

A framework for frequent sequence mining under
generalized regular expression constraints

Hunor Albert-Lorincz and Jean-François Boulicaut

INSA Lyon LIRIS CNRS FRE 2672 - Bâtiment Blaise Pascal

F-69621 Villeurbanne Cedex, France
{Hunor.Albert-Lorincz@insalien.org, Jean-Francois.Boulicaut@ insa-lyon.fr}

Abstract. This paper provides a framework for the extraction of frequent
sequences satisfying a given regular expression (RE) constraint. We take
advantage of the information contained in the hierarchical representation of an
RE by abstract syntax trees (AST). Interestingly, pruning can be based on the
anti-monotonicity of the minimal frequency constraint, but also on the RE
constraint, even though this latter is generally not anti-monotonic. The AST
representation enables to examine the decomposition the RE and to choose
dynamically an adequate extraction method according to the local selectivity
of the sub REs. Our algorithm, RE-Hackle, explores only the candidate space
spanned over the regular expression, and prunes it at each level. Due to the
dynamic choice of the exploration method, this algorithm surpasses its
predecessors. We provide an experimental validation on both synthetic data
and a real genomic sequence database. Furthermore, we show how this
framework can be extended to regular expressions with variables providing
context-sensitive specification of the desired sequences.

1. Introduction
Frequent sequential pattern mining in a database of sequences is an important
data mining technique [1,11]. Its application domains span from the analysis of
biological data to the discovery of WWW navigation paths or alarm analysis. In
most of these applications, the lack of user control in specifying the interesting
patterns beforehand leads to intractable extraction or costly post-processing
phases. Considering other user-defined constraints, in conjunction with the
minimal frequency constraint, has been proved useful [10,3,12,9]. Not only it
limits the number of returned patterns but also it can reduce extraction cost to an
acceptable extent. In this paper, we consider constraints expressed by regular
expressions (RE). Thanks to REs, the user can specify the language of desired
patterns in a rather flexible way. We consider that a sequence (or string) is an
ordered list of items taken from a finite alphabet A. ||S|| denotes the length of S,
i.e., the number of items it contains. A database of sequences (D) is an unordered
collection of sequences. S’= s’1s’2...s’m is called a sub-sequence of S = s1 s2 ... sn
(m<n) if ∃ k s.t. s’1 s’2 ... s’m = sk+1 sk+2 ... sk+m . The frequency of a sequence S
Freq(S,D) is the number of the sequences S’ in D s.t. S is a sub-sequence of S’.
Problem statement: Given a database D, a regular expression E and a positive
integer minsup, find all the sequences S which satisfy the following properties:

• Freq(S,D) ≥ minsup
• S ∈ L(E), L(E) being the language specified by the regular expression E.

jfboulicaut
Zone de texte
Proceedings 2nd Int. Workshop on Knowledge Discovery in Inductive Databases KDID'03
co-located with ECML-PKDD 2003, J-F. Boulicaut and S. Dzeroski (Eds.),
Cavtat-Dubrovnik (Croatia), September 22, 2003. pp. 2-16. ISBN 953-6690-34-9.

Constraint-based mining is difficult. Efficient algorithms are often ad-hoc, i.e.,
they are optimized for specific constraints and/or a specific kind of data. Several
algorithms exploit efficiently the minimal frequency constraint thanks to its anti-
monotonicity [1,6,4,8,11]. Pushing constraints that involve other user-defined
constraints has been studied as well, e.g., in [3,11,9,7]. A RE-constraint is
generally neither anti-monotonic nor monotonic and thus can not be used directly
for pruning the search space. Furthermore, if a non anti-monotonic (nAM)
constraint is “pushed” inside an extraction algorithm, the requirement that the
sequences must satisfy both the minimal frequency and the nAM constraint can
lack of pruning [3]. To tackle RE-constraints, the authors of the SPIRIT
algorithms have proposed in [3] several relaxations of RE constraints. These
relaxations have led to four ad-hoc algorithms that use different pruning strategies
and perform unequally depending on the selectivity1 of the constraint. In other
terms, the choice of a given SPIRIT algorithm must be based on the selectivity of
the RE constraint which is a priori unknown. We would like a robust algorithm
which depends weakly of the selectivity of the constraint and the characteristics
of the data, i.e., an algorithm which would consider the individual selectivity of
the sub-expressions and choose the best pruning strategy during the extraction
according to the sequences in the database. This would be a major step towards
efficient sequence mining for many application domains.
We proposed in [2] the RE-Hackle (Regular Expression-Highly Adaptive Local
Extraction) framework. It is based on a hierarchical abstract syntax tree (AST) of
the RE that can collect much more information on the local properties of the
constraint than the previous methods based on Finite State Automata [3]. The
collected information is used to examine each sub-expression of the initial RE
and the RE-Hackle algorithm chooses the extraction strategy to favor pruning on
the minimal frequency constraint or on the RE-constraint. For that purpose,
candidate sequences are assembled during a bottom-up processing of the AST.
Each node of this tree, the Hackle-tree, encodes a part of the RE and, when the
algorithm reaches a node, it has information about the frequent sequences
generated by its sub-tree. The number of these sequences, the structure of the tree
in the neighborhood of the node and global information such as the cost per
candidate evaluation and per database scan can be used to determine a candidate
generation strategy and to optimize the execution time.

