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Abstract. Computing frequent itemsets and their frequencies from large
boolean matrices (e.g., to derive association rules) has been one of the
hot topics in data mining. Levelwise algorithms (e.g., the APRIORI al-
gorithm) have been proved effective for frequent itemsets mining from
sparse data. However, in many practical applications, the computation
turns to be intractable for the user-given frequency threshold and the
lack of focus leads to huge collections of frequent itemsets. The last three
years, two promising issues have been investigated: the use of user de-
fined constraints and the computation of condensed representations for
frequent itemsets, e.g., frequent closed sets. We show that the benefit of
these two approaches can be combined into a levelwise algorithm that
computes the so-called J-free sets under a conjunction of anti-monotone
and monotone constraints. Applications of this algorithm are briefly dis-
cussed. Among others, it can be used for the discovery of association
rules in difficult cases (dense and highly-correlated data).

1 Introduction

One of the obvious hot topics of data mining research in the past years has
been frequent set discovery from large boolean matrices (millions of rows and
hundreds of columns). It concerns the discovery of sets of columns that are true
within a same row often enough. The user defines the desired frequency thresh-
old and when every frequent itemsets has to be found with its frequency (for
instance, when association rules [1] are to be derived), it gives rise to challenging
algorithmic issues due to the exponential size of the search space.

Levelwise algorithms, e.g., the well-know APRIORI algorithm [2], have been
proved effective for frequent itemset mining when the matrix is sparse and the
data is lowly correlated. A prototypical application domain where it works is the
popular basket analysis problem. However, in most of the other applications we
know, the extraction is not always tractable for the user-given frequency thresh-
olds. This happens when the data is dense and/or highly correlated, i.e., when
the number of frequent itemsets explodes. Furthermore, even if it is tractable,
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the size of the output can be huge and is often larger than the size of the original
data. The lack of focus leads to huge collections of frequent itemsets from which
too many uninteresting patterns or rules will be derived.

During the last three years, two promising issues have been investigated to
tackle these problems.

First, one can assume that only a subset of the collection of frequent itemsets
is interesting: it leads to constraint-based extraction of the frequent itemsets [3—6].
These studies have considered various kinds of constraints, including “syntactic”
constraints (e.g., an item must not appear) and constraints related to the so-
called objective measures of interestingness (e.g., the itemsets must be frequent).
Using constraints enables to decrease the size of the output while improving user
guidance. The problem is to “push” efficiently the constraint checking step during
itemset extraction, i.e., not to apply a simple “generate and test” strategy. Nice
results have been discovered concerning the so-called anti-monotone, succinct
and monotone constraints [4, 6]. This framework has been also studied for other
kinds of properties like rules [5] or correlations [7].

Another promising approach concerns the condensed representation of fre-
quent itemsets [8]. The intuition is that instead of mining all the frequent pat-
terns, one can extract a particular subset of the frequent pattern collection such
that it is possible to regenerate from it the whole collection. Ideally, this subset is
much smaller than the original collection and can be extracted more efficiently,
while allowing a fast regeneration of the whole collection of frequent patterns.
Several researchers have investigated the use of closed frequent itemsets as a
valuable condensed representation of frequent itemsets [9-13].

To the best of our knowledge, combining these two frameworks has not been
studied yet. In this paper, we show how the benefit of these two approaches
can be combined into a levelwise algorithm and we emphasize the potential for
applications. The concept of d-free set introduced in [11] is related to the dis-
covery of closed sets and constitutes our targeted condensed representation of
frequent patterns. We provide an algorithm that computes such a representa-
tion when the §-free sets fulfill a conjunction of anti-monotone and monotone
constraints. Fortunately, many useful constraints fall in this category. Doing so,
difficult mining tasks can be considered like frequent itemset mining for “low”
frequency thresholds, the direct computation of representative association rules
or the discovery of frequent generalized itemsets (sets that combine positive and
negative items).

In Section 2, we provide the formal background about d-free sets and outline
an effective levelwise algorithm for constraint-based discovery of this represen-
tation. In Section 3, we discuss the applicability of the framework, pointing out
some interesting mining tasks from the practitioner point of view. Section 4 is a
short conclusion.



