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Abstract. Electronic sport, or e-sport, denotes the extreme practice of
video games where so-called cyber-athletes compete in world-wide tour-
naments. As for any sport, such professionals are surrounded by sponsors
and practice within professional teams. These professional games are
even broadcast by commentators over specialized TV channels. Star-
Craft II (Blizzard Entertainment) is one of the most competitive video
game and has now its own world-wide players ranking system (based on
the well-known ELO system) and annual world cup competition series
(WCS) with a US$1.6 millions prize pool for the year 2013. Each match
between two opponents can be recorded as an exhaustive and noisy se-
quence of actions. Analyzing these sequences yields an important out-
come for game strategy prediction and in-depth game understanding.
In this work we report a preliminary study on StarCraft II professional
players strategies’ discovery based on sequential pattern mining.

1 Introduction

The progressing digitization of modern societies is witnessed in many domains
and has irrevocably impacted all aspects of human behaviors. In the wake of these
radical digital and social evolutions, the entertainment industry underwent quick
mutations to benefit from the widely spread usage of electronic devices (com-
puters, play stations, smart-phones, etc.). Over the last decade, the video games
industry became one of the most lucrative business ever developed with many ex-
amples such as Ubisoft budgeting 40 millions euros to develop “Assassin’s creed
III” or “Angry birds” (Rovio Entertainment) accounting more than 600 millions
players. The competition spirit appeared in the early beginnings of video game
developments [9]. Naturally, some people easily acquire (gaming) skills among
which agility (mouse, keyboard interaction), creativity, reactivity and strategi-
cal thinking. To push those skills to the highest, they perform an intense daily
practice. These individuals compete in international tournaments, highlighting
impressive skills that non daily practitioners cannot achieve. This new notion of
competition over electronic games and its associated community is coined by the
terms “electronic-sport” or “e-sport” and started in South Korea 15 years ago
before spreading to Europe and North America over the last three years [9]. E-
sport in general is composed of professionals, amateurs, teams, championships,



commentators and sponsors. The main difference with classical sport is the usage
of an electronic device as a support to compete1. This new sport paradigm is
poised to challenge classical sports in term of audience in the next decade [5]2.
E-sport should attract many industrial actors and researchers in the next few
years around video game analytics, or e-sport analytics, just like with traditional
sports (as discussed during 2012 MIT Sloan Sport Conference, eSports: The Fu-
ture Of Competition). In this context of digital competition, both sport analytic
and artificial intelligence should meet to answer several problems. Indeed, as dig-
ital, e-sports easily leave (interaction) traces in great numbers on the Web (e.g.
records of the games, statistics of the matches, spectators opinions and audience
on social TV [5]). Match records, also called replays, contain all actions generated
by the players. Strategies are hidden in such replays and eliciting them automat-
ically can help for modeling players behaviors, predicting strategies, improving
online match-making systems, commercial targeting, etc [2, 4, 8, 3, 12, 10, 11, 7].
In this article, we propose an approach for automatically discovering strategic
patterns for one of the most competitive real-time strategy game (RTS), Star-
Craft II (Blizzard Entertainment, 2010). We investigate how sequential pattern
mining [6, 13] can help strategy discovery from replays. In our case, a pattern
represents a frequent series of game actions done by the two players extracted
from a large database of games. We introduce a measure that describes the bal-
ance of a pattern (or a strategy), i.e. in which proportion it leads to victory. In
pattern mining, this can be formalized with so-called emerging patterns when
each object of the dataset is labeled either positively or negatively [1]. We deal
with a hard problem, not studied in the literature, to the best of our knowledge,
where the class information (either positive, or negative, for a win or a loss)
needs to be encoded within the object description to discriminate both players,
in contrast with a single class value for each sequence in the classical settings.
We also show with an empirical evaluation that the patterns (and their balance
measure) we found in about 100,000 replays can be helpful for game balance
study, players modeling and winning prediction.

The rest of the paper is as follows. The principles of the StarCraft II game are
presented in Section 2. Section 3 recalls notions on sequential pattern mining.
We then present the problem of mining strategic patterns and our methodology
in Section 4. We present experiments in Section 5 before concluding.

