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Abstract. Frequent set discovery from binary data is an important 
problem in data mining. It concerns the discovery of a concise repre­
sentation of large tables from which descriptive rules can be derived, 
e.g., the popular association rules. Our work concerns the study of two 
representations, namely frequent sets and frequent closures. N. Pasquier 
and colleagues designed the close algorithm that provides frequent sets 
via the discovery of frequent closures. When one mines highly corre­
lated data, apriori-based algorithms clearly fail while close remains 
tractable. We discuss our implementation of close and the experimental 
evidence we got from two real-life binary data mining processes. Then, 
we introduce the concept of almost-closure (generation of every frequent 
set from frequent almost-closures remains possible but with a bounded 
error on frequency). To the best of our knowledge, this is a new concept 
and, here again, we provide some experimental evidence of its add-value. 

1 Context and Motivations 

One of the obvious hot topics of data mining research in the last five years has 
been frequent set discovery from binary data. It concerns the discovery of set 
of attributes from large binary tables such that these attributes are true within 
a same line often enough. It is then easy to derive rules that describe the data 
e.g., the popular association rules [2] though the interest of frequent sets goes 
further [8]. In this paper, we discuss the computation and the use of frequent 
sets considered as an interesting descriptive representation of binary table for 
typical rule mining processes. 

When looking for a generic statement, it is possible to formulate a data 
mining task as a query over an intensionally defined collection of patterns [4]. 
Given a schema R for a database, let ( P R , £, V) denote the pattern domain 
where VYL is a language of patterns, £ is an evaluation function that defines 
pattern semantics, and V is a set of result values. Given r, an instance of R, 8 
maps each 6 € P R to an element of V. Then, a mining task is the computation of 
the subset of T'R that fulfil interestingness requirements. This can be formalized 
as the computation of T/i(r, P R , q) = [6 & VR \ q{T, 9) is true} where predicate q 
indicates whether a sentence is considered interesting. Typically, this predicate is 
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£.support(C, r) = 5/6 = 0.83 
£.support(AC, r) = 4/6 = 0.67 
f .support(yl => C, r) = 0.67 
f .confidence(yl =i> C, r) = 4/4 = 1 
f .confidence(C => A, r) = 4/5 = 0.8 

Fig. 1. A binary dataset r and the behavior of some patterns 

a conjunction of constraints that involves the evaluation function. This approach 
has been more or less explicitely used for various data mining tasks [13]. 

Example 1. Given a schema R = { J 4 I , . . . ,.A„} of attributes with domain {0,1} 
and a relation r over R, the support of a set X C R, ^.support(X,r), denotes the 
fraction of rows of r that have a 1 in each column of X. FVequent set discovery 
in r consists in computing every subset from R such that its support is higher 
than a given threshold a. Here, P R is 2^, V is [0,1] and the predicate q is 
.S'.support(^, r) > a. For instance, in Figure 1, supports of {C} and {A,C} in a 
dataset are given. Notice that we often use a string notation (e.g., AC) to denote 
a set of attributes. D 

An explicit interestingness evaluation of all the patterns of P R in a dataset is not 
tractable in general. Though an exponential search space is concerned, frequent 
sets can be computed in real-life large datasets thanks to the support threshold 
on one hand and safe pruning criteria that drastically reduces the search space 
on the other hand (e.g., the so-called apriori trick [2]). However, there is still an 
active research on algorithms, not only for the frequent set discovery task when 
apriori-based algorithms fail (e.g., in the case of highly correlated data) but 
also for new related mining tasks, e.g., the discovery of maximal (long) frequent 
sets only [3]. 

Example 2. Association rules have been extensively studied since their intro­
duction in [1]. Given the schema R={yl i , . . . ,yl„}, an association rule is an 
expression X =^ y where X C R and Y € R \ X. P R is the (finite) collection 
of such sentences. The typical "behavior" of these rules in an instance r over 
R is evaluated by means of two interestingness measures called "support" or 
"confidence". The support of a rule X =^Y is equal to the support oi XUY (as 
defined in Example 1) while its confidence is equal to its support divided by the 
support of X. V is [0,1] x [0,1] and the evaluation function provides the support 
(5.support) and the confidence (£^.confidence). The "classical" association rule 
mining task concerns the discovery of rules whose support and confidence are 
greater or equal to user-given thresholds, resp., a and </>. The predicate q is de­
fined as £.support(^, v) > a A £.confidence(0, r) > (j>. For example, with a=0.b 
and (^=0.9, A =^ C is discovered in the data of Figure 1 while C =^ A'ls not. • 

