
Using classification and visualization on pattern

databases for gene expression data analysis
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Abstract. We are designing new data mining techniques on gene ex-
pression data, more precisely inductive querying techniques that extract
a priori interesting bi-sets, i.e., sets of objects (or biological situations)
and associated sets of attributes (or genes). The so-called (formal) con-
cepts are important special cases of a priori interesting bi-sets in derived
boolean expression matrices, e.g., matrices that encode over-expression
of genes. It has been shown recently that the extraction of every concept
is often possible from typical gene expression data because the number
of biological situations is generally quite small (a few tens). In specific
applications, we have been able to extract every concept and it can lead
to millions of concepts. Obviously, post-processing these huge volumes of
patterns for the discovery of biologically relevant information is challeng-
ing. It is useful since the added-value of transcription module discovery
is very high and formal concepts can be seen as putative transcription
modules. We describe our ongoing research on concept post-processing by
means of classification and visualization. It has been applied to a real-life
gene expression data set with a promising feedback from end-users.

1 Introduction

Thanks to a huge research effort and technological breakthroughs, one of the
challenges for molecular biologists is to discover knowledge from data generated
at very high throughput. This is true for not only for genomic data but also
in the domain of transcriptome research, i.e., the analysis of gene expression
data. Indeed, different techniques (including microarray [8] and SAGE [21]) en-
able to study the simultaneous expression of (tens of) thousands of genes in
various biological situations. The data generated by those experiments can be
seen as expression matrices in which the expression level of genes (the attributes
or columns) are recorded in various biological situations (the objects or lines).
Exploratory data mining techniques are needed that can, roughly speaking, be
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considered as the search for interesting bi-sets, i.e., sets of biological situations
and sets of genes that are associated in some way. Indeed, it is interesting to
look for groups of co-regulated genes, also known as synexpression groups [13],
which, based on the guilt by association approach, are assumed to participate
in a common function, or module, within the cell (and thus a set of biological
situations). Such an association between a set of co-regulated genes and a set of
biological situations that gives rise to this co-regulation is called a transcription
module and the discovery of transcription modules is one of the main goal in
functional genomics.

Various techniques can be used to identify a priori interesting bi-sets. Biol-
ogists often use clustering techniques to identify sets of genes that have similar
expression profiles (see, e.g., [9]). Statistical methods can be used as well (see,
e.g., [10, 4]). It is also possible to look for these putative synexpression groups
by computing the so-called frequent itemsets from derived boolean contexts [1,
3]. Putative transcription modules can be provided as well by computing the
so-called formal concepts in this kind of boolean data [22, 17, 18]. Indeed, it is
possible to encode gene expression properties into boolean matrices. Let O de-
notes a set of biological situations and P denotes a set of genes. In Table 1,
O = {s1, . . . , s4} and P = {g1, g2, . . . , g8}. The expression properties can be en-
coded into r ⊆ O×P . (si, gj) ∈ r denotes that gene j has the encoded expression
property in situation i. Different expression properties might be considered like
over-expression or under-expression. It is out of the scope of this paper to discuss
how raw numerical gene expression data is processed to get such boolean values
(see [3] for a discussion). The basic techniques rely on various discretization op-
erators that, depending of the kind of expression property, compute thresholds
from which it is possible to decide between wether the true or the false value
must be assigned. For instance, in Table 1, we can say that genes g1 and g3 have
the same encoded expression property (e.g., over-expression) in situations s1, s2
and s3. This observation might lead us to derive the bi-set ({s1, s2, s3}, {g1, g3})
as being potentially interesting.

@
@@O
P

g1 g2 g3 g4 g5 g6 g7 g8

s1 1 0 1 1 0 0 0 0

s2 1 1 1 1 0 1 0 1

s3 1 0 1 1 0 0 0 0

s4 1 1 0 1 1 1 1 1

Table 1. A boolean expression matrix r1

Stronger relationships between the components of a bi-set can increase their
relevancy. In this paper, we consider formal concepts or concepts following the
terminology of [22]. Informally, ({s1, s2, s3}, {g1, g3, g4}) is one of the concepts
in r1. It means that {g1, g3, g4} is a maximal set of genes that have the recorded



expression property in every situation from {s1, s2, s3} and that {s1, s2, s3} is
a maximal set of situations which share the true value for every gene from
{g1, g3, g4}. Clearly, discovered concepts can suggest transcription modules.