2 Principle of the RTS video game StarCraft II

A game of StarCraft II involves two players. Each player chooses a faction among
the “Zergs” (Z), “Protoss” (P) and “Terrans” (T): there are 6 different possible

1 “E-sport is one of the most popular trend in video games and is rapidly attracting
the core 18-34 male demographic in greater numbers than any other medium or
category”, said Jim Lanzone, president of CBS Interactive.

2 “Major League Gaming (MLG)’s live audience is growing in popularity to rival some
of the most popular traditional sporting events with a highly engaged fan base world-
wide”, said Sundance DiGiovanni, CEO and Co-Founder of MLG.



combinations of matches. Each combination involves different strategies. During
a game, two players are battling on a map (aerial view), controlling buildings
and units to gather resources, train an army with the final goal of winning by
annihilating the opponent’s forces3. Such actions (training, building, moving, at-
tacking) are done in real-time, see Figure 1 for an example. Each faction (Z,P,T)
allows different units and buildings with distinctive weaknesses and strengths fol-
lowing a “rock-paper-scissors” principle. A strategy is hidden in large sequences
of actions generated by players called replays. Actually, the name “replay” comes
from the fact that it materializes all actions allowing the game engine to replay
the game anytime. A high proportion of the actions are noisy: a replay does not
store the result of an action, i.e. if/how it changed the state of the game. For
example, if a player orders the construction of a building while it does not have
the resources to realize it, this action is still stored in the replay but the state of
the game has not changed since construction is impossible. Moreover, players are
constrained by the “fog of war” which reduces the player’s field of vision of the
game by only revealing terrain features and enemy units only if they pass near
a player unit or building. Areas of the map which are out of the field of vision
are subject to a shroud through which only terrain is visible, but not changes
in enemy units or bases. Then, scouting the enemy’s base is an action a player
often needs to perform to adapt his strategy according to the opposing player’s
one. The fog of war is very similar to the “imperfect information” notion that
appears in game theory or economics.

Fig. 1. An example of build-actions realized during a game.

3 Preliminaries on sequential pattern mining

We use the notations from [13]. Let I be a set of items. An itemset is a subset
of I. A sequence s is a non empty ordered list of itemsets: s = 〈t1t2...tn〉 where
tj ⊆ I for all j ∈ {1, ..., n}. A sequence α = 〈a1a2...an〉 is a sub-sequence of an
other sequence β = 〈b1b2...bm〉, denoted as α v β, if and only if ∃j1, j2, ..., jn
such as 1 ≤ j1 < j2 < ... < jn ≤ m and a1 ⊆ bj1 , a2 ⊆ bj , ..., an ⊆ bjn . Given
a sequence database D = {s1, s2, ..., sn}, the support of an arbitrary sequence α
(over I) is defined as the id of sequences in D which contain α: supportD(α) =
{s | α v s, s ∈ D}. A sequence α is said frequent in a database D if, given a
minimum support threshold minSupp, |supportD(α)| ≥ minSupp. Prefixspan is
one of the reference algorithm for extracting frequent sequential patterns [13].

3 http://en.wikipedia.org/wiki/Real-time strategy



id description

s10 〈a{abc}{ac}d{cf}〉
s20 〈{ad}c{bc}{ae}〉
s30 〈{ef}{ab}{df}cb〉
s40 〈eg{af}cbc〉

Example 1. The table on the right presents a sequence
database where the set of items is I = {a, b, c, d, e, f}.
The sequence α = 〈abc〉 is a sub-sequence of the sequences
s10 and s40 but α is not a sub-sequence of sequences s20
and s30. Moreover, the sequence β = 〈{df}c〉 is only a sub-
sequence of the sequence s30. With minSupp = 3, the sequence χ = 〈acc〉 is a
frequent sequential pattern because supportD(χ) = {s10, s20, s40}. However the
sequence δ = 〈a{bc}a〉 is not frequent since |supportD(δ)| = 2 < minSupp.

4 Mining strategic patterns as sequential patterns

Given a corpus of StarCraft II replays, we consider the problem of extracting
strategic patterns and evaluating (i.e., measure) how they lead or not to victory.
To answer this problem, our methodology is decomposed as follows: (i) we encode
a set of replays as a database of sequences, (ii) we mine frequent sequential
patterns then (iii) we post-process these patterns to characterize and contrast
their ability to discriminate winning from losing strategies.