In the case of association rules, left-hand and right-hand sides denote conjunc­
tions of properties. We can consider the case of generalized rules where other 
boolean operators, like negation and disjunction, are allowed. 
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Example 3. The rule A/\-^E => C is an example of a generalized rule which might 
be extracted from the data in Figure 1. Its support is 0.5 and its confidence is 
1. Mining such rules is very complex and we do not know any efficient strategy 
to explore the search space for generalized rules. D 

As we are interested in very large datasets, an important issue is whether the 
explicit interestingness evaluation of a collection of patterns remains tractable. 
The answer can come from the computation of concise representations as defined 
in [8]. Given a database schema R, a dataset r and a language of patterns V-R., 
a concise representation for r and 'PR, is a structure that makes possible to 
answer queries of the form "How many times p € T'R occur in r" approximately 
correctly and more efficiently than by looking at r itself. By the way, some concise 
representations might enable to provide exact answers. 

This paper deals with two related concise representations of binary data, 
namely frequent sets and frequent closures. Not only the extraction of these rep­
resentations is discussed but we also point out their specific add-value when con­
sidered as concise representations for rule mining. Beside well-studied a p r i o r i -
based algorithms, we consider the c lose algorithm that provides frequent clo­
sures [10]. We implemented it and made experiments over real data. Furthermore, 
we propose the new concept of almost-do sure and sketch the min-ex algorithm 
to mine it. The main idea here is to accept a small incertitude on set frequency 
since, at that cost, more useful mining tasks become tractable. 

2 Frequent Sets As a Concise Representat ion 
of Binciry Data 

At first, we adapt the formal definition of [8] to the kind of concise representation 
we need. Formally, if an evaluation function Q, a member of 0 (the class of 
evaluation functions), is an application from a class of structures 5={sj | i € / } 
into the interval [0,1], an e-adequate representation for 5 with respect to O is 
a class of structures W={ri ] i S / } and an alternative evaluation function m: 
0 x W -> [0,1] such that for all Q G ©ands j € 5 we have: ] Q{si)-m{Q,ri) \< e. 
I denotes a finite (or infinite) index set of S. 

Example 4- Let us illustrate the definition on classical concepts from program­
ming languages. Assume <S is a class, e.g. float, Sj is an instance of S, e.g. 0.02, 
and 0 is the set of proper functions on that class, e.g. {sin, cos}. A concise rep­
resentation can be the couple {H,m), Ti being another class, e.g. short, and m 
an alternative way to evaluate Q, e.g. using a table of values of sin and cos for all 
angles from {0, 1, . . . , 359}. Now, there is an alternative way to compute sin{x) 
and cos{x). Instead of Si=0.02, we store ri—round{0.02 x 360/27r) mod 360, i.e., 
1. When the value of sin(0.02) is needed, we can use Tn{sin, 1) that returns the 
value stored in the table associated to sin. Clearly, the result is approximate, 
but the error is bound and the result is known at a much lower cost. • 

If the functions from 0 share a lot of intermediate results, and the number of 
evaluations justifies it, a concise representation can be made of the intermediate 
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results from which all functions from Q can be evaluated. Such a concise rep­
resentation avoids going back to the data. The alternative data representation 
memory requirement might be smaller as well. 

Let us now consider the class S of binary relational schema over the set of 
attributes R. Instances Si £ S are relational tables. A query Q £ 0 over an 
instance Si of S, denoted Q{si), is a function whose result is to be found with 
an alternative (e-adequate) representation. H denotes the alternative class of 
structures and the counterpart of evaluations, denoted by m, must be a mapping 
from 0 X H into [0,1]. The error due to the new representation r, of Si (thus 
compared to the result of Q{si) on the original structure) must be at most e for 
any instance of Sj. 

