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Abstract. Feature construction has been studied extensively, including
for 0/1 data samples. Given the recent breakthrough in closedness-related
constraint-based mining, we are considering its impact on feature con-
struction for classification tasks. We investigate the use of condensed
representations of frequent itemsets (closure equivalence classes) as new
features. These itemset types have been proposed to avoid set counting
in difficult association rule mining tasks. However, our guess is that their
intrinsic properties (say the maximality for the closed itemsets and the
minimality for the δ-free itemsets) might influence feature quality. Un-
derstanding this remains fairly open and we discuss these issues thanks
to itemset properties on the one hand and an experimental validation on
various data sets on the other hand.

1 Introduction

Feature construction is one of the major research topics for supporting classifica-
tion tasks. Based on a set of original features, the idea is to compute new features
that may better describe labeled samples such that the predictive accuracy of
classifiers can be improved. When considering the case of 0/1 data (i.e., in most
of the cases, collections of attribute-value pairs that are true or not within a
sample), several authors have proposed to look at feature construction based
on patterns that satisfy closedness-related constraints [1,2,3,4,5,6]. Using pat-
terns that hold in 0/1 data as features (e.g., itemsets or association rules) is not
new. Indeed, pioneering work on classification based on association rules [7] or
emerging pattern discovery [8,9] have given rise to many proposals. Descriptive
pattern discovery from unlabeled 0/1 data has been studied extensively during
the last decade: many algorithms have been designed to compute every set pat-
tern that satisfies a given constraint (e.g., a conjunction of constraints whose one
conjunct is a minimal frequency constraint). One breakthrough into the compu-
tational complexity of such mining tasks has been obtained thanks to condensed
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representations for frequent itemsets, i.e., rather small collections of patterns
from which one can infer the frequency of many sets instead of counting for it
(see [10] for a survey). In this paper, we consider closure equivalence classes, i.e.,
frequent closed sets and their generators [11]. Furthermore, when considering
the δ-free itemsets with δ > 0 [12,13], we can consider a “near equivalence” per-
spective and thus, roughly speaking, the concept of almost-closed itemsets. We
want to contribute to difficult classification tasks by using a method based on:
(1) the efficient extraction of set patterns that satisfy given constraints, (2) the
encoding of the original data into a new data set by using extracted patterns as
new features. Clearly, one of the technical difficulties is to discuss the impact of
the intrinsic properties of these patterns (i.e., closedness-related properties) on
a classification process.

Our work is related to pattern-based classification. Since [7], various authors
have considered the use of association rules. These proposals are based on a
pruned set of extracted rules built w.r.t. support and confidence ranking. Differ-
ences between these methods mainly come from the way they use the selected
set of rules when an unseen example x is coming. For example, CBA [7] ranks
the rules and it uses the best one to label x. Other algorithms choose the class
that maximizes a defined score (CMAR [14] uses combined effect of subsets of rules
when CPAR [15] uses average expected accuracy of the best k rules). Also, starting
from ideas for class characterization [16], [17] is an in-depth formalization of all
these approaches. Another related research stream concerns emerging patterns
[18]. These patterns are frequent in samples of a given class and infrequent for
samples from the other classes. Several algorithms have exploited this for fea-
ture construction. Some of them select essential ones (CAEP classifier [8]) or the
most expressive ones (JEPs classifier [9]). Then, an incoming example is labeled
with the class c which maximizes scores based on these sets. Moreover, a few
researchers have considered condensed representations of frequent sets for fea-
ture construction. Garriga et al. [3] have proposed to characterize a target class
with a collection of relevant closed itemsets. Li et al. [1] invoke MDL principle and
suggest that free itemsets might be better than closed ones. However, classifica-
tion experimental results to support such a claim are still lacking. It turns out
that the rules studied in [17] are based on 0-free sets such that a minimal body
property holds. The relevancy of such a minimality property is also discussed
in terms of “near equivalence” in [19]. In [2], we have considered preliminary
results on feature construction based on δ-freeness [12,13]. Feature construction
approaches based on closedness properties differ in two main aspects: (i) mining
can be performed on the whole database or per class, and (ii) we can mine with
or without the class labels. The pros and cons of these alternatives are discussed
in this paper.