2 An Algorithm for Computing Frequent §-Free Sets
under Constraints

2.1 Problem Settings and Notations

Given a finite set Items of symbols called attributes (denoted by capital let-
ters: Ttems= {A,B,C,...}) a transaction t is a subset of Items. A transactional
database T is a finite and non empty multiset T = {t1,t2,...,tn} of transac-
tions. An itemset is a subset of Items and a k-itemset is an itemset of size k.
The set of k-itemsets is denoted Items,. A transaction ¢t supports an itemset S
iff S C ¢. The support (denoted Support(S)) of an itemset S is the multiset of
all transactions of T' that support S (e.g., Support(9) = T'). The frequency of an
itemset S is defined by F(S) = |Support(S)|/|Support(0)| where |.| denotes the
cardinality of the multiset (each transaction is counted with its multiplicity).
An itemset S is y-frequent in T if F(S) > . Table 1 provides an example of a
transactional database and the supports and the frequencies of some itemsets.
Notice that we often use a string notations for sets, e.g., AB for {A,B}.

Table 1. Supports and frequencies of some itemsets in a database T

Itemset Support Frequency

2 :ggD A {ti,to,t3,ta,t6}  0.83
ts ACD B {t1,t4,t5,t6} 0.67
= t4 ABCD AB {t1,ts,te} 0.5
ts BC AC  {ti,ta,ts,ta,t6}  0.83
te ABC CD {t1,t2,13,ta} 0.67

ABC {t1,ts,t6} 0.5

An association rule is a rule X = Y where X, Y C Items and X NY = {).
The frequency of the association rule X = Y is F(X = Y) = F(X UY).
The confidence of X = Y is Conf(X = Y) = F(X = Y)/F(X). It is the
conditional probability of having Y when X is supported by a transaction. An
exception to an association rule X = Y is a transaction ¢ such that ¢ supports
X and t does not support Y.

Let us formalize the concept of d-free set introduced in [11]. For this we need
to define the closures operator.

Definition 1 (closure; operator). Given a positive integer § and an itemset
S, closures(S) is the mazimal (w.r.t. the set inclusion) superset Y of S such
that for every item A €Y — S, |Support(S U {A})]| is at least |Support(S)| — 4.
Formally, closures(S) = S U {4, |Support(S)| — |Support(S U {A})| < d}.

Definition 2 (J-free sets). Assume o positive integer §, a 6-free set is an
itemset S such that S is not included in the closures of any of its proper subset:
VY C S, S € closures(Y).



In other terms, a d-free set is a set such that no association rule with less
than § exceptions holds between its attributes. Notice that when é§ = 0, a O-free
set is such that no association rule with confidence 1 hold between subsets of X.
A closed itemset X is an itemset such that closurey(X) = X.

Ezample 1. Considering the data in Table 1, closureg(A) = AC, closureg(AC) =
AC and closurey(B) = BC. With § # 0, closure; (B) = ABC and closures(B) =
ABCD.

Let us explain why the collection of d-free sets in a given matrix can be
considered as a condensed representation of the frequent itemsets. First, there
is much less d-free sets than frequent itemsets for a given frequency threshold.
Then, when the frequency of a d-free set X is known, it can be used to approxi-
mate the frequency of any frequent itemset that is a superset of X [11]. A special
case is that when § = 0, we can infer the exact frequency for every superset of
X within the sub-lattice (w.r.t. the set inclusion) whose top is closureq(X), the
closure of X. For § > 0, we have a bounded error on the frequency value but it
has been shown that, for small values of J, this error is very low in practice [11].
So, every use of frequent itemsets can be done from condensed representation of
frequent itemsets.

Definition 3 (constraint). If 7 denotes the set of all transactional databases
and 2" the set of all itemsets, a constraint C is a predicate over 21*™ x T,
We say that an itemset S € 2" satisfies a constraint C in the database T € T
iff C(S,T) = true. When it is clear from the context, we write C(S). Given a
subset I of 2™ we define SAT¢(I) = {S C I, S satisfies C}. SATc denotes
SATc(21tems).

Let Cfreq(S) = F(S) > v be the constraint that is true iff S is y-frequent in
T.