The contribution of this paper is threefold. We provide an introduction to the RE-
Hackle algorithm defined in [2] and we introduce a new optimization technique
based on Hackle-trees. Also, we provide experimental results on both synthetic
data and real biological data that were missing from [2]. It shows that our
algorithm adapts dynamically its pruning strategy and tends to take the shape of
the best SPIRIT algorithm without any prior knowledge of constraint selectivity.
Finally, we show that the framework can be extended to regular expressions with
variables. Adding variables clearly increases the expressive power of the
exploration language and reaches beyond the scope of context free grammars.

1 Selectivity is an intuitive characterization of REs which is roughly speaking inversely
proportional to the number of sequences in the database that match the initial constraint.

The paper is organized as follows. Section 2 provides the needed definitions. The
RE-Hackle basic algorithm is described in Section 3. An original optimization
technique is described in Section 4. Section 5 overviews the experimental results
and it compares RE-Hackle to our fair implementation of two SPIRIT algorithms.
Section 6 introduces an extension of the framework to regular expressions with
variables. Section 7 concludes.

2. Definitions
A RE constraint in a kind of a regular expression built over an alphabet of
sequences using the following operators: union (denoted +), concatenation
(denoted ¤k and sometimes “.” when k is 0) and Kleene closure (denoted *). The
empty set and the empty sequence are noted Ø and ε.
The k-telescoped concatenation of two sequences S=s1 s2 ...s||s|| and P= p1 p2 ...p||P||
is a new sequence. This operator requires that the sequences overlap in k
positions. When k is zero, we get the usual concatenation. It is used for candidate
generation.

Op¤k(S, P)= S ¤k P = { s1 s2 ... s||s||-k p1 p2 ...p||p||} if for all 0<j≤k we have
pj=s||s||-k+j and ||S|| > k and ||P|| > k. If ∃ 0<j≤k s.t. pj<>s||s||-k+j Op¤k(S, P)=ε.
Concatenating two sets of sequences {S1, S2, …, Sn} and {P1, P2, …, Pm} gives a
new set of sequences that contains all the sequences resulting from the Cartesian
product of the sequences from the two sets.
 {S1, …, Sn} ¤k {P1,…, Pm} = { Si ¤k Pj | 0<i ≤ n et 0<j ≤ m}
The k-telescoped concatenation of n sequences S1, S2, …, Sn is:
 Op¤k(S1, S2,…, Sn) = Op¤k(S1, Op¤k(S2,…, Sn))
E.g., Op¤3(ACDE,CDEF,DEFD) = Op¤3(ACDE,Op¤3(CDEF, DEFD)) =
Op¤3(ABCD,CDEFD) = ACDEFD.
The union of n sequences S1, S2, … Sn is the set of sequences:

Op+(S1, S2,…, Sn) = {S1, S2, …, Sn)}
The union of two sets of sequences is the union of these sets:

{S1,…, Sn} + {P1,…, Pm} = {S1,…, Sn, P1,…, Pm}
The Kleene closure applies to a set of sequences and denotes all the sequences
one can build from them using concatenations. It includes the empty set Ø.
 Op*{S1,…, Sn} = { Ø, {S1, …, Sn} ¤k {S1, …, Sn},
 Op*({S1,…, Sn} ¤k {S1,…, Sn}, S1,…, Sn)}
Moreover, the function frequent applied to a set of sequences {S1,…, Sn} scans
the database and returns a set that contains the frequent sequences.
The operators have a variable arity. The priority increases from + to ¤k and from
¤k to *. The concatenation can be distributed over the union. The union and the
concatenation are associative. When all the possible concatenations have taken
place, the resulting sequence is called an atomic sequence. Consider the RE-
constraint B.CD.E.A(H+F) which can be transformed into BCDEA(H+F) by 3
concatenations. According to our definition, BCDEA is a newly formed atomic

sequence. H and F were already atomic sequences as they cannot be concatenated
to their neighbors, but B, CD, E and A are not as they can be packed together to
form a longer sequence. The building bricks of our RE-constraints are the atomic
sequences, i.e., the smallest elements considered during the extraction phase.

