
Jean-François Boulicaut and Sašo Džeroski, editors

Proceedings of the 2nd International
Workshop on Knowledge Discovery
in Inductive Databases (KDID-2003)

Cavtat/Dubrovnik, Croatia, 22 September 2003

The 14th European Conference on Machine Learning and
The 7th European Conference on Principles and Practice
of Knowledge Discovery in Databases
(ECML/PKDD-2003)

Foreword

The 2nd International Workshop on Knowledge Discovery in Inductive Databases
(KDID-2003) was held in Cavtat/Dubrovnik, Croatia, on 22 September 2003 as
part of the 14th European Conference on Machine Learning and the 7th Euro-
pean Conference on Principles and Practice of Knowledge Discovery in Databases
(ECML/PKDD-2003).

Ever since the start of the field of data mining, it has been realized that the
data mining process should be supported by database technology. In recent years,
this idea has been formalized in the concept of inductive databases introduced
by Imielinski and Mannila in a seminal paper that appeared in CACM 1996 (Vol.
39, Issue 11, pages 58-64). Inductive databases are databases that, in addition
to data, also contain generalizations, i.e., patterns, or models extracted from
the data. Within the inductive database framework KDD is modelled as an
interactive process in which users can query both data and patterns/models to
gain insight about the data. To this aim a so-called inductive query language
is used. Very often inductive queries impose constraints on the patterns/models
of interest (e.g. w.r.t. frequency, syntax, generality, accuracy, significance). This
constraint-based approach to data mining is also closely related to the issue
of declarative bias in machine learning, e.g., to syntactic bias, which imposes
certain (syntactic) constraints on the patterns learned.

Today, a number of specialized inductive query languages have already been
proposed and implemented (e.g., MINE RULE by Meo et al., MSQL by Imielin-
ski et al., DMQL by Han et al.). Most of these inductive query languages ex-
tend SQL and concern mainly local patterns like descriptive rules. Recently the
database community has also become interested in the use of XML (eXtensible
Markup Language), which has rapidly become an important standard for repre-
senting and exchanging information through its applications. Thus, developing
XML aware data mining techniques and query languages is also a significant part
of the research. Beside these query language proposals, a large body of research
work looks for the key concepts to be used in inductive databases. On the one
hand, this includes the many types of constraints that have been employed, and
on the other hand, the many efficient algorithms for solving constraint-based
queries (e.g., the level-wise algorithm, the version space algorithm, condensed
representations). Also, there exists a large body of research on database tech-
niques that enable and optimize the data mining process. This includes various
new database primitives that have been suggested, e.g., to efficiently compute
statistics needed by data mining algorithms.

Despite these many contributions, we are still far away from a deep un-
derstanding of the issues in inductive databases. In this respect, one can see
an analogy with the state-of-the-art in databases in the early seventies. Today,
there exist many different approaches and implementations of data mining sys-
tems but our theoretical understanding is still imperfect. In a sense, we are still
looking for the equivalent of Codds relational database theory for data mining.

Given the many recent developments in the area of inductive databases and
constraint-based mining, it was timely to organise this second international
workshop. The first workshop of the series, KDID-02, organised in conjunc-
tion with ECML/PKDD-2002 in Helsinki, Finland, (Helsini), attracted around
35 participants and many interesting contributions; see the workshop web site
at http://www.cinq-project.org/ecmlpkdd2002/ for details. The aim of this
workshop was to bring together researchers and practitioners of data mining
interested in inductive databases constraint-based data mining and data mining
query languages.

A non-exclusive list of topics from the call for papers is as follows:

– Query languages for data mining

– Constraint-based data mining

– Pattern domains and primitives for data mining

– Declarative bias formalisms in machine learning

– Version spaces and boundary set representations

– Database support, coupling and primitives for data mining

– Coupling of database and data mining systems

– Integration of database languages such as SQL and XML with data mining

– Specific and application-oriented inductive databases

The scientific program of the workshop included 10 papers and an invited
talk by Minos Garofalakis. We wish to thank the invited speaker, all the authors
who submitted their papers to KDID-2003, the PC members for their help in the
reviewing process, and the ECML/PKDD organizing committee for help with
local organization.