It has been shown in [17, 18] that concept discovery from typical boolean
gene expression data is tractable thanks to efficient algorithms for computing the
frequent closed sets [14, 7, 15, 2, 23] and classical properties of Galois operators
[22].

The contribution of this paper is twofold. First, we summarize in Section 2
some of our recent work on concept mining using a very simple formalization. Sec-
ondly, we describe in Section 3 our ongoing research on pattern post-processing
for gene expression data analysis. We focuss on a technique that classifies con-
cepts and provide a visualization that has been designed to be familiar to molec-
ular biologists. Indeed, it relies on the TreeView component of the popular
Eisen’s Lab software [9]. This paper does not contain a biological validation that
is however ongoing. Indeed, some biologically relevant information has been dis-
covered on human SAGE data using the described post-processing technique.
[16] contains a preliminary report of this biological validation.

2 From gene expression data to concept databases

We do not want to provide here a formalization in terms of inductive databases
for bi-set mining. A simple formalization has been proposed in [18] and bi-set
mining is a straightforward extension of the set pattern domain [6]. We just recall
the most important notions for concept discovery and, based on them, refer to
interesting recent work and motivate our ongoing research in this area.

Definition 1. (Language of bi-sets) The language of bi-sets is the collection of
couples from LO × LP where LO = 2O (sets of situations) and LP = 2P (sets
of genes).

Let us now consider evaluation functions for such patterns. We only consider
Galois operators (denoted as φ and ψ) that have been proved extremely useful.

Definition 2. (Galois connection [22]) If T ⊆ O and G ⊆ P, assume φ(T, r) =
{g ∈ P | ∀t ∈ T, (t, g) ∈ r} and ψ(G, r) = {t ∈ O | ∀g ∈ G, (t, g) ∈ r}.
φ provides the set of genes that share the expression property in a given set of
situations. ψ provides the set of situations in which a given set of genes share
the expression property. (φ, ψ) is the so-called Galois connection between O and
P. We use the classical notations h = φ ◦ψ and h′ = ψ ◦ φ to denote the Galois
closure operators.

Notice that the classical frequency measures are defined easily in terms of
|ψ(G, r)| for G ⊆ P and |φ(T, r)| for T ⊆ O.

Definition 3. (Closed set and CClose constraint) A set of genes G ⊆ P is closed
when it satisfies CClose(G, r) ≡ h(G, r) = G. Dually, for sets of situations T ⊆ O,
CClose(T, r) ≡ h′(T, r) = T .



Definition 4. (1-rectangle and concept) A bi-set (T,G) is a 1-rectangle iff ∀g ∈
G and ∀t ∈ T , (t, g) ∈ r. (T,G) is called a formal concept or concept in r when
T = ψ(G, r) and G = φ(T, r).

Example 1. Let us consider the bi-set ({s1, s2, s3}, {g1, g3}) and the data from
Table 1. We have ψ({g1, g3}, r1) = {s1, s2, s3} and this bi-set is a 1-rectangle.
The set {g1, g3} is not closed since h({g1, g3}, r1) = φ(ψ({g1, g3}, r1), r1) =
{g1, g3, g4}. {g1, g2, g3, g4} is a closed set of genes (h({g1, g4}, r1) = {g1, g4}).
{s1, s2, s3, s4} is a closed set on situations (h′({s1, s2, s3, s4}, r1) = {s1, s2, s3, s4}).
Furthermore, {s1, s2, s3, s4} = ψ({g1, g4}, r1) and {g1, g4} = φ({s1, s2, s3, s4}, r1).
({s1, s2, s3, s4}, {g1, g4}) is indeed one of the six concepts in r1 (see Table 2 for
the complete list).