Canonical form We say that a regular expression is in a canonical form if it
contains only atomic sequences. In the following, we assume that all the REs are
in the canonical form.

Examples of RE-constraints and their associated derivation phrases:
A+BE+CF+D = Op+(A, BE, CF, D)
A(B)*(CF+D) = Op¤0(A, Op*(B), Op+(CF,D))

Sub-constraints are taken from the initial RE-constraint: they correspond to terms
of the derivation phrase. Extraction must not break the priorities of the operators.
E.g., B+C can not be extracted from A¤0B+C as the priority of the concatenation
prevails over the union. Besides, a sub-constraint must contain as many terms as
the arity of the operator in the initial constraint. A maximal sub-constraint is a
sub-constraint, which is not contained in any other sub-constraint except the
initial constraint. E.g., A¤0B+C has two maximal sub-constraints: A¤0B and C.
The maximal sub-constraints naturally define partitions over the initial RE. The
active operator connects the maximal sub-constraints of a given constraint. E.g.,
the active operator for A¤0B+C is the union.

Hackle-tree. A Hackle-tree is an AST which encodes the structure of the
canonical form of a RE-constraint. Every inner node of this tree corresponds to an
operator, and the leaves contain atomic sequences of (possibly) unequal lengths.
The tree reflects the way in which these atomic sequences are assembled by the
operators to form the initial RE-constraint. Figure 1 provides such a tree for the
RE-constraint C((C(A+BC)D)+(A+B+C)*)C. Nodes are marked with roman
numbers to support the discussion. Attributes associated to each node have been
described in [2] and are given in the following table:

Attribute Semantics
type Type of the node: ⊥ leaf, ¤ concatenation, + union, * Kleene closure.

siblings List of the siblings. NULL for the leaves.
parent Parent of the node. NULL for the root.
ξth ,ξexp Theoretical and experimental cardinality of the node.
items Frequent legal sequences found by the node.
state Unknown – The exploration of the node has not yet begun.

Satisfied – Exploration has found frequent legal sequences.
Violated – The node did not generated a frequent sequence.

explored Coupled to the attribute State. True if the exploration is completed.
K Parameter for the k-telescoped concatenation: ¤k

age Only for Kleene closures: counts the times the node has been visited.
seq Only for the leaves: encoded atomic sequence or symbol.

The construction of the tree is not trivial. The RE has to be transformed in its
canonical form and arities have to be computed from the number of the maximal
sub-constraints. Then a node is created for the active operator as well as a sibling

for each maximal sub-constraint, which is expanded recursively. This method
minimizes the height of the tree and can be encoded efficiently.

The intuitive notion of selectivity can be formalized using cardinalities [2]. The
theoretical cardinality of a constraint is the number of sequences it can generate
after the expansion of all the operators if every possible sequence is in the
database. The experimental cardinality of a constraint is the number of sequences
extracted from the database. While the theoretical cardinality refers only to the
constraint, the experimental cardinality takes into account the database instance,
i.e., the results of the counting phases.

Figure 1 Hackle-tree encoding constraint C((C(A+BC)D)+(A+B+C)*)C.

The extraction phrase Ψ is the list of the nodes one must examine at a given step.
The whole extraction process is controlled by this phrase: its modification defines
a new generation and thus a new database scan. When the extraction starts,
Ψ contains all the leaves of the tree collected from left to right. It is updated after
each database scan by replacing the explored nodes with their parents.

The extractor functions (denoted C) are applied to the nodes of the Hackle-tree,
and return the candidates that have to be counted. They are defined as follows:

• Leaves: C(N) = N.seq
• Concatenation: all siblings of N must be explored,

C(N) = ¤k M.items, for all M∈N.siblings , k comes from the
node N

• Union: all siblings of N must be explored,
 C(N) = ∪ M.items, for all M∈N.siblings

• Kleene closure: the sub-tree of N must be explored,
 U

0

age)C(N,C(N)
>

=
age

 with C(N,age+1)=¤age-1frequent{C(N,age)}and C(N,1)=N.siblings.items

3. The RE-Hackle Algorithm
RE-Hackle extracts all the frequent sequences which match a given regular
expression, i.e., which are valid w.r.t. the root of its Hackle-tree. Details about the
basic algorithm are given in [2]. Here, we just provide informal comments that
enable to introduce our new optimization and the extension to RE-constraints
with variables. The algorithmic schema is as follows (T is a Hackle-tree, E a RE-
constraint, Ψ the extraction phrase, and C the set of candidates):

 T ← BuildTree (E)
loop Ψ ← BuildExtractionPhrase (T)