Example 5. Let r denote a binary relation over R = { A i , . . . , J4„} and consider 
the set 0={5.support(X, r) | X C R} , where f .support(X, r) is the function 
that returns the support of X in r (see Example 1). Given a frequency threshold 
a, let FSa denote the collection of all frequent sets with their supports. Let 
AltSup{X, FS^) denote the support of a frequent set X. FSa and the function 
m{£.suppoTt(X,r),FSty) = AltSup{X,FS^) for X e FS„, 0 elsewhere, is a 
(7-adequate representation for O over the binary relations defined on R. D 

Let us discuss the use of FS^ as a concise representation for the rule mining 
task we introduced in Example 2. The support and the confidence oi X => Y 
are exactly known if the support of the rule is at least a, because the first 
equals to AltSup{X U Y, FS^) (since X UY € FS„) and the second equals to 
AltSup{XuY,FSa)/AltSup{X,FS<,) (since X e FS^, too). If it is not the case 
(f .support(X =^ F, r) < cr), the support is bounded by [0, <T]. If moreover the 
left-hand side (X) of the rule is frequent, we can bound the confidence of the rule 
by [0, a/AltSup{X,FS„)]. Otherwise, the confidence can be any number from 
[0, 1]). FS(r turns to be a a-adequate representation for rule support evaluation 
and a 0.5-adequate representation for rule confidence evaluation. 0.5-adequacy 
for confidence is clearly insufficient for most of the applications. But if we are 
interested only in frequent rules (support > cr), we get a 0-adequate representa­
tion (so an equivalent representation) for both, the support and the confidence 
evaluation functions. It explains the effective strategy for extracting all the po­
tentially interesting association rules (w.r.t. frequency and confidence thresholds) 
from FScr'- for each X 6 FS^ and for each F c X, the rule X \Y =^ Y is kept 
iff it satisfies the minimum confidence criterion. 

Generalized rules (see Example 3) can be evaluated using FS,^, too. The 
problem is that the collection FS„ might not provide some of the needed sup­
ports for the computation of rule support and confidence even if the support of 
the rule is above the support threshold. 

Example 6. Assume we want to compute the support and the confidence of the 
rule AA-IE => D. Applying well-known transformations, we can write the equa­
tions: f .support(A A -lE =^ D,r)= f .support(j4D,r) — f .support(AD£^, r) and 
£.confidence(^A-i£ => £),r) = <f.support(AA-'E ^ D,T) / (£".support(A, r) -
£.s\xppovt{AE, r)). These measures can be computed exactly only if A, AD, AE 
and ADE are frequent sets. • 
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If we consider several negations and disjunctions, the number of terms will in­
crease and the need for the support of infrequent sets will increase too. Since 
the computation of the support of all sets is clearly untractable, infrequent con-
juncts will give rise to an incertitude [8]. However, this might be acceptable for 
practical applications. It becomes clear that the adequacy of frequent sets as a 
concise representation depends on how frequent are the patterns of interest, i.e., 
the more a pattern is frequent, the less an incertitude will aSect the result. 

3 Computing Frequent Sets and Frequent Closures 

The a p r i o r i algorithm is defined in [2] and we assume that the reader is familiar 
with it. It is a levelwise method based on the itemset lattice (i.e., the sets of at­
tributes ordered by set inclusion). The algorithm searches in the lattice starting 
from singletons and identifies level by level larger frequent sets until the maximal 
frequent sets are found, i.e., the collection of sets that are frequent while none of 
their supersets is frequent. This collection is denoted by Bd'^{FS,j) and is called 
the positive border of FS^ [13]. A safe pruning strategy (supersets of infrequent 
sets can not be frequent) has been shown to be the very efficient for the com­
putation of FSa in many real-life datasets. One of the identified drawbacks of 
apriori-based algorithms is their untractability for highly correlated data min­
ing. Data are correlated when the truth value of an attribute or a set of attributes 
determine the truth value of another one (in other terms, association rules with 
high confidence hold in it). The problem with correlated data originates from 
the fact that each rule with high confidence pushes the positive border back by 
one level for a significant part of the itemset lattice (when a does not change). 
Highly correlated data contain several such rules, thus pushing back the positive 
border by several levels. Consequently, the extraction slows down drastically or 
can even turn to be untractable. An algorithm that would avoid counting sup­
port for a great part of frequent sets would accelerate the process. This is the 
assumption of useful algorithms like max-miner [3] that provides Bd'^{FSa) but 
not FSa- We will consider hereafter an algorithm that avoids counting support 
for many frequent sets though it provides -FS'cr, i.e., every frequent set and its 
support. 