In Section 2, we provide more details on state-of-the-art approaches before
introducing our feature construction method. Section 3 reports on our experi-
mental results for UCI data sets [20] and a real-world medical database. Section 4
concludes.
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2 Feature Construction Using Closure Equivalence
Classes

A binary database r is defined as a binary relation (T , I, R) where T is a set
of objects (or transactions), I is a set of attributes (or items) and R ⊆ T × I.
The frequency of an itemset I ⊆ I in r is freq(I, r) = |Objects(I, r)| where
Objects(I, r) = {t ∈ T | ∀i ∈ I, (t, i) ∈ R}. Let γ be an integer, an itemset I is
said to be γ-frequent if freq(I, r) ≥ γ.

Considering that “what is frequent may be interesting” is intuitive, Cheng
et al. [4] brought some evidence to support such a claim and they have linked
frequency with other interestingness measures such as Information Gain and Fis-
cher score. Since the number of frequent itemsets can be huge in dense databases,
it is now common to use condensed representations (e.g., free itemsets, closed
ones, non derivable itemsets [10]) to save space and time during the frequent
itemset mining task and to avoid some redundancy.

Definition 1 (Closed itemset). An itemset I is a closed itemset in r iff
there is no superset of I with the same frequency than I in r, i.e., �I ′ ⊃ I
s.t. freq(I ′, r) = freq(I, r). Another definition exploits the closure operation
cl : P(I) → P(I). Assume that Items is the dual operator for Objects: given
T ⊆ T , Items(T, r) = {i ∈ I | ∀t ∈ T, (t, i) ∈ R}, and assume cl(I, r) ≡
Items(Objects(I, r), r): the itemset I is a closed itemset in r iff I = cl(I, r).

Since [11], it is common to formalize the fact that many itemsets have the same
closure by means of closure equivalence relation.

Definition 2 (Closure equivalence). Two itemsets I and J are said to be
equivalent in r (denoted I ∼cl J) iff cl(I, r) = cl(J, r). Thus, a closure equiva-
lence class (CEC) is made of itemsets that have the same closure, i.e., they are
all supported by the same set of objects (Objects(I, r) = Objects(J, r)).

Each CEC contains exactly one maximal itemset (w.r.t. set inclusion) which is a
closed itemset. It may contain several minimal itemsets which are 0-free itemsets
according to the terminology in [12] (also called key patterns in [11]).

Example 1. Considering Tab. 1, we have r = (T , I, R), T = {t1, . . . , t6}, and I =
{A, B, C, D, c1, c2}, c1 and c2 being the class labels. For a frequency threshold
γ = 2, itemsets AB and AC are γ-frequent. ABCc1 is a γ-frequent closed itemset.
Considering the equivalence class C = {AB, AC, ABC, ABc1, ACc1, ABCc1},
AB and AC are its minimal elements (i.e., they are 0-free itemsets) and ABCc1

is the maximal element, i.e., one of the closed itemsets in this toy database.

2.1 Freeness or Closedness?

Two different approaches for feature construction based on condensed represen-
tations have been considered so far. In, e.g., [1,5], the authors mine free itemsets
and closed itemsets (i.e., CECs) once the class attribute has been removed from
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Table 1. A toy example of a binary labeled database

r A B C D c1 c2

t1 1 1 1 1 1 0

t2 1 1 1 0 1 0

t3 0 1 1 0 1 0

t4 1 0 0 1 1 0

t5 0 1 1 0 0 1

t6 0 1 0 1 0 1

the entire database. Other proposals, e.g., [3,4], consider (closed) itemset mining
from samples of each class separately.