By construction, concepts are built on closed sets and each closed set of genes
(resp. situations) is linked to a closed set of situations using ψ (resp. genes using
φ) [22]. In other terms, for a concept (T,G) in r we have CClose(T, r)∧CClose(G, r)
and the collection of concepts is included in the collection of 1-rectangles.

c1 ({s1, s2, s3, s4}, {g1, g4})
c2 ({s1, s2, s3}, {g1, g3, g4})
c3 ({s2, s4}, {g1, g2, g4, g6, g8})
c4 ({s2}), {g1, g2, g3, g4, g6, g8})
c5 ({s4}, {g1, g2, g4, g5, g6, g7, g8})
c6 ({∅}, {g1, g2, g3, g4, g5, g6, g7, g8})

Table 2. Concepts in r1

Many data mining processes on boolean data can be formalized as the com-
putation of bi-sets whose set components satisfy some constraints. For instance,
computing frequent sets of genes (frequent w.r.t. a threshold γ) and the situa-
tions in which they are co-regulated means that we compute bi-sets (T,G) such
that |ψ(G, r)| ≥ γ and T = ψ(G, r).

Closed set mining for genes is specified as the computation of {G ∈ LP |
CClose(G, r) satisfied}. The collection Θ = {(T,G) ∈ LO×LP | CClose(G, r)∧T =
ψ(G, r)} is the collection of concepts. Interestingly, we have also Θ = {(T,G) ∈
LO × LP | CClose(T, r) ∧ G = φ(T, r)}. It provides a strategy for computing
concepts [17].

Several efficient algorithms have been designed for computing the frequent
closed sets of columns in boolean matrices [14, 7, 15, 2, 23]. These algorithms can
work in dense boolean data. When the number of columns is small enough, it is
however possible to compute the closed sets for the frequency threshold 1 such
that every closed set is computed. We can compute the closed sets on the smaller
dimension by a simple transposition and the Galois operators enable to provide
the associated closed sets on the other dimension [17]. In practice, we have been



Density Number of concepts

Human SAGE 74 × 822 12.2 80 068

Human SAGE 74 × 822 3.8 1 386

Human SAGE 74 × 822 4.8 1 808

Human SAGE 90 × 12 636 4.8 196 130

Human SAGE 90 × 12 636 2.2 9 150

Human SAGE 90 × 12 636 4.7 31 766

droso 162 × 1 230 1.5 1 508

droso 162 × 1 230 3.2 10 447

droso 162 × 1 230 6.7 259 938

Table 3. Concept extractions in human SAGE data [18] and Drosophila [17]

able to use a frequent closed set mining algorithm designed in our group ([7])
with a frequency threshold of 1 such that every closed set and thus concept
is extracted. Table 3 contains the number of extracted concepts as reported in
[17, 18]. Density is the percentage of true values among the matrix cells. The
various densities are obtained by using different discretization techniques. The
largest collection reported here is of size 259 938. It is however common to find
applications where millions of patterns are extracted from gene expression data
[20, 5].

The important message is thus that databases that already contain raw ex-
pression data and multiple derived boolean contexts can now be associated to
huge collections of patterns that hold in these data. These both components
(data and patterns) constitute the source data for pattern post-processing that
must be done in cooperation with the end-users. This post-processing is funda-
mentally needed since data mining algorithms only provide a priori interesting
patterns. We have to support queries on such huge pattern databases. Not only
we need query languages for that but also efficient query evaluation techniques
in order to preserve the interactivity between end-users and the databases. We
are far from solutions on these two topics. Many open problems are still to
be addressed like the efficient storage of huge collections of set patterns within
databases. It is important that post-processing techniques can take the most
from the available database technologies. For instance, [12] studies set pattern
querying optimization within relational database management systems. Also, the
smart integration of the many data sources that are needed for concept post-
processing is challenging. An obvious example concerns the use of additional
biological information, e.g., Gene Ontology1 in order to support the interpreta-
tion of concepts and, e.g., study the homogeneity of the sets of genes at different
levels (biological process, molecular function, cellular function). The definition
of query languages for pattern post-processing, and more generally inductive
databases is also challenging.

