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Abstract. Given a large collection of transactions containing items, a
basic common data mining problem is to extract the so-called frequent
itemsets (i.e., set of items appearing in at least a given number of transac-
tions). In this paper, we propose a structure called free-sets, from which
we can approximate any itemset support (i.e., the number of transactions
containing the itemset) and we formalize this notion in the framework
of ε-adequate representation [10].We show that frequent free-sets can be
efficiently extracted using pruning strategies developed for frequent item-
set discovery, and that they can be used to approximate the support of
any frequent itemset. Experiments run on real dense data sets show a
significant reduction of the size of the output when compared with stan-
dard frequent itemsets extraction. Furthermore, the experiments show
that the extraction of frequent free-sets is still possible when the extrac-
tion of frequent itemsets becomes intractable. Finally, we show that the
error made when approximating frequent itemset support remains very
low in practice.

1 Introduction

Several data mining tasks (e.g., association rule mining [1]) are based on the
evaluation of frequency queries to determine how often a particular pattern oc-
curs in a large data set. We consider the problem of frequency query evaluation,
when patterns are itemsets, in dense data sets1 like, for instance in the context
of census data analysis [4] or log analysis [8]. In these important but difficult
cases, there is a combinatorial explosion of the number of frequent itemsets and
computing the frequency of all of them turns out to be intractable. In this pa-
per, we present an efficient technique to approximate closely the result of the
frequency queries, and formalize it within the ε-adequate representation frame-
work [10]. Intuitively an ε-adequate representation is a representation of data
that can be substituted to another representation to answer the same kind of
queries, but eventually with some lost of precision (bound by the ε parameter).
First evidences of the practical interest of such representations has been given
in [10,5].
1 e.g., data sets containing many strong correlations.
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In this paper, we propose a new ε-adequate representation for the frequency
queries. This representation called free-sets, is more condensed than the ε-ade-
quate representation based on itemsets [10]. The key intuition of the free-set
representation is the following. Let A, B, C, D represent binary attributes in
a database. If we know that the association rule A, B, C ⇒ D is nearly an
exact rule (i.e., it has only a few exceptions), then we can approximate the
frequency of itemset {A, B, C, D} using the frequency of {A, B, C}. Moreover,
we can approximate the frequency of any itemset X such that {A, B, C, D} ⊆ X
by the frequency of X \ {D}. We call free-set an itemset Y such that the items
in Y can not be used to form a nearly exact association rule. We show that
frequent free-sets are an ε-adequate representation for frequency queries that
can be extracted efficiently, even on dense data sets. We also show that the error
made when approximating itemset frequency using frequent free-sets remains
very low in practice.

Organization of the Paper. In the next section we introduce preliminary defini-
tions used in this paper. In Section 3, we present the notion of free-set, and show
that it can be used as an ε-adequate representation for the frequency queries.
Due to space limitation proofs are omitted. In section 4, we present an algo-
rithm to extract the frequent free-sets. In Section 5, we give practical evidence
that frequent free-sets can be extracted efficiently and that the estimation of the
supports of frequent itemsets using frequent free-sets leads in practice to very
low errors. We review related work in Section 6. Finally, we conclude with a
summary and directions for future work.

2 Preliminary Definitions

When applicable, we use the notational conventions and definitions from [10,11].

2.1 Frequent Sets and Association Rules

In this section we recall standard definitions.

Definition 1 (binary database). Let R be a set of symbols called items. A
row (also called transaction) is a subset of R. A binary database r over R is a
multiset of transactions.

Definition 2 (support and frequency). We note M(r, X) = {t ∈ r|X ⊆ t}
the multiset of rows matched by the itemset X and Sup(r, X) = |M(r, X)| the
support of X in r, i.e., the number of rows matched by X. The frequency of X
in r is Sup(r, X)/|r|. Let σ be a frequency threshold, Freq(r, σ) = {X|X ⊆ R
and Sup(r, X)/|r| ≥ σ} is the set of all σ-frequent itemsets in r.

For notational convenience, we also need the following specific definition.

Definition 3 (frequent sets). FreqSup(r, σ) is the set of all pairs containing
a frequent itemset and its support, i.e., FreqSup(r, σ) = {〈X, Sup(r, X)〉|X ⊆ R
and Sup(r, X)/|r| ≥ σ}.
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2.2 ε-Adequate Representation

Definition 4 (ε-adequate representation [10]). Let S be a class of struc-
tures. Let Q be a class of queries for S. The value of a query Q ∈ Q on a
structure s ∈ S is assumed to be a real number in [0, 1] and is denoted Q(s). An
ε-adequate representation for S w.r.t. a class of queries Q, is a class of structu-
res C, a representation mapping rep : S → C and a query evaluation function
m : Q × C → [0, 1] such that ∀Q ∈ Q,∀s ∈ S, |Q(s) − m(Q, rep(s))| ≤ ε.