We abstract the notion of replay in a way that is similar to AI planning : it
represents two agents trying to succeed by performing inter-dependent actions
in time. At the end of their interaction, one will fail, the other will succeed. The
fact that actions of one agent are dependent of the other agent’s actions (e.g.
knowing the last action of the opponent can change one’s strategy) leads us to
derive one sequence with both agent actions instead of one sequence per agent.
To be able to characterize if an agent is successful, we include success or failure
in the sequence alphabet: an action a can appear in a sequence as leading to
success, or to failure as final outcome. Hence, our sequence alphabet is composed
of elements of the Cartesian product Actions × {success, fail}. Furthermore,
the window of time at which a typical action happens is very important in
our application in competitive gaming. Hence, we define the alphabet I of our
sequences as follow.

Definition 1 (Alphabet). Consider a set of actions A available for both agents
and a set of timestamps T , i.e. windows of time in which the actions occur. The
alphabet of the sequences is defined as I = A×T ×R where R = {success, fail}.

Example 2. Thanks to this alphabet, we translate the replay sample given in
Figure 1 as follows. We consider windows of 30 seconds and the player LiquidHuK
is the winner of this game. We obtain s = 〈{(Pylon, 2, success)} {(Gateway,

3, success), (Spawning, 3, fail)} {(Assimilator, 4, success), (Pylon, 4, success)}
{(Hatchery, 5, fail), (Cybernetics Core, 5, success), (Assimilator, 5, success)}〉
where the item (Hatchery, 5, fail) means that the player who lost performed an
action to build a Hatchery during the fifth window of time.



Consider now a database of sequences encoded from raw replays thanks to the
alphabet presented above: a frequent sequential pattern gives us frequent series
actions made by the agents, one of the agent will succeed at the end, the other
will fail. In order to assess the interestingness of the resulting patterns, we define
a measure that reflects the success or failure ability of the strategy materialized
by the pattern. We define the notion of dual sequence first.

Definition 2 (Dual sequence). The dual of a sequence s composed of items
(a, t, r) ∈ I is the same sequence where any (a, t, r) ∈ I is replaced by (a, t, R\r).

Consider a pattern s = 〈(a, 3, fail), (b, 4, success)〉 which means that an agent
succeeds by doing the action b after the other agent did the action a. On the other
hand, we have s̃ = 〈(a, 3, success), (b, 4, fail)〉 which characterizes the opposite
scenario: both agents do respectively the same actions, but the agent succeeding
is not the same. The balance measure we introduce now represents the potential
of strategy s to lead to success or failure.

Definition 3 (Balance measure). Consider a frequent sequential pattern s
and its dual s̃. We define the balance measure of s as:

balance(s) =
|supportD(s)|

|supportD(s)|+ |supportD(s̃)|

The measure balance returns values in [0; 1]. When balance(s) = 0.5 the sequence
s does not discriminate either success of fail: it is a balanced strategy. When
balance(s) = 1 (resp. 0), the sequential pattern s is found only winning or losing.
Note that balance(s) + balance(s̃) = 1. Note also that symmetric patterns, i.e.
sequences where each itemset that contains the item (a, t, r) ∈ I also contains
the dual item (a, t, R\r) ∈ I, have a balance of 0.5 by definition.

Algorithm. To compute the set of frequent patterns given a minimal support
we use the PrefixSpan algorithm [6]. To compute the balance measure in post-
processing, it is naively enough to compute supportD(s̃) for each frequent pattern
s by scanning the database D. This approach is however not scalable as shown
in the experiments. To allow a much faster computation of the balance measure,
we proceed as follow. We build an auxiliary data structure when producing
the sequences dataset from the rough replays, storing for each item i ∈ I the
identifiers of the sequences that contain it, i.e.D×I in the worst case. Then, when
building the tree-structure storing the patterns in PrefixSpan, we maintain for
each pattern (node) the support of the dual sequence: at the first step by looking
up in our data structure, in the other steps by intersecting the support of the
dual item expanding the tree with the support of the previous dual sequence.
As such, one can notice that there are redundant patterns: it happens that
both s and s̃ are extracted and their balance computed. To avoid redundant
patterns, we traverse the pattern tree in a dual way: when visiting a node, we
visit also the dual node and flag it as already processed (not output). Note that
from an extracted pattern the support of the dual can be retrieved as follows :

|supportD(s̃)| = |supportD(s)| ×
(

balance(s̃)
balance(s)

)
.