The experiment summarized in Table 1 emphasizes the influence of high 
correlation of data. We provide the output of the frequent set discovery tool 
f reddie that implements an a p r i o r i algorithm. The left column corresponds to 
a real dataset from ANPE ,̂ the right one corresponds to census data (c20dl0k) 
preprocessed at the University of Stanford ^. We kept in both cases the first 
10000 objects and for each object, their 17 first variables (each variable might 
be encoded in a number of binary attributes). In each column of Table 1, the first 
information provides the iteration counter (at level k, the level k of the itemset 

^ ANPE is the French national unemployment agency: datalOK contains data about 
unemployed people in december 1998. 

^ ftp://ftp2.cc.ukans.edu/pub/ippbr/census/pums/pums90ks.zip. 
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Table 1. Mining frequent sets using f reddie (apriori) 

Input i ile : datalOK 
Frequency threshold 0.05 

Candidate Frequent Time 

sets 

Iterl : 

Iter2 : 

Iters : 

Iter4 : 

Iters : 

Iters : 

Iter7 : 

Iters : 

Iter9 : 

IterlO 

Iterll 

Iterl2 

Total : 

214 
2080 

2991 

5738 

7203 

6359 

3733 

1395 

304 
: 32 

: 1 

sets 

65 
602 

2347 

4935 

6623 

5957 

3558 

1359 

302 
32 
1 

: No more. 

34836 25781 

(s) 
0.14 

18.58 

78.76 

223.95 

367.86 

391.79 

257.88 

105.20 

23.13 

2.70 

0.48 

1470.47 

Input file : basel7.txt 

Frequency threshold : 

Candidate 

sets 

Iterl : 

Iter2 : 

Iter3 : 

Iter4 : 

Iters : 

Iter6 : 

Iter7 : 

Iter8 : 

Iter9 : 

IterlO 

Iterll 

Iterl2 

Iterl3 

Iterl4 

Total : 

317 
1275 

3075 

8101 

15454 

20720 

19973 

13859 

6811 

: 2277 

: 479 

: 54 

: 2 

0.05 

Frequent Time 

sets 

51 
544 

2702 

7940 

15365 

20705 

19968 

13857 

6811 

2277 

479 
54 
2 

: No more. 

97080 90755 

(s) 
0.15 

14.60 

92.12 

376.87 

965.41 

1564.63 

1777.45 

1429.21 

798.39 

292.68 

58.83 

5.89 

0.74 

7376.97 

lattice is processed). Then, we get the number of candidates, the number of 
frequent sets and finally the duration of the iteration (CPU time). 

The " independance analysis" of the data has shown that ANPE data are 
slightly correlated while census data are highly correlated. However, the average 
level of correlation in ANPE data is not low. Typical basket analysis data are 
much less correlated and would bring down the execution time to a few minutes 
(and the number of frequent sets would certainly be smaller for a = 0.05). 

The problem is clearly that a user might want to mine (highly) correlated 
data with rather low support thresholds while apriori-based algorithms become 
untractable (time, memory) in that cases. 

c lose is an algorithm that computes frequent closures in binary data [10]. A 
set X is a closure in r when there is no attribute in R \ .X' that is always true 
when attributes in X are true. In other words, for each property p not in X, 
there is a tuple in r that has all properties of X and does not have the property p. 
A closure is called a frequent closure when its support in the database is greater 
than a given threshold a. 

Example 7. In the data from Figure 1, BC is closed while BD is not closed. 
Indeed, the objects 1 and 3 (the only ones that verify B and D) verify A and C, 
as well. Furthermore, if <7=0.6, BC is a frequent closure in that data. • 

By reducing the number of candidates considered during the extraction (the 
lattice of closures is generally quite much smaller than the lattice of itemsets, see 
for instance Figure 2 on the left), c lose can be more efficient than a p r i o r i . It is 
straightforward to derive all the frequent sets and their supports from frequent 
closures. 
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BCD © 

CD © 

Fig. 2. Closed set lattice (left) and sub-lattice of itemset lattice w.r.t. generator D 
(right) for the data from Example 1 

We now sketch the c lose algorithm and introduce our implementation close2. 
Formal definitions and proofs of properties about c lose are in [10]. Mining clo­
sures as a formal basis for association rule mining has also been suggested in 
[12] though no algorithm was proposed in that paper. 

Let FCa denote the collection of all frequent closures and their supports. The 
positive border of FCa, Bd^{FC„), is the set containing all frequent closures 
for which no superset of each of them is in FC„. It has been proven that, for a 
given dataset, Bd+{FCa) = Bd+{FS<r). 