Example 1. An example of a class of structures is the set noted DBR of all
possible binary databases over a set of items R. An interesting query class is
QR, the set of all queries retrieving the frequency of an itemset ⊆ R. If we
denote QX the query in QR asking for the frequency of itemset X then QR =
{QX |X ⊆ R} and the value of QX on a database instance r ∈ DBR is defined
by QX(r) = Sup(r, X)/|r|.
An example of ε-adequate representation for DBR w.r.t. QR is the representation
of r ∈ DBR by means of Freq(r, ε). The corresponding rep, C and m are as
follows. ∀r ∈ DBR, rep(r) = FreqSup(r, ε), C = {rep(r)|r ∈ DBR}, ∀QX ∈
QR,∀c ∈ C, if ∃〈X, α〉 ∈ rep(r) then m(QX , c) = α/|r| else m(QX , c) = 0. It is
straightforward to see that this is an ε-adequate representation for DBR w.r.t.
QR since ∀QX ∈ QR,∀r ∈ DBR, |QX(r) − m(QX , rep(r))| ≤ ε.

Interesting ε-adequate representations are condensed representations, i.e., ε-ade-
quate representations where structures have a smaller size than the original
structures.

3 The Free-Sets as a Condensed Representation

Even though this paper do not concerned directly with association rules, we
need the following definitions to introduce the concept of free-set in a concise
way.

Definition 5 (δ-strong rule). Let R be a set of items, an association rule
based on R is an expression of the form X ⇒ Y , where X, Y ⊆ R and X∩Y = ∅.
A δ-strong rule2 in a binary database r over R is an association rule X ⇒ Y
such that Sup(r, X) − Sup(r, X ∪ Y ) ≤ δ, i.e., the rule is violated in no more
than δ rows.

In this definition, δ is supposed to have a small value, so a δ-strong rule is
intended to be a rule with very few exceptions.

2 Stemming from the notion of strong rule of [15]
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3.1 Free-Sets

Definition 6 (δ-free-set). Let r be a binary database over R, X ⊆ R is a
δ-free-set w.r.t. r if and only if there is no δ-strong rule based on X in r. The
set of all δ-free-sets w.r.t. r is noted Free(r, δ).

Since δ is supposed to be rather small, informally, a free-set is a set of items
such that its subsets (seen as conjunction of properties) are not related by any
very strong positive correlation.
One of the most interesting properties of freeness is its anti-monotonicity w.r.t.
itemset inclusion.

Definition 7 (anti-monotonicity). A property ρ is anti-monotone if and only
if for all itemsets X and Y , ρ(X) and Y ⊆ X implies ρ(Y ).

The anti-monotonicity has been identified as a key property for efficient pattern
mining [11,12,6], since it is the formal basis of a safe pruning criterion. Indeed,
efficient frequent set mining algorithms like Apriori [1] make use of the (anti-
monotone) property “to be frequent” for pruning.
The anti-monotonicity of freeness follows directly from the definition of free-set
and is stated by the following theorem.

Theorem 1. Let X be an itemset. For all Y ⊆ X if X ∈ Free(r, δ) then Y ∈
Free(r, δ).

3.2 Free-Sets as an ε-Adequate Representation

We show now that δ-free-sets can be used to answer frequency queries with a
bounded error. The following lemma states that the support of any itemset can
be approximated using the support of one of the free-sets.

Lemma 1. Let r be a binary database over a set of items R, X ⊆ R and
δ ∈ [0, |r|], then there exists Y ⊆ X such that Y ∈ Free(r, δ) and Sup(r, Y ) ≥
Sup(r, X) ≥ Sup(r, Y ) − δ|X|.
This lemma states that the support of an itemset X can be approximated using
the support of one of the free-sets, but it remains to determine which free-set to
use. We now show that this can be done by simply choosing among the free-sets
included in X any free-set with a minimal support value. This is stated more
formally by the following theorem.

Theorem 2. Let r be a binary database over a set of items R, X ⊆ R and
δ ∈ [0, |r|], then for any Y ⊆ X such that Y ∈ Free(r, δ) and Sup(r, Y ) =
min({Sup(r, Z)|Z ⊆ X and Z ∈ Free(r, δ)}) we have Sup(r, Y ) ≥ Sup(r, X) ≥
Sup(r, Y ) − δ|X|.
In practice, computing the whole collection of δ-free-sets is often intractable. We
show now that such an exhaustive mining can be avoided since an ε-adequate
representation to answer frequency queries can be obtained if we extract only fre-
quent free-sets together with a subset of the corresponding negative border [11].