5 Experimental study

We experiment our approach to assess its computational feasibility and, helped
by a high level StarCraft II player, the quality of the extracted patterns. These
patterns are useful for several tasks among which on-the-fly win prediction and
game balance study. The source code and the data sets are available4.

Raw replays collection. StarCraft II replays are easily accessible on the Web;
several websites offer high level replays in great numbers5 from which we ex-
tracted 371, 267 replays. We are interested in very high level players, since casual
(by opposition to professional) players are not able to follow specific strategies.
We kept replays involving at least one player in the highest official league (Grand-
master) or playing in average more than 200 actions per minutes (APM). At the
end, our dataset involves 90, 678 games between 30, 678 players that played an
overall total of 3.19 years in game time. The average length of a game is about 20
minutes. Figure 2 (left) gives the average APM during each minute of a game.
Figure 2 (right) gives the repartition of the different kinds of actions done in
average in time.
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Fig. 2. Different characteristics of the raw replays dataset.

Deriving sequences datasets from raw replays. In StarCraft II, they are
different types of games, called match-up, depending on the pair of factions
involved, e.g. PvZ describes a game involving a Protoss player against a Zerg
player. Each match-up is characterized by different strategies: a Protoss does
not play the same strategies when facing either another Protoss player or a Zerg
opponent, or even a Terran opponent. As such, we divided the 90, 678 replays
into six different sequence datasets, one for every match ups (since there are 3
factions). Buildings are one of the key elements of a strategy [11], since they
allow different kinds of units production: From each replay, we derive a sequence
where the items represent the buildings the players chose to produce in real
time, and itemsets denote windows of time w (See Example 2). We set w to 30

4 http://liris.cnrs.fr/mehdi.kaytoue/sc2
5 http://wiki.teamliquid.net/starcraft2/Replay Websites



Data Build Build + Upgrade + Occurrence
Item Seq. IS I/IS Item Seq. IS I/IS

PvP 1,160 6,668 11.5 2.0 5,624 6,668 11.6 2.1
PvT 3,655 18,754 19.0 2.6 24,019 18,754 19.4 2.7
PvZ 3,748 22,784 19.6 2.7 27,913 22,784 20.1 2.8
TvT 2,201 7,457 20.7 2.8 15,572 7,457 21.2 2.9
TvZ 4,492 23,637 22.5 2.8 33,050 23,637 23.1 2.9
ZvZ 1,689 9,554 14.2 2.2 9,139 9,554 14.7 2.3

Table 1. Sequence database characteristics.

seconds since the ordering of two items over this period of time is insignificant in
terms of strategy according to the expert. For the Protoss and Terran factions,
we ignored the buildings Pylon and Supply depot that are insignificant in terms
of strategy as well (expert opinion). Table 1 gives the main characteristics of
these datasets. We also build a second series of datasets, which includes research
upgrades (important elements of strategy) and the number of times the same
action appeared, which can better help characterize strategies according to the
expert, i.e. I is defined on A× T ×R× N. We wrote a plugin for the Sc2Gears
software6 to parse the binary replay files. This plugin is freely available7.

Quantitative experiments. We experimented on 2.5GHz and 4GB of RAM
machines. We slightly modified the original C++ algorithm PrefixSpan for ex-
tracting frequent sequential patterns [6]. Figure 4 (left) shows for the data set
PvP that our optimization for computing balance speeds up the computation
of the balance measure by several orders of magnitude, comparing to the naive
approach, making our approach usable for large datasets. It also shows that the
time needed to avoid redundancy is negligible, and that the amount of redundant
patterns tend to decrease with the minimal support (yet not monotone). Figure 4
(middle) shows that the naive post-processing makes the approach not scalable.
In contrast, our optimization allows low minimal supports (Figure 4 (right)). Fi-
nally, Figure 3 plots extracted patterns (including redundant) according to their
balance measure and support, for the PvP dataset and a minimum support set
to 0.1%. Typically, jumping patterns can be observed with a measure equals to
1. Note the “symmetric” aspect of the points cloud, where y = 0.5 is the line
representing balanced patterns. Note also that empirically, the more frequent
the patterns, the closest to 0.5 the balance measure.