1 http://www.geneontology.org/



Furthermore, it is important to design new post-processing techniques in
cooperation with the end-users, molecular biologists in our case. Indeed, one
of our motivations has been to reuse the visualization approach of the popular
Eisen’s lab clustering software [9] in the new context of concept post-processing.

3 Concept classification and visualization

The variability of the measurement process and the noise can dramatically in-
crease the number of extracted concepts. When an error of measurement or an
intrinsic variability of the observed phenomenon lead to a 0 value whereas the
value 1 should be obtained, we have to face with a multiplication of the number
of concepts. To illustrate this fact, we represent on the left of Figure 1 a data
matrix made of ”1” values except one symbolized by a white square. The center
and the right of Figure 1 represent the two extracted concepts (the dark area)
from the data. Assume that nz denotes the number of 0 values that are present
by error in the data and that all these 0 values are on different lines and different
columns of matrix. In such a special case, the additional number of concepts is
equal to 2nz.
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Fig. 1. Multiplication of concepts due to noise/variability

We consider that one of the main goals of concept post-processing is to group
concepts that are similar enough. It can be achieved by a hierarchical classi-
fication method to cluster concepts and then a visualization of the obtained
hierarchy of concepts.

3.1 Hierarchical clustering on formal concepts

We have been using an ascendant hierarchical clustering method to group con-
cepts. At each iteration, the principle is to merge the two closest clusters into a
single one until there is only one cluster. The difficulty in using such an algorithm
to cluster concepts is to take into account simultaneously the genes and the bi-
ological situations instead of clustering separately the genes and the biological
situations as it is done usually, e.g., in [9].

We propose to use a distance measure to compare two concept clusters which
takes into account the genes and the biological situations that are overlapping
between the two clusters. We have to define a distance between two concepts and



then a distance between two clusters. For the first step, we use the symmetrical
set difference ∆ between two sets Si and Sj : Si∆Sj = Si ∪ Sj \ Si ∩ Sj .

Definition 5. (Distance between two concepts) Assume that ci = (Ti, Gi) and
cj = (Tj , Gj) are two concepts, the distance d between ci and cj is defined as

d (ci, cj) =
1

2

|Ti∆ Tj |

|Ti ∪ Tj |
+

1

2

|Gi∆ Gj |

|Gi ∪Gj |
(1)

where |S| denotes the cardinal of S.

Classically, in hierarchical clustering, the distance between two clusters is
defined by the shortest distance between a concept of the first cluster and one of
the second cluster, or the largest distance between a concept of the first cluster
and one of the second cluster, or the average distance between all the couples
of concepts from the two clusters. We have used the average distance which is
more robust to data variability.

The time complexity for computing the average distance between two clusters
of concepts is in O(n × m) where n and m are the size of the clusters. Given
the huge size of the collections of concepts we want to post-process, we have
considered an optimization based on a fuzzy measure.

3.2 Fuzzy hierarchical clustering

One idea for reducing the computation complexity is to associate a pseudo-
concept to each cluster. A pseudo-concept is a unique representation for all the
concepts in a cluster. It is composed of two fuzzy sets, one set of genes and one
set of biological situations. As usually, a fuzzy set is a set whose elements belong
more or less to that set, i.e., a degree of membership αi (a real number between
0 and 1) is associated to each element ei of the referential set (i.e., O or P). The
exact value 0 means that the element does not belong to the fuzzy set and the
exact value 1 means that the element belongs to the fuzzy set.