Looking at the first direction of research, we may consider that closed sets,
because of their maximality, are good candidates for characterizing labeled data,
but not necessarily suitable to predict classes for unseen samples. Moreover,
thanks to their minimality, free itemsets might be better for predictive tasks. Due
to closedness properties, every itemset of a given closure equivalence class C in r
covers exactly the same set of objects. Thus, free itemsets and their associated
closed are equivalent w.r.t. interestingness measures based on frequencies. As a
result, it is unclear whether choosing a free itemset or its closure to characterize
a class is important or not. Let us now consider an incoming sample x (test
phase) that is exactly described by the itemset Y (i.e., all its properties that are
true are in Y ). Furthermore, assume that we have F ⊆ Y ⊆ cl(F, r) where F is a
free itemset from the closure equivalence class CF . Using free itemsets to label x
will not lead to the same decision than using closed itemsets. Indeed, x ⊇ F and
it satisfies rule F ⇒ c while x � cl(Y, r) and it does not satisfy rule cl(F, r) ⇒ c.
Following that direction of work, Baralis et al. have proposed classification rules
based on free itemsets [17].

On the other hand, for the “per-class” approach, let us consider w.l.o.g a
two-class classification problem. In such a context, the equivalence between free
itemsets and their associated closed ones is lost. The intuition is that, for a
given free itemset Y in rc1 –database restricted to samples of class c1– and
its closure X = cl(Y, rc1), X is more relevant than Y since Objects(X, rc1) =
Objects(Y, rc1) and Objects(X, rc2) ⊆ Objects(Y, rc2). The closed itemsets (say
X = cl(X, rc1)) such that there is no other closed itemset (say X ′ = cl(X ′, r)) for
which cl(X, rc2) = cl(X ′, rc2) are chosen as relevant itemsets to characterize c1.
In some cases, a free itemset Y could be equivalent to its closure X = cl(Y, rc1),
i.e., Objects(X, rc2) = Objects(Y, rc2). Here, for the same reason as above, a free
itemset may be chosen instead of its closed counterpart. Note that relevancy of
closed itemsets does not avoid conflicting rules, i.e., we can have two closed
itemsets X relevant for c1 and Y relevant for c2 with X ⊆ Y .

Moreover, these approaches need for a post-processing of the extracted pat-
terns. Indeed, we not only look for closedness-related properties but we have also
to exploit interesting measures to keep only the ones that are discriminating. To
avoid such a post-processing, we propose to use syntactic constraint (i.e., keeping
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the class attribute during the mining phase) to mine class-discriminant closure
equivalence classes.

2.2 What Is Interesting in Closure Equivalence Classes?

In Fig. 1, we report the different kinds of CECs that can be obtained when
considering class attributes during the mining phase.

Fig. 1. Different types of CECs

These CECs have nice properties that are useful to our purpose: since associ-
ation rules with a maximal confidence (no exception, also called hereafter exact
rules) stand between a free itemset and its closure, we are interested in CECs
whose closure contains a class attribute to characterize classes. Thus, we may
neglect Case 1 in Fig. 1.

Definition 3 (Association rule). Given r = {T , I, R}, an association rule π
on r is an expression I ⇒ J , where I ⊆ I and J ⊆ I\I. The frequency of the rule
π is freq(I ∪ J, r) and its confidence is conf(π, r) = freq(I ∪ J, r)/freq(I, r).
It provides a ratio about the numbers of exceptions for π in r. When J turns to
be a single class attribute, π is called a classification rule.

From Case 3 (resp. Case 4), we can extract the exact classification rule π3 :
L1 ⇒ C (resp. the exact rules π41 : L1 ⇒ C · · ·π4k

: Lk ⇒ C). Note that if we
are interested in exact rules only, we also neglect Case 2: L1C is a free itemset
and it implies there is no exact rule I ⇒ J such that I ∪J ⊆ L1C. Thus, we are
interested in CECs whose closed itemset contains a class attribute and whose
free itemsets (at least one) do not contain a class attribute. This also leads to a
closedness-related condensed representation of Jumping Emerging Patterns [21].
Unfortunately, in pattern-based classification (a fortiori in associative classifica-
tion), for a given frequency threshold γ, mining exact rules is restrictive since
they can be rare and the training database may not be covered by the rule set.
In a relaxed setting, we consider association rules that enable exceptions.

