal comments that 
enable to introduce our new optimization and the extension to RE-constraints 
with variables. The algorithmic schema is as follows (T is a Hackle-tree, E a RE- 
constraint, Ψ the extraction phrase, and C the set of candidates):  

 T ← BuildTree (E) 
loop  Ψ ← BuildExtractionPhrase (T) 

C ← GenerateCandidates (Ψ) 
CountCandidates (C) 
T ← TransformTree (T)  

while Ψ<>Ø and C<>Ø 
return T.root.items 

Extraction relies on the extraction phrase. It starts at the leaves of the Hackle-tree 
and lasts several generations. At every generation, the extraction functions are 
applied to the nodes in the extraction phrase; the algorithm counts the candidates 
and uses the frequent ones to feed the next generation (an upper level) which will 
be assembled by the new nodes of the updated extraction phrase. It is a levelwise 
algorithm in the structured space of the language associated to the RE-constraint. 
The number of the levels is limited by the height of the Hackle-tree plus the 
number of times Kleene nodes are evaluated. As candidates are built up from 
atomic sequences, it takes usually less database scans than GSP-like algorithms 
[1]. The Hackle-tree is transformed after each generation, e.g., for pruning 
branches which can no longer generate new candidates.  

Let us comment an execution of the algorithm given the following database, a 
minimal frequency of 2, and the RE-constraint from Figure 1. 

ID Sequences 
1 CCADCABC 
2 ECBDACC 
3 ACCBACFBAC 
4 CCBAC 

The extraction needs for 7 generations and 6 database scans. 
1st Generation 

Ψ1 = II,X,XV,XVI,VIII,XII,XIII,XIV,IV 
Candidates: A, B, C, D, BC   
Frequent sequences: A, B, C, D 

BC is not frequent and the algorithm prunes Node XVI. 
2nd Generation 

Ψ2 = VI,VII 
Candidates: AA, AB, AC, BA, BB, BC, CA, CB, CC 
Frequent sequences: AB, AC, BA, CB, CC 



 

Ψ2’= XI,IX would have been the application of the defined principle: the 
substitution of Nodes XV and XVI by XI and the substitution of Nodes  XII, XIII 
and XIV by IX. In fact, as unions never need to access the database, the algorithm 
replaces them with their nearest concatenation or Kleene closure parent during an 
intermediate generation. It is not necessary to compute explicitly Ψ2’. While 
processing Ψ2, no frequent sequence has been found at node VII, so it is erased 
from the tree. Its parent, the node V, can be pruned too thanks to the anti-
monotonicity of the minimal frequency constraint. 
3rd Generation 

Ψ3 = VI (age=1) 
Candidates: ABA, ACB, ACC, BAB, BAC, CBA, CCB, CCC 
Frequent sequence: ACC, BAC, CBA, CCB 

A Kleene Closure node remains in the extraction phrase while it continues to 
generate frequent sequences. 
4th Generation  

Ψ4 = VI (age=2) 
Candidates: ACCB, BACC, CBAC, CCBA 
Frequent sequences: CBAC, CCBA 

ACC ¤2 CCB = ACB. Parameter k of the concatenation is given by the age of the 
Kleene node.  
5th Generation 

Ψ5 = VI (age=3) 
Candidates: CCBAC Frequent sequences: CCBAC 

6th Generation 
Ψ6 = VI (age=4) 
Candidates: -  Frequent sequences: - 

No candidate to count since CCBAC ¤4 CCBAC = ε. 
7th Generation 

Ψ7 = I 
Candidates: CC, CAC, CBC, CCC, CABC, CACC, CBAC, CCAC, CCBC, 
CCCC, CACCC, CBACC, CCBAC, CCCBAC, CCBACC, CCCBACC 
Frequent sequences:  CC, CBAC, CCBAC 

The Kleene closure returns every frequent combinations of A and B, plus the 
empty sequence. The root assembles them to C and generates the result, i.e., the 
frequent items associated to the root. Notice that the candidates of the kth 
generation are not necessarily of length k.  
Let us now discuss the processing of the Kleene closure nodes thanks to second-
level alphabets. For each atomic sequence of a constraint, we are defining a new 
symbol which replaces it in an equivalent second-level RE-constraint. For 
example, the RE-constraint A(AB|FE)DCA becomes A(α|β)χ given the new 
symbols α=AB, β=FE and γ=DCA. Every initial symbol such as A is added 
automatically to the second-level alphabet. The RE-Hackle algorithm works with 
second-level alphabets. 