C ← GenerateCandidates (Ψ)
CountCandidates (C)
T ← TransformTree (T)

while Ψ<>Ø and C<>Ø
return T.root.items

Extraction relies on the extraction phrase. It starts at the leaves of the Hackle-tree
and lasts several generations. At every generation, the extraction functions are
applied to the nodes in the extraction phrase; the algorithm counts the candidates
and uses the frequent ones to feed the next generation (an upper level) which will
be assembled by the new nodes of the updated extraction phrase. It is a levelwise
algorithm in the structured space of the language associated to the RE-constraint.
The number of the levels is limited by the height of the Hackle-tree plus the
number of times Kleene nodes are evaluated. As candidates are built up from
atomic sequences, it takes usually less database scans than GSP-like algorithms
[1]. The Hackle-tree is transformed after each generation, e.g., for pruning
branches which can no longer generate new candidates.

Let us comment an execution of the algorithm given the following database, a
minimal frequency of 2, and the RE-constraint from Figure 1.

ID Sequences
1 CCADCABC
2 ECBDACC
3 ACCBACFBAC
4 CCBAC

The extraction needs for 7 generations and 6 database scans.
1st Generation

Ψ1 = II,X,XV,XVI,VIII,XII,XIII,XIV,IV
Candidates: A, B, C, D, BC
Frequent sequences: A, B, C, D

BC is not frequent and the algorithm prunes Node XVI.
2nd Generation

Ψ2 = VI,VII
Candidates: AA, AB, AC, BA, BB, BC, CA, CB, CC
Frequent sequences: AB, AC, BA, CB, CC

Ψ2’= XI,IX would have been the application of the defined principle: the
substitution of Nodes XV and XVI by XI and the substitution of Nodes XII, XIII
and XIV by IX. In fact, as unions never need to access the database, the algorithm
replaces them with their nearest concatenation or Kleene closure parent during an
intermediate generation. It is not necessary to compute explicitly Ψ2’. While
processing Ψ2, no frequent sequence has been found at node VII, so it is erased
from the tree. Its parent, the node V, can be pruned too thanks to the anti-
monotonicity of the minimal frequency constraint.
3rd Generation

Ψ3 = VI (age=1)
Candidates: ABA, ACB, ACC, BAB, BAC, CBA, CCB, CCC
Frequent sequence: ACC, BAC, CBA, CCB

A Kleene Closure node remains in the extraction phrase while it continues to
generate frequent sequences.
4th Generation

Ψ4 = VI (age=2)
Candidates: ACCB, BACC, CBAC, CCBA
Frequent sequences: CBAC, CCBA

ACC ¤2 CCB = ACB. Parameter k of the concatenation is given by the age of the
Kleene node.
5th Generation

Ψ5 = VI (age=3)
Candidates: CCBAC Frequent sequences: CCBAC

6th Generation
Ψ6 = VI (age=4)
Candidates: - Frequent sequences: -

No candidate to count since CCBAC ¤4 CCBAC = ε.
7th Generation

Ψ7 = I
Candidates: CC, CAC, CBC, CCC, CABC, CACC, CBAC, CCAC, CCBC,
CCCC, CACCC, CBACC, CCBAC, CCCBAC, CCBACC, CCCBACC
Frequent sequences: CC, CBAC, CCBAC

The Kleene closure returns every frequent combinations of A and B, plus the
empty sequence. The root assembles them to C and generates the result, i.e., the
frequent items associated to the root. Notice that the candidates of the kth
generation are not necessarily of length k.
Let us now discuss the processing of the Kleene closure nodes thanks to second-
level alphabets. For each atomic sequence of a constraint, we are defining a new
symbol which replaces it in an equivalent second-level RE-constraint. For
example, the RE-constraint A(AB|FE)DCA becomes A(α|β)χ given the new
symbols α=AB, β=FE and γ=DCA. Every initial symbol such as A is added
automatically to the second-level alphabet. The RE-Hackle algorithm works with
second-level alphabets.