Definition 4 (δ-strong rule, δ-free itemset). Let δ be an integer. A δ-strong
rule is an association rule of the form I ⇒δ J which is violated in at most δ
objects, and where I ⊆ I and J ⊆ I \ I. An itemset I ⊆ I is a δ-free itemset iff
there is no δ-strong rule which holds between its proper subsets. When δ = 0, δ
is omitted, and we talk about strong rules, and free itemsets.
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When the right-hand side is a single item i, saying that I ⇒δ i is a δ-strong
rule in r means that freq(I, r) − freq(I ∪ {i}) ≤ δ. When this item is a class
attribute, a δ-strong rule is called a δ-strong classification rule [16].

The set of δ-strong rules can be built from δ-free itemsets and their δ-closures.

Definition 5 (δ-closure). Let δ be an integer. The δ-closure of an itemset I on
r is clδ : P(I) → P(I) s.t. clδ(I, r) = {i ∈ I | freq(I, r) − freq(I ∪ {i}) ≤ δ}.
Once again, when δ = 0, cl0(I, r) = {i ∈ I | freq(I, r) = freq(I ∪ {i})}
and it corresponds to the closure operator that we already defined. We can also
group itemsets by δ-closure equivalence classes: two δ-free itemsets I and J are
δ-equivalent (I ∼clδ J) if clδ(I, r) = clδ(J, r).

The intuition is that the δ-closure of a set I is the superset X of I such that every
added attribute is almost always true for the objects which satisfy the properties
from I: at most δ false values (or exceptions) are enabled. The computation of
every frequent δ-free set (i.e., sets which are both frequent and δ-free) can be
performed efficiently [13]. Given threshold values for γ (frequency) and δ (free-
ness), the used AC like1 implementation outputs each δ-free frequent itemset
and its associated δ-closure. Considering Table 1, a frequency threshold γ = 3
and a number of exceptions δ = 1, itemset C is a 3-frequent 1-free itemset ; items
B and c1 belong to its δ-closure and π : C ⇒δ c1 is a 1-strong classification rule.

2.3 Information and Equivalence Classes

We get more information from δ-closure equivalence classes than with other
approaches. Indeed, when considering contingency tables (See Tab. 2), for all
the studied approaches, f∗1 and f∗0 are known (class distribution). However, if
we consider the proposals from [3,4] based on frequent closed itemsets mined
per class, we get directly the value f11 (i.e., freq(X ∪ c, r)) and the value for
f01 can be inferred. Closure equivalence classes in [5] only inform us on f1∗ (i.e.,
freq(X, r)) and f0∗. In our approach, when mining γ-frequent δ-free itemsets
whose closure contains a class attribute, f1∗ ≥ γ and we have a lower bound
f11 ≥ γ − δ and an upper bound f10 ≤ δ for frequencies on X . We can also infer
other bounds for f01 and f00

2.

Table 2. Contingency table for a δ-strong classification rule X ⇒δ c

X ⇒ c c c̄ Σ

X f11 f10 f1∗
X̄ f01 f00 f0∗
Σ f∗1 f∗0 f∗∗

Moreover, γ-frequent δ-free itemsets, bodies of δ-strong classification rules are
known to have a minimal body property. Some constraints on γ and δ can help
1 AC like implementation is available at http://liris.cnrs.fr/jeremy.besson/
2 Note the confidence of a δ-strong classification rule π is f11/f1∗ ≥ 1 − (δ/γ).
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to avoid some of the classification conflicts announced at the end of Section 2.1.
Indeed, [16] has shown that setting δ ∈ [0; �γ/2�[ ensures that we can not have
two classification rules π1 : I ⇒δ ci and π2 : I ⇒δ cj with i �= j s.t. I ⊆ J . This
constraint also enforces confidence to be greater than 1