Approximation of Frequency Queries by Means of Free-Sets 79

Definition 8 (frequent free-set). Let r be a binary database over a set of
items R, we noted FreqFree(r, σ, δ) = Freq(r, σ) ∩ Free(r, δ) the set of σ-
frequent δ-free-sets w.r.t. r.

Let us adapt the concept of negative border from [11] to our context.

Definition 9 (negative border of frequent free-sets). Let r be a binary
database over a set of items R, the negative border of FreqFree(r, σ, δ) is
noted Bd−(r, σ, δ) and is defined as follows: Bd−(r, σ, δ) = {X|X ⊆ R, X 6∈
FreqFree(r, σ, δ) ∧ (∀Y ⊂ X, Y ∈ FreqFree(r, σ, δ))}.

Informally, the negative border Bd−(r, σ, δ) consists of the smallest itemsets
(w.r.t. set inclusion) that are not σ-frequent δ-free. Our approximation techni-
que only needs a subset of the negative border Bd−(r, σ, δ). This subset, noted
FreeBd−(r, σ, δ), is the set of all free-sets in Bd−(r, σ, δ).

Definition 10. FreeBd−(r, σ, δ) = Bd−(r, σ, δ) ∩ Free(r, δ)

As in the case of an ε-adequate representation for DBR w.r.t. QR using frequent
itemsets (see Section 2.2), we need the free-sets and their supports.

Definition 11. FreqFreeSup(r, σ, δ) is the set of all pairs containing a fre-
quent free-set and its support, i.e., FreqFreeSup(r, σ, δ) = {〈X, Sup(r, X)〉|X ∈
FreqFree(r, σ, δ)}.

We can now define the ε-adequate representation w.r.t. the frequency queries.

Definition 12. The frequent free-sets representation w.r.t. σ, δ and a query
class Q ⊆ QR, is defined by a class of structures C, a representation mapping
rep and a query evaluation function m, where ∀r ∈ DBR,
rep(r) = 〈FreqFreeSup(r, σ, δ), F reeBd−(r, σ, δ)〉,
C = {rep(r)|r ∈ DBR},
∀QX ∈ Q,∀c ∈ C, if ∃Y ∈ FreeBd−(r, σ, δ), Y ⊆ X then m(QX , c) = 0 else
m(QX , c) = min({α|∃Z ⊆ X, 〈Z, α〉 ∈ FreqFreeSup(r, σ, δ)})/|r|.
Using this representation, the frequency of an itemset X is approximated as
follows. If X has a subset Y which is free but not frequent then the frequency
of X is considered to be 0. Otherwise we take the smallest support value among
the supports of the subsets of X that are free and frequent.
We now establish that this representation is an ε-adequate representation for the
following database class and query class.

Definition 13. DBR,s = {r|r ∈ DBR and |r| ≤ s}, i.e., the set of all binary
databases having no more than s rows. QR,n = {QX |X ⊆ R and |X| ≤ n}, i.e.,
the set of frequency queries on itemsets having no more than n items.

Theorem 3.
A frequent free-sets representation w.r.t. σ, δ and a query class QR,n is an
ε-adequate representation for DBR,s w.r.t. QR,n where ε = max(σ, nδ/s).
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4 Discovering All Frequent Free-Sets

In this section, we describe an algorithm, called MinEx , generating all frequent
free-sets. For clarity, we omit the fact that it outputs their supports as well.
Implementation issues are presented in Section 4.2.

4.1 The Algorithm – An Abstract Version

MinEx can be seen as an instance of the levelwise search algorithm presented
in [11]. It explores the itemset lattice (w.r.t. set inclusion) levelwise, starting
from singletons and stopping at the level of the largest frequent free-sets. More
precisely, the collection of candidates is initialized to the collection of all sets
of size 1 and then the algorithm iterates on candidate evaluation and larger
candidate generation. At the ith iteration of this loop, it scans the database to
find out which candidates are frequent free-sets. Then, it generates candidates
for the i+1th iteration, taking every set of size i+1 such that all proper subsets
are frequent free-sets. The algorithm finishes when there is no more candidates.