Ezxample 2. Assume the data in Table 1 (Items= {A,B,C,D}). If Cseq speci-
fies that an itemset must be 0.6-frequent, then SAT¢, . = {A,B,C,D,AC,AD,
BC,CD,ADC}. Assume that Cg;.e(S) = |S| < 2 and Cpiss(S) = A € S, then
SATe,,..AcC = {B, C,D,BC,BD, CD} and SATC_f:,-gq/\C = {B, C,D,BC, CD}.

miss size NCmiss

Two kinds of constraints are considered in this paper, the anti-monotone and
the monotone constraints.

Definition 4 (Monotonicity and anti-monotonicity). An anti-monotone
(resp. monotone) constraint is a constraint C such that for all itemsets S, S':
(S' C S AS satisfies C) = S’ satisfies C (resp. (S' D S A S satisfies C) = S’
satisfies C).

Example 3. Cfreq, A ¢ S, S C {A,B,C} and SN {4,B,C} = @ are anti-monotone
constraints. {A,B,C,D} C S and S N {A,B,C} # () are monotone constraints.
Assuming that items in S are correlated is monotone too [7].



Notice that a disjunction or a conjunction of anti-monotone (resp. mono-
tone) constraints is an anti-monotone (resp. monotone) constraint and that the
negation of an anti-monotone (resp. monotone) constraint is a monotone (resp.
anti-monotone) constraint.

2.2 A Levelwise Algorithm

In this section, we provide an algorithm that discovers J-free sets under con-
straints.

Assume a monotone constraint C,, = =C!,. and an anti-monotone constraint
Cam- We want to mine itemsets that satisfy these two constraints and that are
o-free sets. Notice that generally, the C,,, constraint contains the frequency
constraint Cyreq but this is not required.

First, we have to give a new definition for constrained J-free sets.

Definition 5 (constrained J-free sets). Let ¢ be an integer and C,,, a mono-
tone constraint. A constrained J-free set is an itemset S such that S is not
included in the closures of any of its proper subset that satisfy C,,: VY C S
Cm(Y) = S € closures(Y).

This definition is needed because if we want to use the constraints during the
extraction, the closures of itemsets that do not satisfy the constraint Cop A Cpy
are not computed thus making the checking of the original §-freeness impossible.

Let us now define the constraint associated with the constrained -free sets,
i.e., a constraint that is true only on constrained J-free sets.

Definition 6 (constraint for constrained J-free sets). The constrained -
free sets are the ones that satisfy the constraint Cpreenc,, (S) = (S' C SA|S'| =
[S| = 1ACn(S") = S &€ closure;(S’)

An important property of this constraint is its anti-monotonicity. It means
that within a levelwise algorithm, Crreenc,, can be used to prune large parts
of the lattice of itemsets. It is a key issue for explaining the efficiency of the
technique.

We can give a generic algorithm for a constraint C = Cypy A Crreenc,, ANCm =
Com A Crreenc,, N —Cl,,. We suppose that C,.,, and C,, are respectively anti-
monotone and monotone constraints and that C,;, # Cirue (Cirue is the constraint
that is always true), this is easy to check since Cp, = Cirye < Cn(0) = true.

This algorithm uses the functions prune, and generate,, which are described
in the next two subsections.

Generic algorithm

1. (Y :=generate, (0,0); Lo =10

2. k:=1

3. while C{ #0 do

4. Phase 1 - candidate safe pruning
Cy, := pruney(Cy, Lr—1)



5. Phase 2 anti-monotone constraint checking
ﬁk = SATCa.m/\CFree/\Cm (Ck)

6. Phase 3 - candidate generation for level k+1
Ci,, = generate,, (L, k)

7. k:=k+1

od

k—1
output |J;—, £;

®

Like APRIORI, this algorithm does a levelwise exploration of the lattice of
itemsets (w.r.t. the set inclusion). During the first pass (when k = 1), it computes
1-itemsets that satisfy C and then it generates candidate 2-itemsets from them.
In the second pass (k = 2), it prunes some candidate 2-itemsets (see the prune,
function), discards those that do not satisfy C and generates candidate 3-itemsets
from 2-itemsets that satisfy C...The set Cj denotes the k-itemsets that can
potentialy satisfy C. During Phase 1, some of these k-itemsets are pruned. During
Phase 2, a database scan is performed to compute the d-closure and the frequency
of the candidate itemsets. Those that satisfy C are stored in L. Their §-closures
and frequencies are also stored. In Phase 3, k-itemsets in Ly, are used to compute
candidate k + l-itemsets. The generation function generate,, is described later.
This generation function is the key of the efficiency of the algorithm: it ensures
that large portions of the itemset lattice are pruned and that no frequent itemset
is missed.