 

The nodes corresponding to the Kleene closures collect the frequent sequences 
extracted by their descendents. These sequences of unequal length must be 
combined at later ages to compute the closures. 
By definition, the age of a Kleene closure is the number of times it has been 
visited (it begins with 1). Assume that A, ADC and BAD have been found frequent 
by the siblings of a Kleene node, it means that the closure of {A,ADC,BAD} must 
be computed. The candidates should be {AA, AADC, ABAD, ADCA, ADCADC, 
ADCBAD, BADA, BADADC, BADBAD}. Assume now that all of them are 
frequent. At the third age, the node must concatenate only the sequences, which 
share a common sub-sequence of the first generation, i.e., A, ADC or BAD. For 
example, even though ABAD and ADCA share a common sequence of length 2, 
they should not be concatenated because ABADC does not belong to 
{A,ADC,BAD}*. With a representation that keeps no information about the 
composition of the second (nth) age sequences, the overlapped concatenation of 
these sequences is practically impossible. It has motivated the introduction of 
second-level alphabets. Dealing with {A,β,γ} given that β=ADC and χ=BAD is an 
elegant solution for candidate generation. The second level candidate Aβ will be 
converted to its first level representation, i.e., AADC for counting purposes and 
handled in its second level representation when computing overlapped 
concatenations. Notice that in our hierarchical representation, the overlapping 
parts of the sequences are easily identified. For instance, the sequence Aβχ = 
(A)(ADC)(BAD) contains only three symbols in its second level representation, 
which is a shortcut for a flattened sequence of length 7. Candidates are generated 
in the same way as with GSP [1] where the age of the Kleene node encodes the 
number of the overlapping second-generation sequences (parameter k for the k-
telescoped concatenation ¤k). The use of a second level alphabet can boost the 
extraction of the Kleene closure, as the candidates are assembled from sequences 
rather than from simple symbols. Consequently, their length grows faster then 
with any previous method and the number of database scans can drop drastically.  

4. Optimization 
Let us introduce an original optimization for RE-Hackle, the so-called ascending 
flux of candidates. It can be easily shown that the exploration of each Kleene 
node delays by one generation the evaluation of its parent, as parents can not be 
put in the extraction phrases if the extraction of their siblings is not completed. 
Although generally it does not penalize the extraction (the algorithm can continue 
to work with some other branches of the tree), it would be better to have a 
guarantee that the embedded structures will never lack of efficiency. Therefore, 
we decided to forward the frequent sequences found by a Kleene node 
immediately to its parent, i.e., without waiting for the completion of the 
exploration. Indeed, the extraction against constraint A*B can be inefficient if the 
database contains long sequences of symbols A but does not contain AB. We can 
forward the extracted sequences immediately after having found them. Thus, the 
optimized algorithm can work on several levels of the Hackle-tree. The extraction 
phrase is now allowed to contain nodes which are in direct son-parent relations. 



 

The reconstruction of the extraction phase becomes more complex, so does the 
propagation of the violations and the candidate generation. Technically, it is 
achieved by 3 possible values for attribute explored:  

• Waiting: the exploration of the node has not yet begun 
• Inprogress: the exploration has begun, but the node will generate some 

more candidates during the next generation 
• Finished: the exploration is finished and the node has been taken out 

from the extraction phrase. 
If the parent of a closure is a concatenation which generates no frequent sequence 
at a given iteration, then its sub-trees can be pruned immediately and the 
exploration of the closure can be stopped. The candidates from the nth age can be 
counted together with the frequent sequences of the (n-1)th age concatenated to 
the other siblings of the concatenation. In this way, when the nth age becomes 
empty, the concatenations of the (n-1)th age with the other siblings are available 
and no iteration is wasted. In Table 1, we compare the basic and the optimized 
algorithm when AAAACBB is mined given the RE A*B. The optimized version 
recognizes that AB does not occur in the database and it does not generate useless 
sequences of A. Here, the optimization saves four database scans. 
 