The nodes corresponding to the Kleene closures collect the frequent sequences
extracted by their descendents. These sequences of unequal length must be
combined at later ages to compute the closures.
By definition, the age of a Kleene closure is the number of times it has been
visited (it begins with 1). Assume that A, ADC and BAD have been found frequent
by the siblings of a Kleene node, it means that the closure of {A,ADC,BAD} must
be computed. The candidates should be {AA, AADC, ABAD, ADCA, ADCADC,
ADCBAD, BADA, BADADC, BADBAD}. Assume now that all of them are
frequent. At the third age, the node must concatenate only the sequences, which
share a common sub-sequence of the first generation, i.e., A, ADC or BAD. For
example, even though ABAD and ADCA share a common sequence of length 2,
they should not be concatenated because ABADC does not belong to
{A,ADC,BAD}*. With a representation that keeps no information about the
composition of the second (nth) age sequences, the overlapped concatenation of
these sequences is practically impossible. It has motivated the introduction of
second-level alphabets. Dealing with {A,β,γ} given that β=ADC and χ=BAD is an
elegant solution for candidate generation. The second level candidate Aβ will be
converted to its first level representation, i.e., AADC for counting purposes and
handled in its second level representation when computing overlapped
concatenations. Notice that in our hierarchical representation, the overlapping
parts of the sequences are easily identified. For instance, the sequence Aβχ =
(A)(ADC)(BAD) contains only three symbols in its second level representation,
which is a shortcut for a flattened sequence of length 7. Candidates are generated
in the same way as with GSP [1] where the age of the Kleene node encodes the
number of the overlapping second-generation sequences (parameter k for the k-
telescoped concatenation ¤k). The use of a second level alphabet can boost the
extraction of the Kleene closure, as the candidates are assembled from sequences
rather than from simple symbols. Consequently, their length grows faster then
with any previous method and the number of database scans can drop drastically.

4. Optimization
Let us introduce an original optimization for RE-Hackle, the so-called ascending
flux of candidates. It can be easily shown that the exploration of each Kleene
node delays by one generation the evaluation of its parent, as parents can not be
put in the extraction phrases if the extraction of their siblings is not completed.
Although generally it does not penalize the extraction (the algorithm can continue
to work with some other branches of the tree), it would be better to have a
guarantee that the embedded structures will never lack of efficiency. Therefore,
we decided to forward the frequent sequences found by a Kleene node
immediately to its parent, i.e., without waiting for the completion of the
exploration. Indeed, the extraction against constraint A*B can be inefficient if the
database contains long sequences of symbols A but does not contain AB. We can
forward the extracted sequences immediately after having found them. Thus, the
optimized algorithm can work on several levels of the Hackle-tree. The extraction
phrase is now allowed to contain nodes which are in direct son-parent relations.

The reconstruction of the extraction phase becomes more complex, so does the
propagation of the violations and the candidate generation. Technically, it is
achieved by 3 possible values for attribute explored:

• Waiting: the exploration of the node has not yet begun
• Inprogress: the exploration has begun, but the node will generate some

more candidates during the next generation
• Finished: the exploration is finished and the node has been taken out

from the extraction phrase.
If the parent of a closure is a concatenation which generates no frequent sequence
at a given iteration, then its sub-trees can be pruned immediately and the
exploration of the closure can be stopped. The candidates from the nth age can be
counted together with the frequent sequences of the (n-1)th age concatenated to
the other siblings of the concatenation. In this way, when the nth age becomes
empty, the concatenations of the (n-1)th age with the other siblings are available
and no iteration is wasted. In Table 1, we compare the basic and the optimized
algorithm when AAAACBB is mined given the RE A*B. The optimized version
recognizes that AB does not occur in the database and it does not generate useless
sequences of A. Here, the optimization saves four database scans.

Scan RE-Hackle (basic) RE-Hackle (optimized)
1 A, B A, B
2 AA,B AA, B, AB
3 AAA STOP
4 AAAA
5 AAAAA
6 AB, AAB, AAAB,AAAAB
7 STOP

Table 1 Ascending flux of candidates. Infrequent candidates are stroked.

In some cases, the basic algorithm can give rise to a large number of candidates
without any pruning. For instance, assume a concatenation with a dozen of
siblings each of them producing 3 to 4 frequent sequences. The extractor
functions would return between 531.441 to 16.777.216 candidates and this is
clearly unacceptable.
Fortunately, the adaptation of the extraction method can avoid this combinatorial
explosion. It is always possible to group the nodes in larger overlapping buckets,
and to benefit of more frequency-based pruning. Figure 2 illustrates this principle.
Assume that the siblings A, B, C and D of the node X return many frequent
sequences (Here, A,B,C, and D denote the nodes of the tree and are not elements
of the alphabet), and that we do not want the concatenation to produce a large
number of candidates. So, to protect X, we replace it by a new node X2 which
introduces a new level (nodes Y, Z and W). The initial nodes are grouped two by
two and associated to Y, Z and W to enable pruning. As the suffixes of the
sequences in Y are the same as the prefixes of Z, the candidates of X2 will be
constituted by a 1-telescoped concatenation.

Figure 2 – Adaptation of the extraction method.