Discovering openings. Like in chess game, StarCraft II openings are generally
well-known and codified (given a name). We observe that well-known openings
in StarCraft II are translated to the most frequent patterns. Starting with the
dataset TvZ, we extract frequent sequential patterns with minimum support
of 10%. As expected most of the 64 patterns returned are very balanced with
values close to 0.5. Openings are per se balanced (otherwise the game would
not be attractive for the numerous spectators). We filtered the 64 patterns to
retain only the 20 that involve actions of both players. We remark for example

6 https://sites.google.com/site/sc2gears/
7 http://liris.cnrs.fr/mehdi.kaytoue/sc2/MLSA-PKDD13/Sc2Gears4DM.zip



Fig. 3. Balance measure and support of extracted patterns.
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〈{(1,W,Barracks)}, {(4, L,Hatchery), (4, L, Sp.Pool)}〉 (and its dual) which is
the well-known opening called Fast-expand in the TvZ match-up. Pattern s =
〈(1, L,Barracks)(4,W,Hatchery)(6, L,ReactorBarracks)(7, L, CCenter)〉 with
balance(s) = 0.5 denotes also a classical opening of game that leads to a so-called
macro-game, where players focus on building a strong economy before attacking
the opponent. In the PvZ dataset, 49 patterns are extracted with a minimum
support set to 10%, and only one pattern involves the two players: the forge-
expand strategy for the Protoss player (with a balance of 0.506), which is one of
the most typical opening in that match-up (supported by 37% of the games).

Discovering unbalanced strategies. Balance is the most important aspect
in e-sport: in a match, all opponents should have exactly the same chances to
win given the initial conditions. In StarCraft II for example, a faction should
not been advantaged compared to another. When a balancing problem is de-
tected, either by the game developers or by the players themselves, the game
properties are adjusted to correct this balance issue. We asked the expert for a
balance example problem in StarCraft II. The Bunker-rush in the TvZ match-
ups consists in building, very rapidly, a defensive structure in the opponent’s
base which causes strong if not fatal damages when not detected in time. We
used the second encoding (involving the number of times the bunker has been
built until its last appearance) to check that hypothesis and query among the
17, 990 patterns (minSupp = 1%). Only 359 patterns involves the Bunker build-
ing and both players. The top 50 patterns according to balance have all a support
cardinality higher than 300 and a balance measure higher than 0.61. For exam-
ple, the 5th pattern clearly indicates that the bunker rush is an imbalanced
strategy, even if it clearly appears that the opponent tried to defend against it:
〈{(1,W,Barracks, 1)}, {(4, L, SpPool, 1)}, {(6,W,Bunker, 1), (6, L, SpCrawler, 1)}〉.
This balance issue has been corrected in a patch of the game by changing some
properties of the game element.

6 Conclusion

We presented a preliminary work for extracting strategic patterns from replays
of the RTS video game “StarCraft II”. We introduce a three-steps approach: (i)
encode player actions into sequences, (ii) mine sequential patterns, and (iii) com-
pute the balance of each resulting strategy. Through a series of experiments, we
show that it is feasible to extract interesting patterns for many e-sport tasks in
reasonable time. We believe that the methodology and the results are interesting
to help RTS video games editor to balance their games, but also for the play-
ers/team managers for analyzing the strategies of a given player over a selected
set of replays (e.g. to prepare a competition). Among others, our perspectives
of further research include to study the use of other types of discretization tech-
niques for building the sequences, or the use of other types of sequential patterns
such as episodes. We will investigate how to achieve on-the-fly game result pre-
diction, which consists in using the extracted patterns for predicting the game



outcome in real-time. Also, build orders consist in less than 1% of the infor-
mation contained in a replay. We plan to use other types of actions, and this
interestingly comes with problems of pattern mining in noisy data and game
state estimation (remembering that the state of the game is never stored in a
replay).
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