There are two properties of the itemset lattice on which substantial opti­
misations can rely. First, the supports of a set and of its closure are the same 
(see the right part of Figure 2 for an example derived from Example 1). Thus, 
once identified the closure of a set to be different from this set, we can exclude 
the closure and all intermediate sets from the support counting procedure since 
they all have the same support. The sets that go through the support counting 
procedure are called generators. In Figure 2 on the right, it is emphasized that 
counting the support of generator D, whose closure is ABCD, enables to derive 
the support for the whole sub-lattice. Second, if the closure oi X is X U C, the 
closure of X U y is a superset oi XUYUC. These properties are used as a base 
of a safe pruning strategy integrated in close [10]. 

In our implementation close2, the extraction of frequent sets is performed 
in two steps. The first step extracts frequent closures from a binary relation. The 
extracted closures correspond to all generators. There may be some duplicates, 
in terms of closures, because different generators may have a same closure. The 
second step takes that collection of frequent closures, removes duplicates, stores 
FCa set and derives FSa- In Table 2, we compare the execution of close2 with 
f reddie on ANPE and census data. The given time is the average CPU time 
for 2 executions. For close2, the time of each step is given. The I/O overhead 
is provided as the number of scans on the data. We notice that the relative 
advantage of close2 over f reddie is much higher in case of highly correlated 
data. However, in both cases, the use of close2 is worthwhile. 
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Table 2. 

Dataset/cr 

ANPE/0.05 
census/0.05 
ANPE/0.1 
census/0.1 
ANPE/0.2 
census/0.2 

Comparison of freddie 

freddie (apriori) 
Time (s) 

1463.9 
7377.6 
254.5 

2316.9 
108.4 
565.5 

FS„ 

25 781 
90 755 
6 370 
26 307 
1 516 
5 771 

DB scans 

11 
13 
10 
12 
9 
11 

(apriori 1 and close2 

close2 
Time (s) 

69.2/6.2 
61.7/25.8 
25.5/1.1 
34.6/6.0 
11.8/0.2 
18.0/1.1 

FCa 

11 125 
10 513 
2 798 
4 041 
638 

1 064 

DB scans 

9 
9 
8 
9 
7 
9 

As it is possible to generate FS^ from the corresponding FC^ and ||F5ff|| > 
||FC<j||, FCa can be considered as a concise representation of the binary relation 
which is more compact than FSa, without any loss of information. Beside effi­
ciency, notice that the postprocessing of frequent closures to get rules can also 
give rise to a faster computation of useful rules. A first study in that direction 
concerns the computation of non redundant rules [11]. 

4 A New Concise Representat ion: Mining 
Almost-Closures 

This section concerns the concept of almost-closure in binary data. To the best 
of to our knowledge, this is an original concept. Details about the formalization 
and the algorithm are available in [6,5]. 

A fundamental property of set lattices which is used in c lose , is that the 
same support of the sub-lattice's bottom and top implies the same support for 
all sets of that sub-lattice. The more the data is correlated (many association 
rules with confidence 1), the more the collection of frequent closures is compact 
compared to the collection of frequent sets. We decided to relax the constraint 
equality of supports, which seems to be a very exigent one, with an "almost-
equality" constraint. The new algorithm, called min-ex, does not require any 
association rule with confidence 1 to be present in the mined data. Instead, it 
can take advantage of a correlation even if it is approximate (the confidence of 
association rules holding in the data should be however close to 1). These situa­
tions might correspond to exceptions in regular behaviours and/or to erroneous 
tuples that survived preprocessing steps. We expect that, in case of real-life data 
mining, we will remove much more candidates (w.r.t. close) from the support 
counting procedure, given that min-ex pruning strategy is similar to c lose prun­
ing strategy. The trade-off consists in accepting a small incertitude on supports 
though being able to mine correlated data with lower frequency thresholds. In 
the following, we consider that the support of a set is the (absolute) number of 
objects (tuples) in which all the attributes of the set are true. This is different 
from the definition in Example 1. 

Formally, if X (an itemset) "occurs" in t objects within the database, we 
say that an attribute A is in the almost-closure of X if the support of X U {A} 
is at least t — 6 {6 should be small, not to loose the practical relevancy of the 
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extracted information). The almost-closure of X is the set containing all such 
attributes. Conceptually, a closure is a special case of an almost-closure when 
6=0. 