Note that it is not necessary to check C,, during Phase 2 to ensure the
correctness of this algorithm (our generation function ensure that all candidate
itemsets satisfy Cp,).

Ezample 4. Given the data from Table 1, § = 0 and the frequency thresh-
old 0.5, the output of the algorithm is {§€ A® B¢ DA° AB®} and the frequen-
cies of these itemsets. The notation D*¢ means that D is a O-free set and that
closureg(D) = ACD. If we consider the constraint D ¢ S with § = 1 then it
outputs {PA~1¢ BAC-1CY The notation BA-1C means that B is a 1-free set,
closure;(B) = ABC, F(B) = F(BC), and |Support(AB)| — |Support(B)| = —1.
Here, —1 is the miss-count of A with respect to B.

Theorem 1. Assuming that Copm and Cp, are respectively anti-monotone and
monotone constraints and that C,, is not a trivial constraint, i.e., that C,,, is not
always true, this algorithm is correct and complete, i.e., it outputs exactly SATc.

2.3 Generation Function

In this section, the generation function for the generic algorithm is presented. We
use the concept of negative border [14]. If C,,, denotes an anti-monotone con-
straint, Bd;  is the collection of the minimal (w.r.t. the set inclusion) itemsets
that do not satisfy Cgpp.

This function makes use of the original APRIORI generation function. In

APRIORI, the generate,,.,.;(Lx) function provides the candidates by fusion of



two elements from £y that share the same k—1 first items: generate,,,.;,.;(Lx) =
{AU B, where A, B € L}, A and B share the k — 1 first items (in lexicographic
order)}. Let us now consider another generating function, generate, (Ly) =
{AU B, where A € L, and B is a l-itemset} and let ms = Max seBd, |S].

Our new generation function is denoted generate,,.

function generate,, (£, k)
if k = 0 then return Bd,, N Items;
elsif k < ms then returnagenerate1 (L)U (Bd; NItemsgir)
elsif k = ms then return generate, (£) .
elsif k > ms then return generate

fi

(£)

apriori

Theorem 2. This candidate generation function is complete and ensures that
every candidate itemset verifies =C},,.

The fact that every candidate itemset satisfy C,,, = —C},, makes useless any
verification of this constraint after the candidate generation step.

2.4 Safe Pruning Function

Let us now introduce a correct and complete pruning algorithm.

function prune,,(C, £)
c':=C
for all S € C do for all S’ C S such that |S'| =S| -1
do if S' ¢ L, and C,,, (S") = true
then delete S from C' od
od
return C'

The next theorem states that this algorithm is correct, i.e., it does not prune
any itemset that satisfy C = Com A CFreenc,, A Cm- The completeness of this
algorithm means that it does not exists a more efficient pruning algorithm, i.e.,
it is not possible to prune more itemset without affecting the completeness of
the generic algorithm.

Theorem 3. The pruning algorithm prune,, is correct and complete (when used
in our generic algorithm).
2.5 Related Work

Our generic algorithm is inspired by several algorithms [3,15,4] and can be
considered as a generalization of them. Conjunctions of monotone and anti-
monotone constraints cover every kind of constraints that have been “pushed”



inside a levelwise algorithm (another kind of interesting constraint, the convert-
ible constraints [16], can be pushed in depth-first exploration algorithms). The
framework of succinct constraints introduced in [4] allows to find an effective
generation function (i.e., an effective computation of the negative border Bdc_;m
of Theorem 1). Frequent d-free sets are a condensed representation of frequent
itemsets. Another related condensed representation is the collection of frequent
closed sets [9,10,13].