Scan RE-Hackle (basic) RE-Hackle (optimized) 
1 A, B A, B 
2 AA,B AA, B, AB 
3 AAA STOP 
4 AAAA  
5 AAAAA  
6 AB, AAB, AAAB,AAAAB  
7 STOP  

Table 1 Ascending flux of candidates. Infrequent candidates are stroked. 
 
In some cases, the basic algorithm can give rise to a large number of candidates 
without any pruning. For instance, assume a concatenation with a dozen of 
siblings each of them producing 3 to 4 frequent sequences. The extractor 
functions would return between 531.441 to 16.777.216 candidates and this is 
clearly unacceptable.  
Fortunately, the adaptation of the extraction method can avoid this combinatorial 
explosion. It is always possible to group the nodes in larger overlapping buckets, 
and to benefit of more frequency-based pruning. Figure 2 illustrates this principle. 
Assume that the siblings A, B, C and D of the node X return many frequent 
sequences (Here, A,B,C, and D denote the nodes of the tree and are not elements 
of the alphabet), and that we do not want the concatenation to produce a large 
number of candidates. So, to protect X, we replace it by a new node X2 which 
introduces a new level (nodes Y, Z and W). The initial nodes are grouped two by 
two and associated to Y, Z and W to enable pruning. As the suffixes of the 
sequences in Y are the same as the prefixes of Z, the candidates of X2 will be 
constituted by a 1-telescoped concatenation. 



 

 
Figure 2 – Adaptation of the extraction method. 

After the evaluation of the additional level the number of the candidates should 
globally decrease. So, X2 contains only three sons and it is supposed to generate 
fewer candidates than X. If this number is still too large, the algorithm can decide 
to introduce one more additional level between Y, Z, W and X2. The number of 
the inserted levels is determined by the algorithm during the extraction by the use 
of the theoretical cardinality.  If the theoretical cardinality of a concatenation 
node exceeds a level, this optimization technique introduces a new level between 
the node and its siblings. Each new level requires another whole database scan, 
but the number of the candidates is expected to decrease. This mechanism enables 
a tradeoff between the number of the candidates and the number of database 
scans. One should notice, that the length of the candidates increases with each 
level, so the RE-Hackle will never take more passes than GSP or SPIRIT(L and 
V). The control of the tradeoff is however complex: it depends on the size of the 
database, the cost per candidate for counting and the cardinalities of the siblings 
of the node we are considering. 

5. Experimental Results 
We have used a semi-optimized implementation of the RE-hackle algorithm for 
our experiments (no ascending flux of candidates). Furthermore, we have put the 
data in main memory for both our SPIRIT and RE-Hackle implementations. We 
used our fair implementations of SPIRIT(L) and SPIRIT(V) [3]. First, we have 
generated synthetic datasets following a zipfian distribution. First, our synthetic 
dataset contains 100k transactions of length 20 over an alphabet of 100 symbols. 
We have then decreased the number of the symbols in the alphabet and created 
conditions for the emergence of long patterns. The execution time of our 
algorithm (see Figure 2) does not increase exponentially and take the properties 
of the better algorithm for this case, i.e., SPIRIT(V). 

We have been considering different RE-constraints with different granularities 
(ratio between the number of symbols composing the RE and its number of 
atomic sequences). E.g., the granularity of AB(CDE|RY)CF is 9/4=2.25, for 
AC|T(G|BB)E we have 7/5=1.4, and for (A|B|C)*D(T|Z) we get 6/6=1. The 
execution time of RE-Hackle decreases as the granularity increases (see Figure 
4). Notice, that the SPIRIT algorithms are practically insensible to this factor. 
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Figure 3 Influence of the data density 
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Figure 4 Influence of RE granularity 

The power of RE-Hackle pruning strategy is somewhat between SPIRIT(L) and 
SPIRIT(R)2. As SPIRIT(L) relies on frequency-based pruning and SPIRIT(R) on RE-
based pruning, RE-Hackle will not always beat both of them, but it is quite often the 
best, as it uses both pruning criteria. We provide in Figure 5 a comparison between RE-
Hackle, SPIRIT(L) and SPIRIT(V) on real biological data (5000 sequences of length 
3000 to 6000 items over an alphabet of four symbols given by Dr. O. Gandrillon from 
University Lyon 1). Various RE-constraints (with an increasing experimental 
cardinality) have been used. As the pruning strategy is adjusted dynamically according 
to the cardinality of the constraint and the content of the database, RE-Hackle 
approaches the performances of the best SPIRIT implementation without prior 
knowledge of the selectivity of the constraint. This behavior was mainly obtained by 
the use of the adaptive extraction method. 