Algorithm 1
Input: r a binary database over a set of items R, σ and δ two thresholds.
Output: FreqFree(r, σ, δ)

1. C1 := {{A}|A ∈ R};
2. i := 1;
3. while Ci 6= ∅ do
4. FreqFreei := {X|X ∈ Ci and X is a σ-frequent δ-free-set};
5. Ci+1 := {X|X ⊆ R and ∀ Y ⊂ X, Y ∈ ⋃

j≤i FreqFreej} \ ⋃
j≤i Cj;

6. i := i + 1;
7. od;
8. output

⋃
j<i FreqFreej;

Using the correctness result of the levelwise search algorithm given in [11] the
following theorem is straightforward.

Theorem 4 (Correctness). Algorithm MinEx computes the sets of all σ-
frequent δ-free-sets.

4.2 Implementation Issues

We used techniques similar to the ones described in [2] for frequent itemsets
mining. The candidate generation is made using a join-based function, and the
itemset support counters are updated w.r.t. a row of the database using a prefix-
tree data structure.
The key point that needs a new specific technique is the freeness test in step 4
of the algorithm. An efficient computation of this test can be done, based on the
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following remark: Z is not a δ-free-set iff there exists A ∈ Z and X = Z\{A} such
that X is not δ-free or X is δ-free and X ⇒ {A} is a δ-strong rule. Furthermore,
the step 5 of the algorithm guarantees that if Z is a candidate, X, which is a
subset of Z, must be δ-free. Therefore, during the ith iteration, we might first
compute the δ-strong rules of the form X ⇒ {A} where X ∈ FreqFreei and
A ∈ R \ X and then use them to remove candidates in Ci+1 that are not δ-free.
Thus, at the begining of an iteration, only free-sets are candidates.
This is incorporated in the algorithm by replacing steps 4 and 5 with the follo-
wing steps:

4.1 FreqFreei := {X|X ∈ Ci and X is a σ-frequent};
4.2 N otFreei+1 := {Z|Z = X ∪ {A} where X ∈ FreqFreei, A ∈ R \ X

and X ⇒ {A} is a δ-strong rule } ;
5.1 Cg

i+1 := {X|X ⊆ R and ∀ Y ⊂ X, Y ∈ ⋃
j≤i FreqFreej} \ ⋃

j≤i Cj ;
5.2 Ci+1 := Cg

i+1 \ N otFreei+1;

and the step 1 with the following initialization step:

1. C1 := {{A}|A ∈ R and ∅ ⇒ {A} is not a δ-strong rule };

More details on this technique can be found in [7], where it is shown in particular
that steps 4.1 and 4.2 can be computed efficiently within the same database scan.

5 Experiments

The running prototype is implemented in C++. We use a PC with 512 MB of
memory and a 500 MHz Pentium III processor under Linux operating system.
For an experimental evaluation, we chose the pumsb* data set, a PUMS census
data set3 preprocessed by researchers from IBM Almaden Research Center. The
particularity of PUMS data sets is that they are very dense and make the mining
of all frequent itemsets together with their supports intractable for low frequency
thresholds, because of the combinatorial explosion of the number of frequent
itemsets [4].

5.1 Frequent Free-Sets vs. Frequent Sets Condensation

Table 1 shows a comparison of the extraction of frequent sets and frequent free-
sets for different frequency thresholds and different values of δ. The collections
FreqFree(r, σ, δ) are significantly smaller than the corresponding Freq(r, σ). For
frequency thresholds of 15% and 20% Freq(r, σ) is so large that it is clearly im-
possible to provide it on our platform, while the extraction of FreqFree(r, σ, δ)
remains tractable. For this two frequency thresholds of 15% and 20%, we use
lower-bound estimations of |Freq(r, σ)|. These lower-bounds are computed using
the δ-strong rules collected by MinEx (see Section 4.2) to find the size of the
3 http://www.almaden.ibm.com/cs/quest/data/long patterns.bin.tar
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Sizes of different representations
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Fig. 1. Extraction time and sizes of different representations.

largest frequent itemset. If this size is m then there is a least 2m frequent item-
sets. Figure 1 (left) emphasizes, using logarithmically scaled axes, the difference
of the size of the various representations.
Using also logarithmically scaled axes, Figure 1 (right) shows that the extraction
time for MinEx grows up exponentially when the frequency threshold is reduced.
This is due to the combinatorial explosion of the number of frequent free-sets.
Apriori-based algorithms have the same global exponential evolution of the
extraction time, due in this case to the combinatorial explosion of the number
of frequent sets.

Table 1. Comparison of different representations at various frequency thresholds.

σ 15% 20% 25% 30%
δ 0 10 20 0 10 20 0 10 20 0 10 20

Max frequent free-set
size (≈MIN-EX DB scans)

12 11 10 12 10 9 11 9 9 10 9 8

|FreqFree(r, σ, δ)| 909 806 324 743 232 887 253 107105 615 76 413 78 220 36 310 27 137 26 972 14 631 11 079

FreqFree(r, σ, δ)
extraction time (sec.)