3 Multiple Uses of Frequent §-Free Sets

When an itemset S is not O-free, it means that it is included in the closureg
of a O-free set X. In this case their frequencies are the same. It is therefore
straightforward to compute all frequent sets with the O-free ones. Frequent 0-
free sets act as the generators of frequent closed itemsets in an algorithm like
CLOSE [9]. For this special case, this has been independently formalized under
the concept of key pattern in [17].

If the collection of 0-free sets is computed, it is possible to infer from it the
exact knowledge of the frequent itemsets and their frequencies. By computing a
smaller collection using less resources (see [11] for practical experimentations),
every application that makes use of frequent itemsets can be considered. Among
others, they can be used for deriving standard association rules [2], the com-
putation of similarities between attributes [18] or the basis for boolean formula
frequency approximation [8]. Notice also, that when we mine frequent association
rules, most of the interestingness objective measures that have been proposed
in order to alleviate confidence drawbacks (e.g., lift, conviction, J-measure) can
be evaluated without looking back to the data, i.e., using only the frequencies
of the frequent itemsets.

When § # 0, the frequencies of the frequent itemsets can be approximated
(overestimated) but the error remains very low in practice [11]. Due to this ap-
proximation on the frequency, some of the generated itemsets can be infrequent:
e.g., if the frequency threshold is 0.3 and the computed frequency of an itemset
is 0.29 £+ 0.02, this itemset may be infrequent. However, it is certain that no
frequent itemset is missed.

When using other anti-monotone and/or monotone constraints on d-free sets,
the same generation algorithms can be used to generate constrained itemsets
from constrained d-free sets. In this case too, it is possible that some of the
generated itemsets do not satisfy the anti-monotone constraints (further checking
is needed to ensure this). However, all itemsets that satisfy the constraints are
generated, therefore with a last testing step it is possible to generate exactly the
itemsets that satisfy the constraint.

The interesting point here is that the extraction remains tractable for fre-
quency thresholds that can not be considered with other methods. Again, it is
possible to make use of the derived collection of frequent itemsets even though
a small error is made on the frequencies.
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In [19], useful constraints for mining association rules with negations have
been experimented. An association rule with negation can contain either positive
items or negative items: they are derived from generalized itemsets.

Ezample 5. the set {A,C,—D} is a generalized itemset that is 0.5-frequent in the
data from Table 1.

It is well-known that mining frequent generalized itemsets is very difficult (see
[20] for a general discussion). One application-driven possibility is to use con-
straints in order to drastically prune the search space although focusing on po-
tentially interesting itemsets. For instance, considering frequent itemsets (Cyreq)
that do not involve only negative items (Cqipp) sounds reasonable. Cqipp(S) is true
when S involves at least p positive items. Notice that it is a monotone constraint.
However, first experiments have shown that it was interesting to relax such a
constraint (i.e., accepting more sets) in order to give rise to more pruning (see
[19] for a complete discussion and experimental results). Following that guide-
line, instead of Cqipp, [19] consider the constraint Coippoamin = Caipp V Camin-
This constraint enforces at least p positive attributes (a monotone constraint)
or at most 1 negative attribute (an anti-monotone constraint). The extraction
of frequent J-free-sets under such constraints has given promising results.

4 Conclusion

We study the discovery of d-free sets under constraints within a levelwise al-
gorithm. Several interesting results have been already published the last three
years, e.g., about the effective use of anti-monotone constraints or monotone con-
straints. The generic algorithm we give in this paper is a simple generalization of
several related algorithms and enable to emphasize the potential of optimization
when considering conjunctions of anti-monotone and monotone constraints. Fur-
thermore, we provide new results concerning the computation of free sets under
constraints and have discussed its potential of applications.

Frequent sets discovery, and more generally data mining, is not limited to
independent mining tasks (or queries). Knowledge discovery in databases is an
iterative process and there are still lots of work to do to optimize sequences
of queries. There is a major trade-off between fully optimizing each individual
query and finding a strategy that makes use of previous mined patterns [15].
This strategy may be less effective for the first queries but may win for long
sequences of related queries, i.e., the way people actually proceed.
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