After the evaluation of the additional level the number of the candidates should
globally decrease. So, X2 contains only three sons and it is supposed to generate
fewer candidates than X. If this number is still too large, the algorithm can decide
to introduce one more additional level between Y, Z, W and X2. The number of
the inserted levels is determined by the algorithm during the extraction by the use
of the theoretical cardinality. If the theoretical cardinality of a concatenation
node exceeds a level, this optimization technique introduces a new level between
the node and its siblings. Each new level requires another whole database scan,
but the number of the candidates is expected to decrease. This mechanism enables
a tradeoff between the number of the candidates and the number of database
scans. One should notice, that the length of the candidates increases with each
level, so the RE-Hackle will never take more passes than GSP or SPIRIT(L and
V). The control of the tradeoff is however complex: it depends on the size of the
database, the cost per candidate for counting and the cardinalities of the siblings
of the node we are considering.

5. Experimental Results
We have used a semi-optimized implementation of the RE-hackle algorithm for
our experiments (no ascending flux of candidates). Furthermore, we have put the
data in main memory for both our SPIRIT and RE-Hackle implementations. We
used our fair implementations of SPIRIT(L) and SPIRIT(V) [3]. First, we have
generated synthetic datasets following a zipfian distribution. First, our synthetic
dataset contains 100k transactions of length 20 over an alphabet of 100 symbols.
We have then decreased the number of the symbols in the alphabet and created
conditions for the emergence of long patterns. The execution time of our
algorithm (see Figure 2) does not increase exponentially and take the properties
of the better algorithm for this case, i.e., SPIRIT(V).

We have been considering different RE-constraints with different granularities
(ratio between the number of symbols composing the RE and its number of
atomic sequences). E.g., the granularity of AB(CDE|RY)CF is 9/4=2.25, for
AC|T(G|BB)E we have 7/5=1.4, and for (A|B|C)*D(T|Z) we get 6/6=1. The
execution time of RE-Hackle decreases as the granularity increases (see Figure
4). Notice, that the SPIRIT algorithms are practically insensible to this factor.

Density

0

2000

4000

6000

8000

10000

12000

14000

16000

0 100 200 300 400 500 600

alphabet size

Ex
ec

ut
io

n
tim

e

SpiritL
spiritV
Re-Hackle

Figure 3 Influence of the data density

Granularity

0

1000

2000

3000

4000

5000

6000

0 0.5 1 1.5 2 2.5

Granularity

Ex
ec

ut
io

n
tim

e

SpiritL
spiritV
Re-Hackle

Figure 4 Influence of RE granularity

The power of RE-Hackle pruning strategy is somewhat between SPIRIT(L) and
SPIRIT(R)2. As SPIRIT(L) relies on frequency-based pruning and SPIRIT(R) on RE-
based pruning, RE-Hackle will not always beat both of them, but it is quite often the
best, as it uses both pruning criteria. We provide in Figure 5 a comparison between RE-
Hackle, SPIRIT(L) and SPIRIT(V) on real biological data (5000 sequences of length
3000 to 6000 items over an alphabet of four symbols given by Dr. O. Gandrillon from
University Lyon 1). Various RE-constraints (with an increasing experimental
cardinality) have been used. As the pruning strategy is adjusted dynamically according
to the cardinality of the constraint and the content of the database, RE-Hackle
approaches the performances of the best SPIRIT implementation without prior
knowledge of the selectivity of the constraint. This behavior was mainly obtained by
the use of the adaptive extraction method.

2 [3] introduces 4 SPIRIT algorithms denoted N, L, V and R. Following this order, the
algorithms do more and more RE-based pruning (almost no RE-pruning with SPIRIT(N), no
frequency-based pruning for SPIRIT(R)).

0

500

1000

1500

2000

100 1000 10000 100000

Experimental Cardinality

C
an

di
da

te
s

SpiritL SpiritV Re-Hackle

Figure 5 Comparison to SPIRIT variants

This is an important qualitative result. It is not surprising that both SPIRIT algorithms
have their operating areas and RE-Hackle is situated between the two curves. As the
experimental cardinality rises, RE-Hackle begins to use more and more frequency-
based pruning and avoids the combinatorial explosion which makes SPIRIT(V)
inadequate to deal with high cardinality constraints. At a given complexity, RE-Hackle
decides to use only frequency-based pruning and has the same behavior than
SPIRIT(L). Indeed, we have an adaptive pruning method.