Lyon/Ljubljana Jean-François Boulicaut
Sašo Džeroski

July 2003

This workshop was supported by the European Union project cInQ IST-
2000-26469 funded by the Future and Emerging Technologies arm of the IST
Programme. The partners of cInQ (consortium on discovering knowledge with
Inductive Queries) are Jozef Stefan Institute (Slovenia), Nokia Research Center
(Helsinki, Finland), University of Freiburg (Germany), Politecnico di Milano
(Italy), University of Torino (Italy), and INSA Lyon (France).

Chairs

Jean-François Boulicaut
INSA Lyon, LIRIS CNRS FRE 2672, Batiment Blaise Pascal
F-69621 Villeurbanne cedex, France
Email: Jean-Francois.Boulicaut@insa-lyon.fr,
URL: http://lisi.insa-lyon.fr/~jfboulic/

Sašo Džeroski
Department of Intelligent Systems, Jožef Stefan Institute
Jamova 39, SI-1000 Ljubljana, Slovenia
Email: Saso.Dzeroski@ijs.si, URL: http://www-ai.ijs.si/SasoDzeroski/

Organizing Committee

Jean-François Boulicaut, co-chair (INSA-Lyon, France)
Luc De Raedt (University of Freiburg, Germany)
Sašo Džeroski (Jožef Stefan Institute, Slovenia)
Mika Klemettinen (Nokia Research Center, Helsinki, Finland)
Rosa Meo (Universitá di Torino, Italy)

Program Committee

Elena Baralis (Politecnico di Torino, Italy)
Marco Botta (Universitá di Torino, Italy)
Jean-François Boulicaut, co-chair (INSA-Lyon, France)
Stefano Ceri (Politecnico di Milano, Italy)
Luc De Raedt (University of Freiburg, Germany)
Sašo Džeroski, co-chair (Jožef Stefan Institute, Slovenia)
Bart Goethals (HIIT-BRU, Finland)
Mika Klemettinen (Nokia Research Center, Finland)
Krzysztof Koperski (Insightful Corporation, USA)
Stefan Kramer (Technische Universität Muenchen, Germany)
Pier Luca Lanzi (Politecnico di Milano, Italy)
Dominique Laurent (University of Tours, France)
Giuseppe Manco (ICAR-CNR, Italy)
Heikki Mannila (Helsinki University of Technology / HIIT-BRU, Finland)
Rosa Meo (Universitá di Torino, Italy)
Jian Pei (SUNY at Buffalo, USA)
Christophe Rigotti (INSA-Lyon, France)
Lorenza Saitta (Amedeo Avogadro University, Eastern Piedmont, Italy)
Hannu TT Toivonen (University of Helsinki, Finland)
Jeff D. Ullman (Stanford University, USA)
Jiong Yang (University of Illinois at Urbana Champaign, USA)
Philip S. Yu (IBM T.J. Watson Research Center, USA)
Mohammed Zaki (Rensselaer Polytechnic Institute, USA)

Table of Contents

Constraint-Based Model Mining: Algorithms and Applications (invited talk)
M. Garofalakis . 1

A Framework for Frequent Sequence Mining
under Generalized Regular Expression Constraints
H. Albert-Lorincz and J.-F. Boulicaut . 2
MR-SMOTI: A Data Mining System for Regression Tasks
Tightly-Coupled with a Relational Database
A. Appice, M. Ceci, and D. Malerba . 17

Inductive Databases of Polynomial Equations
S. Džeroski, L. Todorovski, and P. Ljubič . 28

Towards Optimizing Conjunctive Inductive Queries
J. Fischer and L. De Raedt . 44

What You Store is What You Get
F. Geerts, B. Goethals, and T. Mielikäinen . 60

Queryable Lossless Log Database Compression
K. Hätönen, P. Halonen, M. Klemettinen, and M. Miettinen 70

An Algebra for Inductive Query Evaluation
S. D. Lee and L. De Raedt . 80

Finding All Occurring Patterns of Interest
T. Mielikäinen . 97

Mining Concepts from Large SAGE Gene Expression Matrices
F. Rioult, C. Robardet, S. Blachon, B. Crémilleux, O. Gandrillon, and
J.-F. Boulicaut . 107