2 . Furthermore, we know
that we can produce δ-strong classification rules that exhibit the discriminant
power of emerging patterns if δ ∈ [0; γ · (1 − |rci

|
|r| )[, rci being the database

restricted to objects of the majority class ci [6]. One may say that the concept
of γ-frequent δ-free itemsets (δ �= 0) can be considered as an interestingness
measures (function of γ and δ) for feature selection.

2.4 Towards a New Space of Descriptors

Once γ-frequent (δ)-free itemsets have been mined, we can build a new represen-
tation of the original database using these new features. Each selected itemset
I will generate a new attribute NewAttI in the new database. One may encode
NewAttI to a binary attribute, i.e., for a given object t, NewAttI equals 1 if
I ⊆ Items(t, r) else 0. In a relaxed setting and noise-tolerant way, we propose
to compute NewattI as follows:

NewAttI(t) =
|I ∩ Items(t, r)|

|I|

This way, I is a multivalued ordinal attribute. It is obvious that for an object
t, NewAttI(t) ∈ {0, 1, . . . , p−1

p , 1} where p = |I|. Then, the value NewAttI(t) is
the proportion of items i ∈ I that describe t. We think that multivalued encoding
–followed by an entropy-based supervised discretization step3– should hold more
information than binary encoding. Indeed, in the worst case, the split will take
place between p−1

p and 1, that is equivalent to binary case; in other better cases,
split may take place between j−1

p and j
p , 1 ≤ j ≤ p − 1 and this split leads to a

better separation of data.

3 Experimental Validation

The frequency threshold γ and the accepted number of exceptions δ are impor-
tant parameters for our Feature Construction (FC) proposal. Let us discuss how
to set up sensible values for them. Extreme values for γ bring either (for low-
est values) a huge amount of features –some of which are obviously irrelevant–
or (for highest values) not enough features to correctly cover the training set.
Furthermore, in both cases, these solutions are of limited interest in terms of
Information Gain (see [4]). Then, δ varies from 0 to γ · (1 − |rci

|
r ) to capture

discriminating power of emerging patterns. Once again, lowest values of δ lead
to strong emerging patterns but a potentially low coverage proportion of data
and features with high values of δ lacks of discriminating power.
3 The best split between 2 values is recursively chosen until no more information is

gained.
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Intuitively, a high coverage proportion implies a relatively good representation
of data. In Fig. 2, we plotted proportion of the database coverage w.r.t. δ for a
given frequency threshold. Results for breast, cleve, heart and hepatic data
(from UCI repository) are reported. We easily observe that coverage proportion
grows as δ grows. Then, it reaches a saturation point for δ0 which is interesting:
higher values of δ > δ0 are less discriminant and lower values δ < δ0 cover less
objects. In our following experiments, we report (1) maximal accuracies over all
γ and δ values (denoted Max), and (2) average accuracies of all γ values with
δ = δ0 (denoted Av).
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Fig. 2. Evolution of training database coverage proportion w.r.t. γ and δ

To validate our feature construction (FC) process, we used it on several data
sets from UCI repository [20] and a real-world data set meningitis4. We have
been using popular classification algorithms such as NB and C4.5 on both the
original data and the new representation based on extracted features. As a result,
our main objective criterion is the accuracy of the obtained classifiers.