6. Extension to RE-constraints with variables
Our partners, the biologists, have shown interest in being able to specify variables in
the RE constraints. For instance, it is interesting to look for frequent sequences that
match a generalized RE like X(A|B)C*XCB (where X denotes a variable which take
values in A*). Hackle-trees provide an elegant way for tackling variables which specify
that recurring sub-patterns are desired.
A variable X3 is a shortcut for any sequence built over A. Starting from now, we use
upper case letters for variables and sequences while lower case letters are used for
symbols. An extended RE-constraint is a RE-constraint that can contain variables. For
instance, constraint (A|C)XBX requires that every sequence begins with an A or a C and
contains two occurrences of the same sub-sequence X separated by the symbol B.
Sequences ACDBCD or CADBAD satisfy it. Sub-sequences CD and AD are two
instances for the variable X.
An augmented second-level alphabet is a second-level alphabet that contains a new
symbol for every distinct variable. An extended RE-constraint is built over an
augmented second-level alphabet, i.e., an alphabet that contains some variables.
Mining under extended RE-constraints is now straightforward using an X-tree, i.e., a
Hackle-tree on the augmented second-level alphabet associated to the extended RE-
constraint.
For practical reasons, we impose now that Kleene closures can not return the empty
sequence. If the result of a closure is empty, the node is immediately violated and
pruned out of the X-tree. As a variable is a shortcut for all possible frequent sequences,
every distinct variable can be modeled by the most general Kleene closure, i.e., a
closure applied to the initial alphabet A. A variable which appears only once can be

3 We reserve letters X and Y to denote variables.

replaced immediately by a Kleene closure. We thus assume that a variable appears at
least twice in the RE-constraint. It is important to instantiate the variables with values
that have been generated in the same generation. In other terms, when the expressions
with variables are flowing up in the tree, the so-called X-Hackle algorithm has to know
from which generation they come from. Therefore, they can be indexed by the number
of the active generation of the Kleene node. This count starts when they begin to flow
up in the X-tree. As variables are implemented via Kleene closures, the corresponding
nodes have the following fields.

Attributes Semantics
type * Kleene closure

siblings All the symbols of the initial alphabet.
parent Parent of the node. NULL for the root.

ξth , ξexp Same as in a Hackle-tree.
state, explored Same as in a Hackle-tree.

Age Counts the times the node has been visited.
items[1..age] Frequent legal sequences found by the node in

generation

Figure 6 provides the X-tree representation of the generalized RE-constraint
Y(AX*)BXY. It is not needed to represent explicitly Nodes 2 and 6: their parent points
directly to Node 11. Also, Nodes 5 and 9 are shortcuts for Node 10.

Figure 6 X-Tree of the generalized RE-constraint Y(AX*)BXY

Variables X and Y are shortcuts for two general Kleene closure nodes that will extract
any possible frequent sequence. This setup combined with the ascending flux of
candidates can extract the sequences described by generalized RE- expressions.
Conceptually, the ascending flux of candidates can be viewed as the creation of a new
X-tree at every generation even though, in practice, we can avoid the duplication of the
tree. At the kth evaluation of the variables, the algorithm creates a clone of the X-tree in
which the kth values of the variables are trapped. This tree is then explored by the RE-
Hackle algorithm. At the next generation, X-Hackle creates a (k+1)th tree again and
pass it to the RE-Hackle algorithm. Notice again, that in an implementation the

duplication of the tree can be avoided by clever indexing. We now sketch the X-Hackle
algorithm that uses the following definitions.

Let us denote Firstk(N1, …, Nm) the function that, given a list of nodes, returns the set of
the k-sequences (sequences of length k) which are prefixes of the concatenation of the
nodes. Let us denote Lastk(N1, …, Nm) the function that, given a list of nodes, returns the
set of the k-sequences which are suffixes of the concatenation of the nodes.

The X-Hackle algorithm can now be sketched. A longer version of this paper contains
more details and an example of execution.

(01) T ← BuildExpTree(E);
(02) For all X∈Variables, V1[X]= Ø
(03) For all A∈A
(04) If Freq(A,D) > minsup
(05) Then V1[X]← V1[X] U {A}
(06) gen ← 1
(07) While (Promising()) do
(08) Tgen ← T
(09) Vgen[.]← ComputeValues(Vgen-1[.])
(10) For k = 1 to gen
(11) Iterate RE-Hackle(Tk, Vk[.], k-gen+1)
(12) gen ← gen+1
(13) Return T1.root.items U … U Tgen.root.items

Vgen[X] contains all the possible values for the X variable in Tgen. These are (gen)-
sequences. ComputeValues(Vgen-1[.]) computes the (gen-1)-concatenation of the (gen-
1)-sequences for every variable X and returns the frequent (gen)-sequences. Iterate RE-
Hackle(Tk, Vk[.], c) performs an RE-Hackle iteration on the Tk tree using the values
from Vk[.] for the instanciation of the variables. If Tk is already explored it stops. The
third parameter c corresponds to RE-Hackle generation for the kth tree. Promising() is a
boolean function which decides wether X-Hackle should continue or not. Just to give a
hint, it takes all the concatenations containing variables and computes all the possible
First and Last functions. E.g., during the evaluation of (XA)*B, if CAB is not frequent
then it is useless to compute the other elements of the closure that finish by CA. The
idea is very similar to the one used in the ascending flux of candidates optimisation
technique. Formalisation will come in a future publication. If all the First and Last
functions from a given node are violated (e.g., they don’t generate any frequent
sequence) the node is pruned. The algorithm finishes when the X-tree gets empty.