Example 8. In data from Figure 1, considering the generator C, one finds that 
A and B are in the almost-closure of C for 6=1 while none of them was in its 
closure. D 

Now, let us explain where the incertitude comes from. Assume that the almost-
closure of X equals to X U {A,B,C}. Let the support of X be sx , and the 
supports of X U {A}, X U {B} and X U {C} be respectively sx — SA, SX — SB 
and Sx — sc where SA, SB and sc are positive numbers lower than 6. We have 
considered two possibilities for output content. The first stores for each frequent 
almost-closure: generator items (elements of X, in the example), generator sup­
port (sx) and almost-closure's supplement items {A, B and C). The second 
adds to each item a from the almost-closure supplement the difference of sup­
port between X and X U {A} (this difference is called miss-number hereafter). 
In our example that part corresponds to SA, SB and sc- These values have to 
be known, because to decide if an item is in the almost-closure, they must be at 
hand. Miss-numbers are values of miss-counters at the end of the corresponding 
database pass. 

The fact, that, for instance, B and C are in the almost-closure of X only 
implies that they occur almost always with X. Assume that we are in the second 
case of output (miss-numbers stored). Prom the supports oi X, X U {B} and 
X U {C} we can not infer the support of X U {B, C}, because we do not know if 
the misses occurred on the same objects (support would be sx — Tnax{sA, SB)) 
or on disjoint ones (support would he sx — SA — SB)- All intermediate cases are 
allowed, too. Storing miss-numbers greatly improves the precision of the resulting 
supports, above all when they are small, compared to 6. Therefore, we choose 
this solution, even if it increases the volume of output (in terms of quantity of 
information, not in terms of number of elements). FaC^ denotes the collection 
of all frequent almost-closures for threshold a and is the output of min-ex. 

An important property about closures has been preserved. Still, if the almost-
closure oi X is X U C, the almost-closure of X U y is a superset of X U y U C. 
Let us prove it. Attribute A is in the almost-closure of X iff £.support(X, r) — 
f .support(X U {j4},r) < 6. In other words, the number of objects that have all 
properties of X and do not have the property A is at most 6. Clearly, the number 
of objects satisfying a set of properties can not grow if we enforce that property 
with a new constraint. Therefore, the number of objects that have all properties 
of X and all properties of Y and do not have the property A can not be greater 
than 6. So, all elements of the almost-closure of X (i.e. C) must be present in 
the almost-closure oi X\JY. 

This property may be used as a basis of an efficient safe pruning strategy, 
analogously to the pruning strategy of close. We have been looking for such a 
strategy. The one implemented in the actual implementation of min-ex seems to 
be reliable [6]. However, in spite of numerous tries, we did not establish a proof 
that it is safe. We have not found either a counterexample. We checked the 
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completeness in our practical experiments. However, proving the incompleteness 
or the completeness of our algorithm remains an open problem though it does 
not prevent its use for practical applications. 

Deriving frequent sets from frequent almost-closures is as straightforward as 
for close. The difference is that now there is an incertitude on the support of 
some frequent sets. 

The sub-lattices (corresponding to almost-closures) of which the support 
range, due to S, crosses the threshold is kept in the result set, leading to the 
collection FaC„ that enables to derive a superset of FS^r- This is a safety mea­
sure: we do not want to prune out sub-lattices of which some itemsets are known 
to be frequent, for the sake of completeness. 

We did several experiments using min-ex on census and ANPE datasets (see 
Table 3). A first remark is that it confirms that c lose and min-ex with 6=0 
are functionally equivalent. In the case of closeg, the reduction of the size of 
FCa w.r.t. the corresponding FS^ highlights the tight-correlation level (relative 
number of rules with confidence 1) of the data. In the same way, the further 
reduction of output ( FaC,r compared to FCa^ ) for different 
values of 6, points out the loose-correlation level (relative number of association 
rules that are nearly "logical" ones). 

Let us now discuss the add-value of min-ex w.r.t. c lose for highly correlated 
data mining like census data mining. First of all, we must recall that a too high 
value of 6 might provide a "fuzzy" FaC„ collection, leading to, e.g., rules with 
too high incertitude on evaluation functions. 