                                                           
2 [3] introduces 4 SPIRIT algorithms denoted N, L, V and R. Following this order, the 
algorithms do more and more RE-based pruning (almost no RE-pruning with SPIRIT(N), no 
frequency-based pruning for SPIRIT(R)). 
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Figure 5 Comparison to SPIRIT variants 

This is an important qualitative result. It is not surprising that both SPIRIT algorithms 
have their operating areas and RE-Hackle is situated between the two curves. As the 
experimental cardinality rises, RE-Hackle begins to use more and more frequency-
based pruning and avoids the combinatorial explosion which makes SPIRIT(V) 
inadequate to deal with high cardinality constraints. At a given complexity, RE-Hackle 
decides to use only frequency-based pruning and has the same behavior than 
SPIRIT(L). Indeed, we have an adaptive pruning method. 

6. Extension to RE-constraints with variables  
Our partners, the biologists, have shown interest in being able to specify variables in 
the RE constraints. For instance, it is interesting to look for frequent sequences that 
match a generalized RE like X(A|B)C*XCB  (where X denotes a variable which take 
values in A*). Hackle-trees provide an elegant way for tackling variables which specify 
that recurring sub-patterns are desired. 
A variable X3 is a shortcut for any sequence built over A. Starting from now, we use 
upper case letters for variables and sequences while lower case letters are used for 
symbols. An extended RE-constraint is a RE-constraint that can contain variables. For 
instance, constraint (A|C)XBX requires that every sequence begins with an A or a C and 
contains two occurrences of the same sub-sequence X separated by the symbol B. 
Sequences ACDBCD or CADBAD satisfy it. Sub-sequences CD and AD are two 
instances for the variable X. 
An augmented second-level alphabet is a second-level alphabet that contains a new 
symbol for every distinct variable. An extended RE-constraint is built over an 
augmented second-level alphabet, i.e., an alphabet that contains some variables. 
Mining under extended RE-constraints is now straightforward using an X-tree, i.e., a 
Hackle-tree on the augmented second-level alphabet associated to the extended RE-
constraint.  
For practical reasons, we impose now that Kleene closures can not return the empty 
sequence. If the result of a closure is empty, the node is immediately violated and 
pruned out of the X-tree. As a variable is a shortcut for all possible frequent sequences, 
every distinct variable can be modeled by the most general Kleene closure, i.e., a 
closure applied to the initial alphabet A. A variable which appears only once can be 
                                                           
3  We reserve letters X and Y to denote variables. 



 

replaced immediately by a Kleene closure. We thus assume that a variable appears at 
least twice in the RE-constraint. It is important to instantiate the variables with values 
that have been generated in the same generation. In other terms, when the expressions 
with variables are flowing up in the tree, the so-called X-Hackle algorithm has to know 
from which generation they come from. Therefore, they can be indexed by the number 
of the active generation of the Kleene node. This count starts when they begin to flow 
up in the X-tree. As variables are implemented via Kleene closures, the corresponding 
nodes have the following fields. 
 

Attributes Semantics 
type *  Kleene closure 

siblings All the symbols of the initial alphabet. 
parent Parent of the node. NULL for the root. 

ξth , ξexp Same as in a Hackle-tree. 
state, explored Same as in a Hackle-tree. 

Age Counts the times the node has been visited. 
items[1..age] Frequent legal sequences found by the node in 

generation 

Figure 6 provides the X-tree representation of the generalized  RE-constraint 
Y(AX*)BXY. It is not needed to represent explicitly Nodes 2 and 6: their parent points 
directly to Node 11. Also, Nodes 5 and 9 are shortcuts for Node 10. 