Notice that before performing feature construction, we translated all attributes
into binary ones. While the translation of nominal attributes is straightforward,
we decided to discretize continuous attributes with the entropy-based method
by Fayyad et al. [22]. Discretizations and classifier constructions have been per-
formed with WEKA [23] (10-folds stratified cross validation).
4 meningitis concerns children hospitalized for acute bacterial or viral meningitis.
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Table 3. Accuracy results improvement thanks to FC

databases NB FC & NB (Av/Max) C4.5 FC & C4.5 (Av/Max)

breast 95.99 97.32/97.54 94.56 96.12/96.43

car 85.53 81.95/84.64 92.36 98.49/99.13

cleve 83.5 83.35/84.33 76.24 81.39/83.18

crx 77.68 85.91/86.46 86.09 83.95/86.33

diabetes 75.91 75.56/76.59 72.26 76.03/77.75

heart 84.07 83.62/84.81 80 84.56/85.55

hepatic 83.22 84.09/84.67 81.93 85.29/86.83

horse 78.8 81.09/83.74 85.33 83.35/85.40

iris 96 94.26/96 96 94.26/96.67

labor 94.74 93.5/95.17 78.95 83.07/87.17

lymph 85.81 83.35/85.46 76.35 81.08/83.46

meningitis 95.74 93.24/93.64 94.83 92.54/95.13

sonar 69.71 85.17/86.28 78.85 79.88/83.86

vehicle 45.03 59.72/62.88 71.04 70.70/71.28

wine 96.63 96.42/97.83 94.38 95.57/96.29

Table 4. Our FC Feature Construction proposal vs. state-of-the-art approaches

databases BCEP LB FC&NB(Av/Max) SJEP CBA CMAR CPAR FC&C4.5(Av/Max)

breast – 96.86 97.32/97.54 96.96 96.3 96.4 96.0 96.12/96.43

car – – 81.95/84.64 – 88.90 – 92.65 98.49/99.13

cleve 82.41 82.19 83.35/84.33 82.41 82.8 82.2 81.5 81.39/83.18

crx – – 85.91/86.46 87.65 84.7 84.9 85.7 83.95/86.33

diabetes 76.8 76.69 75.56/76.59 76.18 74.5 75.8 75.1 76.03/77.75

heart 81.85 82.22 83.62/84.81 82.96 81.9 82.2 82.6 84.56/85.55

hepatic – 84.5 84.09/84.67 83.33 81.8 80.5 79.4 85.29/86.83

horse – – 81.09/83.74 84.17 82.1 82.6 84.2 83.35/85.40

iris – – 94.26/96 – 94.7 94.0 94.7 94.26/96.67

labor – – 93.5/95.17 82 86.3 89.7 84.7 83.07/87.17

lymph 83.13 84.57 83.35/85.46 – 77.8 83.1 82.3 81.08/83.46

meningitis – – 93.24/93.64 – 91.79 – 91.52 92.54/95.13

sonar 78.4 – 85.17/86.28 85.10 77.5 79.4 79.3 79.88/83.86

vehicle 68.05 68.8 59.72/62.88 71.36 68.7 68.8 69.5 70.70/71.28

wine – – 96.42/97.83 95.63 95.0 95.0 95.5 95.57/96.29

We report in Tab. 3 the accuracy results obtained on both the original data
and its new representation. NB, C4.5 classifiers built on the new representation
often perform better (i.e., it lead to higher accuracies) than respective NB and
C4.5 classifiers built from the original data. One can see that we have often (12
times among 15) a combination of γ and δ for which NB accuracies are improved
by feature construction (column Max). And this is experimentally always the case
for C4.5. Now considering average accuracies (column Av), improvement is still
there w.r.t. C4.5 but it appears less obvious when using NB.



Feature Construction Based on Closedness Properties Is Not That Simple 121

Then, we also compared our results with state-of-the-art classification
techniques: FC & NB is compared with other bayesian approaches, LB [24] and BCEP
[25]. When accessible, accuracies were reported from original papers within Tab. 4.
Then,wehave comparedFC &C4.5with other associative classification approaches,
namely CBA [7], CMAR [14], CPAR [15], and an EPs-based classifier SJEP-classifier
[26]. Accuracy results for associative classifiers are taken from [14]. Others results
are taken from the published papers. FC allows to often achieve better accuracies
than the state-of-the-art classifiers, e.g., FC & C4.5 wins 9 times over 15 against
CPAR, 8 times over 13 against CMAR, 10 times over 15 against CBAwhen considering
average accuracies (column Av). Considering optimal γ and δ values (column Max),
it wins 10 times over 15 (see bold faced results).