Consider the CPU time needed by the extraction of FaC^. It has been more 
than halved (census data) for 5=6 and the tested frequency thresholds. Next, 
the I/O activity (number of database passes) has been reduced, an important 
criterion if the I/O turns to be a bottleneck of the system. A third advantage is 
that the output collection size has shrunk and we assume that further subsequent 
knowledge extraction steps will be faster. 

Another way to demonstrate the add-value of min-ex can be derived from 
Table 3. We can extract the following concise representations of census data: 
either FCQ.OI with c lose or FaCo.oos with min-ex and 5 = 2. It took the same 
time (154.3 vs. 155.2 sec, 10 passes for both executions) and we got a similar-
sized output collection (52166 vs. 55401 itemsets). It is possible without incerti­
tude (FCo.oi) or with a very good precision [5=2) on the frequent set supports 
{FaCo.oos)- The difference is that, using min-ex, we gained knowledge about 
all phenomena of frequency between 0.5% and 1% at almost no price. However, 
we must notice that in case of uncorrelated data, the memory consumption and 
CPU load due to maintaining miss-counters may affect the performances (See in 
Table 3 the extraction time evolution for ANPE/cr=:0.05). Only, with a signifi­
cant reduction of number of candidates (thus only in case of correlated data), the 
memory consumption will recover (e.g., see A N P E / C T = 0 . 0 0 5 or census/o-=0.05). 

Applications. A promising application of min-ex would be to enable the discov­
ery of repetitive but scarce behaviours. Another application concerns generalized 
rule mining. Generalized rules, if generated from FS„, have an incertitude on 
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Table 3. Evaluations of implementations close2 and min-ex 

Dataset/(7 

ANPE/0.005 

census/0.005 

ANPE/0.01 

census/0.01 

ANPE/0.05 

census/0.05 

close2 
Time (s) 

816.7 

197.8 

421.8 

154.3 

69.2 

61.7 

FC^ 

412 092 

85 950 

161 855 

52 166 

11 125 

10 513 

DB scans 

11 

10 

11 

10 

9 

9 

min-ex 
5 

0 
2 
4 
6 
0 
2 
4 
6 
0 
2 
4 
6 
0 
2 
4 
6 
0 
2 
4 
6 
0 
2 
4 
6 

Time (s) 

851.3 
759.5 
639.7 
553.0 
216.2 
155.2 
118.4 
98.5 

450.4 
466.8 
445.1 
416.4 
166.2 
124.9 
95.0 
79.0 
71.5 
79.7 
85.3 
88.4 
64.4 
50.2 
38.2 
32.2 

FaC„ 

412 092 
265 964 
182 829 
135 136 
85 950 
55 401 
39 036 
29 848 
161 855 
130 765 
104 162 
84 318 
52 166 
33 992 
24 109 
18 822 
11 125 
11 066 
10 931 
10 588 
10 513 
7 294 
5 090 
4 086 

DB scans 

11 
11 
10 
10 
10 
10 
8 
8 
11 
11 
10 
10 
10 
10 
8 
8 
9 
9 
9 
9 
9 
9 
8 
8 

measures like support and confidence due to unknown infrequent set supports 
[8]. Using min-ex, it is possible to reduce the bounds of error on evaluation 
value by supplying the support value for many more itemsets. The incertitude 
introduced by min-ex to some terms of generalized rule evaluation functions can 
be negligible (w.r.t. function result) compared to the contribution made by the 
larger number of known terms. Another interesting use is when an approximate 
result of the data mining step is sufficient. For instance, consider the "sampling" 
algorithm [7] during its "guess" phase. This phase is supposed to provide an ap­
proximation of the collection of frequent sets. An error is inherent to the use of 
sampling. If we keep the error introduced by the use of almost-closures negligible 
against the error due to sampling, the guess will be as good as before, but will 
be computed faster. 

5 Conclusion 

We studied several concise representations of binary data when data mining 
processes make use of set support (e.g., when looking for association rules). We 
studied the close algorithm and beside its introduction in [10], we provide a new 
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implementation and experimental evidences about its add-value for the concise 
representation of (highly) correlated data . It has lead us to the definition of the 
concept of almost-closure and, here again, we provided experimental evidences 
of its interest when we are looking for concise representation in difficult cases 
(correlated da ta and low frequency thresholds). The discovery of almost-closed 
frequent sets gave rise to tricky problems w.r.t. the completeness of the mining 
task. Completeness of min-ex remains an open problem at tha t t ime and we are 
currently working on it. 
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