7. Conclusion
We have proposed a framework that characterizes and exploits the local properties of
RE-constraints to benefit of both RE-based and frequency-based pruning. Our solution
computes dynamically a balance between the two pruning strategies and restricts the
search space for arbitrary RE-constraints. It enables to take the shape of the best
SPIRIT ad-hoc algorithm without any prior knowledge of the selectivity of the
constraint. Thanks to the two-level alphabets, complex expressions are handled
efficiently. The cardinalities of a sub-expression appear useful for choosing the

extraction method. It enables to introduce global information such as database access
costs in the reorganization of the extraction structures. This adaptative strategy
associated to powerful optimization techniques such as the transformation of Hackle-
trees introduced in [2] or the ascending flux of candidates introduced here enable to
tackle RE-constraints even though they are neither anti-monotonic nor monotonic
constraints on the search space of the initial symbols. The RE-Hackle approach opens a
new framework for the extraction of frequent sequences that satisfy rich syntactic
constraints. We did not yet identify all the possible uses of this hierarchical constraint.
However, we suspect that a larger (w.r.t. the class of RE-constraints) type of constraint
can be handled within this framework. We started to consider RE-constraints with
variables. Good properties of the framework are preserved and the potential for
applications is clearly enlarged since RE-constraints with variables enable to express
context-sensitive restrictions. Our future work concerns further optimizations for the
RE-Hackle algorithm. Furthermore, we have to implement X-Hackle and look for a
relaxation of the pruning strategy, as the computation of the Last/First sets is
expensive. We would like to find a faster termination condition as well.

Acknowledgements. This research is partially funded by Région Rhône-Alpes
(programme d’appui à la société Djingle) and the Future and Emerging Technologies
arm of the IST programme (project cInQ IST-2000-26469).

References
[1] R. Agrawal, R. Srikant. Mining sequential patterns. Proceedings ICDE’95, Tapei (Taiwan),
1995. pp. 3-14.
[2] H. Albert-Lorincz, J-F. Boulicaut. Mining frequent sequential patterns under regular
expressions: a highly adaptive strategy for pushing constraints (poster paper). Proceedings SIAM
DM’03, San Francisco (USA), May 1-3, 2003. pp. 316-320.
[3] M. Garofalakis, R. Rastogi, K. Shim. SPIRIT: Sequential Pattern Mining with Regular
Expression Constraints. Proceedings VLDB’99, Edinburgh (UK), 1999. pp. 223-234.
[4] J. Han, J. Pei, B. Mortazavi-Asl, Q. Chen, U. Dayal, M.-C. Hsu. FreeSpan: Frequent Pattern-
Projected Sequential Pattern Mining. Proceedings SIGKDD'00, Boston (USA), 2000. pp. 355-
359.
[5] H. Mannila, H. Toivonen. Levelwise search and borders of theories for knowledge discovery.
Data Mining and Knowledge Discovery journal, Vol. 1(3),1997, pp. 241-258.
[6] H. Mannila, H. Toivonen, and A. I. Verkamo. Discovery of frequent episodes in event
sequences. Data Mining and Knowledge Discovery journal, Vol. 1(3),1997, pp. 259-289.
[7] M. Leleu, C. Rigotti, J-F. Boulicaut, G. Euvrard. Constraint-based sequential pattern mining
over datasets with consecutive repetitions. Proceedings PKDD’03, Catvat-Dubrovnik (Croatia),
2003. To appear.
[8] J. Pei et al. PrefixSpan: Mining Sequential Patterns Efficiently by Prefix-Projected Pattern
Growth. Proceedings ICDE'01, Heidelberg (D), 2001. pp. 215-224.
[9] J. Pei, J. Han, and W. Wang. Mining sequential patterns with constraints in large databases.
Proceedings CIKM’02, McLean (USA), 2002. pp. 18-25.
[10] R. Srikant, R. Agrawal - Mining Sequential Patterns: Generalizations and perfor-mance
Improvements. Proceedings EDBT’96, Avignon (F), 1996. pp. 3-17.
[11] M. J. Zaki. SPADE: An Efficient Algorithm for Mining Frequent Sequences. Machine
Learning Journal, Vol. 42(1/2), 2001, pp 31-60.
[12] M. J. Zaki. Sequence Mining in Categorical Domains: Incorporating Constraints.
Proceedings CIKM’00, Washington (USA), 2000, pp. 422-429.