4 Conclusion

We study the use of closedness-related condensed representations for feature
construction. We pointed out that differences about “freeness or closedness”
within existing approaches come from the way that condensed representations
are mined : with or without class label, per class or in the whole database. We
proposed a systematic framework to construct features. Our new features are
built from mined (δ)-closure equivalence classes – more precisely from γ-frequent
δ-free itemsets whose δ-closures involve a class attribute. Mining these types of
itemsets differs from other approaches since (1) mined itemsets hold more in-
formation (such as emergence) and (2) there is no need for post-processing the
set of features to select interesting features. We also proposed a new numeric
encoding that is more suitable than binary encoding. Our FC process has been
validated by means of an empirical evaluation. Using C4.5 and NB on new rep-
resentations of various datasets, we demonstrated improvement compared with
original data features. We have also shown comparable accuracy results w.r.t.
efficient state-of-the-art classification techniques. We have now a better under-
standing of critical issues w.r.t. feature construction when considering closedness
related properties. One perspective of this work is to consider our FC process in
terms of constraints over sets of patterns and its recent formalization in [27].
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2000. LNCS (LNAI), vol. 1910, pp. 75–85. Springer, Heidelberg (2000)

13. Boulicaut, J.F., Bykowski, A., Rigotti, C.: Free-sets: A condensed representation of
boolean data for the approximation of frequency queries. Data Mining and Knowl-
edge Discovery 7, 5–22 (2003)

14. Li, W., Han, J., Pei, J.: CMAR: Accurate and efficient classification based on
multiple class-association rules. In: Proceedings IEEE ICDM 2001, pp. 369–376
(2001)

15. Yin, X., Han, J.: CPAR: Classification based on predictive association rules. In:
Proceedings SIAM SDM 2003 (2003)

16. Boulicaut, J.F., Crémilleux, B.: Simplest rules characterizing classes generated by
delta-free sets. In: Proceedings ES 2002, pp. 33–46. Springer, Heidelberg (2002)

17. Baralis, E., Chiusano, S.: Essential classification rule sets. ACM Trans. on Database
Systems 29, 635–674 (2004)

18. Dong, G., Li, J.: Efficient mining of emerging patterns: discovering trends and
differences. In: Proceedings ACM SIGKDD 1999, pp. 43–52 (1999)

19. Bayardo, R.: The hows, whys and whens of constraints in itemset and rule discovery.
In: Boulicaut, J.-F., De Raedt, L., Mannila, H. (eds.) Constraint-Based Mining
and Inductive Databases. LNCS (LNAI), vol. 3848, pp. 1–13. Springer, Heidelberg
(2006)

20. Newman, D., Hettich, S., Blake, C., Merz, C.: UCI repository of machine learning
databases (1998)

21. Soulet, A., Crémilleux, B., Rioult, F.: Condensed representation of emerging pat-
terns. In: Dai, H., Srikant, R., Zhang, C. (eds.) PAKDD 2004. LNCS (LNAI),
vol. 3056, pp. 127–132. Springer, Heidelberg (2004)



Feature Construction Based on Closedness Properties Is Not That Simple 123

22. Fayyad, U.M., Irani, K.B.: Multi-interval discretization of continous-valued at-
tributes for classification learning. In: Proceedings IJCAI 1993, pp. 1022–1027
(1993)

23. Witten, I.H., Frank, E.: Data Mining: Practical machine learning tools and tech-
niques, 2nd edn. Morgan Kaufmann, San Francisco (2005)

24. Meretakis, D., Wuthrich, B.: Extending näıve bayes classifiers using long itemsets.
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