11 977 6 590 5 126 4 233 2 342 1 890 1 540 905 731 533 373 302

Max frequent set size
(≈APRIORI DB scans)

35 32 18 16

|Freq(r, σ)| >235 >232 2 064 946 432 699

5.2 Scale-Up Experiment

On figure 2 we report the extraction time (for σ = 20%) when changing the
number of rows or the number of items in the data set. We observe an exponential
complexity w.r.t. the number of items and a linear complexity w.r.t. number of
rows in the data set if the value of δ follows the number of tuples (e.g., if we
double the number of rows then we double the value of δ). This is emphasized
by a superimposed straight line on figure 2 (left).

5.3 Approximation Error in Practice

In this experiment, we report the practical error made on σ-frequent itemset
supports when using the approximation based on σ-frequent δ-free-sets. The data
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Fig. 2. Behavior of MinEx w.r.t. the number of rows and the number of items.

set is a PUMS data set of Kansas state4. We use a version of this data set that
has been preprocessed at the University of Clermont-Ferrand (France) in Prof.
L. Lakhal’s research group. We have reduced this data set to 10000 rows and 317
items to be able to extract all σ-frequent itemsets at a low frequency threshold.
For σ = 0.05 (500 rows), there are 90755 σ-frequent sets and the largest has n =
13 items. As a condensed representation, we computed FreqFreeSup(r, 0.05, 6)
which contains 4174 elements.
Theoretical error bounds on the frequent set support can be determined using
Theorem 2 as follows. In this experiment, the maximal absolute support error
is δ ∗ n = 6 ∗ 13 = 78 rows. The maximal relative support error can be obtained
assuming that the maximal theoretical absolute error occurs on the σ-frequent
set of minimal frequency (i.e. σ). So, the maximal relative support error is δ ∗
n/(N ∗ σ) = 15.6% (N = 10000 rows in the experiment).
The support of each of the 90755 σ-frequent itemsets is approximated using the
collection FreqFreeSup(r, 0.05, 6) and Theorem 2 and then compared to the
exact support. The maximal absolute support error is 18 rows, and the maximal
relative support error is 3.1%. The average absolute support error is 2.12 rows
and the average relative support error is 0.28%. Table 2 shows that this error
remains very low even for frequent sets containing a lot of items.

Table 2. Error observed on σ-frequent itemset supports by itemset size.

itemset size 1 2 3 4 5 6 7 8 9 10 11 12 13
average abs. sup. error 0 0.24 0.65 1.10 1.53 1.92 2.31 2.75 3.28 3.9 4.58 5.2 5.5
average rel. sup. error 0 0.03% 0.07% 0.13% 0.18% 0.24% 0.31% 0.38% 0.47% 0.58% 0.71% 0.83% 0.88%

4 ftp://ftp2.cc.ukans.edu/pub/ippbr/census/pums/pums90ks.zip
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6 Related Work

Using incomplete information about itemset frequencies for some mining task,
e.g., rule mining, has been proposed in [10], and formalized in the general fra-
mework of ε-adequate representations. Probabilistic approaches to the problem
of frequency queries have also been investigated (see [14]).
Several search space reductions based on nearly exact (or exact) association rules
have been proposed. The use of the nearly exact association rules to estimate the
confidence of other rules and then to prune the search space has been suggested
in [3] but not investigated nor experimented. Efficient mining of nearly exact
rules (more specifically rules with at most δ exceptions) with a single attribute
in both the left and the right hand sides has been proposed in [9]. Search space
pruning using exact association rules has been experimented in [3] in the context
of rule mining and developed independently in the context of frequent itemsets
mining in [13]. [13] implicitely proposes a kind of condensed representation called
closed itemsets which is strongly related to the notion of δ-free-set when δ = 0.

7 Conclusion and Future Work

We proposed a structure called free-sets that can be extracted efficiently, even
on dense data sets, and that can be used to approximate closely the support
of frequent itemsets. We formalized this approximation in the framework of ε-
adequate representations [10] and gave a correct extraction algorithm formulated
as an instance of the levelwise search algorithm presented in [11].
We reported experiments showing that frequent free-sets can be extracted even
when the extraction of frequent itemsets turns out to be intractable. The ex-
periments also show that the error made when approximating the support of
frequent itemsets using the support of frequent free-sets remains very low in
practice.
Interesting future work includes applications of the notion of free-set to the
discovery of association rules with approximated confidence and support, and to
the approximation of boolean formula support as investigated in [10].
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