 

 
Figure 6 X-Tree of the generalized RE-constraint Y(AX*)BXY 

Variables X and Y are shortcuts for two general Kleene closure nodes that will extract 
any possible frequent sequence. This setup combined with the ascending flux of 
candidates can extract the sequences described by generalized RE- expressions. 
Conceptually, the ascending flux of candidates can be viewed as the creation of a new 
X-tree at every generation even though, in practice, we can avoid the duplication of the 
tree. At the kth evaluation of the variables, the algorithm creates a clone of the X-tree in 
which the kth values of the variables are trapped. This tree is then explored by the RE-
Hackle algorithm. At the next generation, X-Hackle creates a (k+1)th tree again and 
pass it to the RE-Hackle algorithm. Notice again, that in an implementation the 



 

duplication of the tree can be avoided by clever indexing. We now sketch the X-Hackle 
algorithm that uses the following definitions.  

Let us denote Firstk(N1, …, Nm) the function that, given a list of nodes, returns the set of 
the k-sequences (sequences of length k) which are prefixes of the concatenation of the 
nodes. Let us denote Lastk(N1, …, Nm) the function that, given a list of nodes, returns the 
set of the k-sequences which are suffixes of the concatenation of the nodes. 

The X-Hackle algorithm can now be sketched. A longer version of this paper contains 
more details and an example of execution. 
 

(01) T ← BuildExpTree(E); 
(02) For all X∈Variables, V1[X]= Ø 
(03)    For all A∈A 
(04)      If Freq(A,D) > minsup 
(05)         Then V1[X]← V1[X] U {A} 
(06) gen  ←  1 
(07) While (Promising()) do 
(08)    Tgen ← T 
(09)    Vgen[.]← ComputeValues(Vgen-1[.]) 
(10)    For k = 1 to gen 
(11)       Iterate RE-Hackle(Tk, Vk[.], k-gen+1) 
(12)    gen  ←  gen+1 
(13) Return T1.root.items U … U Tgen.root.items 

Vgen[X] contains all the possible values for the X variable in Tgen. These are (gen)-
sequences. ComputeValues(Vgen-1[.]) computes the (gen-1)-concatenation of the (gen-
1)-sequences for every variable X and returns the frequent (gen)-sequences. Iterate RE-
Hackle(Tk, Vk[.], c) performs an RE-Hackle iteration on the Tk tree using the values 
from Vk[.] for the instanciation of the variables. If Tk is already explored it stops. The 
third parameter c corresponds to RE-Hackle generation for the kth tree. Promising() is a 
boolean function which decides wether X-Hackle should continue or not. Just to give a 
hint, it takes all the concatenations containing variables and computes all the possible 
First and Last functions. E.g., during the evaluation of (XA)*B, if CAB is not frequent 
then it is useless to compute the other elements of the closure that finish by CA. The 
idea is very similar to the one used in the ascending flux of candidates optimisation 
technique. Formalisation will come in a future publication. If all the First and Last 
functions from a given node are violated (e.g., they don’t generate any frequent 
sequence) the node is pruned. The algorithm finishes when the X-tree gets empty.  

7. Conclusion 
We have proposed a framework that characterizes and exploits the local properties of 
RE-constraints to benefit of both RE-based and frequency-based pruning. Our solution 
computes dynamically a balance between the two pruning strategies and restricts the 
search space for arbitrary RE-constraints. It enables to take the shape of the best 
SPIRIT ad-hoc algorithm without any prior knowledge of the selectivity of the 
constraint. Thanks to the two-level alphabets, complex expressions are handled 
efficiently. The cardinalities of a sub-expression appear useful for choosing the 



 

extraction method. It enables to introduce global information such as database access 
costs in the reorganization of the extraction structures. This adaptative strategy 
associated to powerful optimization techniques such as the transformation of Hackle-
trees introduced in [2] or the ascending flux of candidates introduced here enable to 
tackle RE-constraints even though they are neither anti-monotonic nor monotonic 
constraints on the search space of the initial symbols. The RE-Hackle approach opens a 
new framework for the extraction of frequent sequences that satisfy rich syntactic 
constraints. We did not yet identify all the possible uses of this hierarchical constraint. 
However, we suspect that a larger (w.r.t. the class of RE-constraints) type of constraint 
can be handled within this framework. We started to consider RE-constraints with 
variables. Good properties of the framework are preserved and the potential for 
applications is clearly enlarged since RE-constraints with variables enable to express 
context-sensitive restrictions. Our future work concerns further optimizations for the 
RE-Hackle algorithm. Furthermore, we have to implement X-Hackle and look for a 
relaxation of the pruning strategy, as the computation of the Last/First sets is 
expensive. We would like to find a faster termination condition as well. 
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