Definition 6. (Pseudo-concept) A pseudo-concept is denoted by (T ′, G′, N) ⊆
O′ × P ′ × N with O′ = O × [0; 1] and P ′ = P × [0; 1]. The weight N denotes
the number of concepts represented by the pseudo-concept. A pseudo-concept
(T ′, G′, N) of a single concept (T,G) is defined by:

{

T ′ = {(s, α) | s ∈ O, α = 1 if s ∈ T, α = 0 otherwise}
G′ = {(g, α) | g ∈ P , α = 1 if g ∈ G, α = 0 otherwise}

The pseudo-concept (T ′, G′, N) for two pseudo-concepts (T ′
1, G

′
1, N1) and (T ′

2, G
′
2, N2)

is defined as follows:














T ′ =
{(

s, N1×α1+N2×α2

N1+N2

)

| ∀s ∈ O and (s, α1) ∈ T ′
1 and (s, α2) ∈ T ′

2

}

G′ =
{(

g, N1×α1+N2×α2

N1+N2

)

| ∀g ∈ P and (g, α1) ∈ G′
1 and (g, α2) ∈ G′

2

}

N = N1 +N2



The pseudo-concept corresponding to {c1, c2, c3} (see Table 2) is built as
follows. First, we compute the pseudo-concepts for c1 (PS1), c2 (PS2) and c3
(PS3). Then, we merge PS1 and PS2 into PS12 and finally we merge PS12 and
PS3 into PS123.

PS1 = ({(s1; 1), (s2; 1) , (s3; 1), (s4; 1)}, {(g1; 1), (g4; 1)}, 1)

PS2 = ({(s1; 1) , (s2; 1), (s3; 1)}, {(g1; 1), (g3; 1), (g4; 1)}, 1)

PS3 = ({(s2; 1) (s4; 1)}, {(g1; 1), (g2; 1), (g4; 1), (g6; 1), (g8; 1)}, 1)

PS12 = ({(s1; 1), (s2; 1) , (s3; 1), (s4; 0.5)}, {(g1; 1), (g3; 0.5), (g4; 1)}, 2)

Graphically, this can be represented by two arrays, the first one (on the left)
represents the degree of membership of the eight genes. The second one (on the
right) represents the degree of membership of the four biological situations. The
darkness of a cell is correlated with the degree of membership, i.e., the more it
is black, the more the element belongs to the set.

T G

PS1

PS2

PS12

PS123 = ({(s1; 2/3), (s2; 1) , (s3; 2/3), (s4; 2/3)}

{(g1; 1), (g2; 1/3), (g3; 1/3), (g4; 1), (g6; 1/3), (g8; 1/3)}, 3)

T G

PS12

PS3

PS123

Pseudo-concepts can be computed incrementally. The order in which the
concepts are considered does not influence the result. The pseudo-concept which
comes from the merge of two clusters is computed using only the two pseudo-
concepts of these clusters and not every underlying concept.

Definition 7. (Fuzzy distance) It is possible to generalize distance d for mea-
suring the similarity between pseudo-concepts. The classical fuzzy set operators



(indexed with f) are used:

S1 ∪f S2 = {(o,max{α1, α2}) | o ∈ O, (o, α1) ∈ S1 and (o, α2) ∈ S2}

S1 ∩f S2 = {(o,min{α1, α2}) | o ∈ O, (o, α1) ∈ S1 and (o, α2) ∈ S2}

S1 \f S2 = {(o, α1 − α2) | o ∈ O, (o, α1) ∈ S1 and (o, α2) ∈ S2}

|S1|f =
∑

o∈O

α, (o, α) ∈ S1

Let us illustrate the computation of this fuzzy distance between PS1 and
PS2, and between PS12 and PS3:

d(PS1, PS2) =
1

2
×

1

4
+

1

2
×

1

3
= 0.292

d(PS12, PS3) =
1

2
×

2.5

4
+

1

2
×

3.5

5.5
= 0.6306

PS1 PS2 PS3 PS4 PS5 PS6

PS1 0.292 0.45 0.625 0.6607 0.8125

PS2 0.625 0.5 0.8125 0.75

PS3 0.333 0.393 0.688

PS4 0.688 0.625

PS5 0.5625

PS12 PS3 PS4 PS5 PS6

PS12 0.6306 0.6488 0.8041 0.8437

PS3 0.333 0.393 0.688

PS4 0.688 0.625

PS5 0.5625

Step 1 Step 2

PS12 PS34 PS5 PS6

PS12 0.5773 0.8041 0.8437

PS34 0.5083 0.625

PS5 0.5625

PS12 PS345 PS6

PS12 0.6614 0.8437

PS345 0.6041

Step 3 Step 4

Fig. 2. Evolution of the distance table during tree construction

Figure 2 provides the distance tables computed at each step of the hierar-
chical clustering process. At Step 1, all concepts are in a single cluster and the
closest clusters PS1 and PS2 are merged. At Step 2 PS3 and PS4 are merged,
then PS34 and PS5 are merged. Finally, PS345 and PS6 are merged into a single
concept.

When using pseudo-concepts, the time complexity to compute the distance
between two clusters is in O(|O| + |P|). When two clusters are merged, the
corresponding pseudo-concept is computed in O(|O|+ |P|). Thus, time depends
linearly on the size of the gene and situation sets whereas it was related to the
number of concepts in the first approach.



Example of a hierarchy of concepts The hierarchical clustering result, i.e.,
a hierarchy of concepts, can be represented as in Figure 3. The difficulty is that
we have three dimensions: the concepts, the situations and the genes. In order
to draw the result in a plan, we decided to represent the hierarchy of concepts
either w.r.t. the genes or w.r.t. the situations. When a gene or a situation belongs
to a concept, the corresponding cell is black.

PS 1

PS 2

PS 4

PS 3

PS 5

PS 6

S 1 S 2     S 3    S 4 

0.5083

0.6041

0.33

0.292

PS 1

PS 2

PS 4

PS 3

PS 5

PS 6

G 1 G 2    G 3    G 4   G 5    G 6   G 7   G 8

0.604

0.5083

0.33

0.292

Fig. 3. First visualization concepts × situations (left) and concepts × genes (right)

We observe in Figure 3 that concepts PS1 and PS2 have been merged. Indeed,
we can see that these concepts are very similar and it makes sense to see them
as a single one.

The fuzzy distance can be used to merge very close concepts. For example,
Figure 4 presents the hierarchy obtained when concepts with distance lower than
1

3
are merged.

PS 5

PS 6

PS 12

PS 34

S 1 S 2     S 3    S 4 

0.33

0.292

0.5083

0.6041

PS 5

PS 6

PS 12

PS 34

G 2    G 3    G 4   G 5    G 6   G 7   G 8G 1

0.5083

0.604

0.33

0.292

Fig. 4. Second visualization concepts × situations (left) and concepts × genes (right)

3.3 An application to real gene expression data

As a simple illustration, let us apply this technique on the gene expression data
from [11]. It concerns the expression of 190 genes over 11 biological situations.
After discretization, we have extracted 191 concepts representing sets of genes
which are up-regulated over associated sets of situations. Figure 5 presents the
hierarchical clustering of these concepts (columns) and the expression level of
the genes (rows) over them. We used HCE [19] to visualize the dendrogram.



Fig. 5. Hierarchical clustering of concepts visualized w.r.t. genes

Figure 5 shows that concepts of a single cluster share a small set of genes
up-expressed (in dark on the figure) which characterize the cluster. Some other
genes are punctually up-regulated in some of these concepts: one can suspect
that these variations are due to noise or errors of measurement. The impact of
these unwilling variations can be tackled thanks to the classification of concepts.

4 Conclusion

Starting from the possibility to extract huge collections of concepts in boolean
gene expression data, we are considering post-processing techniques that can
support molecular biology discovery, more precisely the discovery of transcription
modules. Using the same approach than a popular software for gene or biological
situation clustering, the Eisen’s clustering software, we have applied the same
principles to concept classification. The validation of the biological relevancy
of these techniques on real data sets is ongoing. It concerns both the human
SAGE data for which we have been able to extract every concept [18] but also
microarray data that has been processed for concept discovery [5].
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