Generalized Version Space Trees
U. Rückert and S. Kramer . 119

Constraint-Based Model Mining: Algorithms
and Applications (invited talk)

Minos Garofalakis

Bell Labs
600 Mountain Avenue

Murray Hill, NJ 07974, USA.
minos@research.bell-labs.com http://www.bell-labs.com/ minos/

Abstract. Extracting interesting models from large amounts of data is
typically a rather expensive, iterative process that is often characterized
by a lack of focus on the specific models of interest to individual users.
Exploiting user-defined model constraints during the mining process can
significantly reduce the required computational effort and ensure system
performance that is commensurate with the level of user focus. Attaining
such performance goals, however, is not straightforward, often mandating
the design of novel mining algorithms that can make effective use of the
model constraints. In this talk, I will try to provide an overview of recent
work and results on scalable, constraint-based data-mining algorithms. I
will also discuss some interesting applications of such techniques, includ-
ing our own work on model-based semantic compression tools for massive
data tables. Finally, I will provide some (personally-biased) directions for
future research in this area and (time permitting) touch upon problems
in the evolving field of data-stream mining.

A framework for frequent sequence mining under
generalized regular expression constraints

Hunor Albert-Lorincz and Jean-François Boulicaut

INSA Lyon LIRIS CNRS FRE 2672 - Bâtiment Blaise Pascal

F-69621 Villeurbanne Cedex, France
{Hunor.Albert-Lorincz@insalien.org, Jean-Francois.Boulicaut@ insa-lyon.fr}

Abstract. This paper provides a framework for the extraction of frequent
sequences satisfying a given regular expression (RE) constraint. We take
advantage of the information contained in the hierarchical representation of an
RE by abstract syntax trees (AST). Interestingly, pruning can be based on the
anti-monotonicity of the minimal frequency constraint, but also on the RE
constraint, even though this latter is generally not anti-monotonic. The AST
representation enables to examine the decomposition the RE and to choose
dynamically an adequate extraction method according to the local selectivity
of the sub REs. Our algorithm, RE-Hackle, explores only the candidate space
spanned over the regular expression, and prunes it at each level. Due to the
dynamic choice of the exploration method, this algorithm surpasses its
predecessors. We provide an experimental validation on both synthetic data
and a real genomic sequence database. Furthermore, we show how this
framework can be extended to regular expressions with variables providing
context-sensitive specification of the desired sequences.

1. Introduction
Frequent sequential pattern mining in a database of sequences is an important
data mining technique [1,11]. Its application domains span from the analysis of
biological data to the discovery of WWW navigation paths or alarm analysis. In
most of these applications, the lack of user control in specifying the interesting
patterns beforehand leads to intractable extraction or costly post-processing
phases. Considering other user-defined constraints, in conjunction with the
minimal frequency constraint, has been proved useful [10,3,12,9]. Not only it
limits the number of returned patterns but also it can reduce extraction cost to an
acceptable extent. In this paper, we consider constraints expressed by regular
expressions (RE). Thanks to REs, the user can specify the language of desired
patterns in a rather flexible way. We consider that a sequence (or string) is an
ordered list of items taken from a finite alphabet A. ||S|| denotes the length of S,
i.e., the number of items it contains. A database of sequences (D) is an unordered
collection of sequences. S’= s’1s’2...s’m is called a sub-sequence of S = s1 s2 ... sn
(m<n) if ∃ k s.t. s’1 s’2 ... s’m = sk+1 sk+2 ... sk+m . The frequency of a sequence S
Freq(S,D) is the number of the sequences S’ in D s.t. S is a sub-sequence of S’.
Problem statement: Given a database D, a regular expression E and a positive
integer minsup, find all the sequences S which satisfy the following properties:

• Freq(S,D) ≥ minsup
• S ∈ L(E), L(E) being the language specified by the regular expression E.

Constraint-based mining is difficult. Efficient algorithms are often ad-hoc, i.e.,
they are optimized for specific constraints and/or a specific kind of data. Several
algorithms exploit efficiently the minimal frequency constraint thanks to its anti-
monotonicity [1,6,4,8,11]. Pushing constraints that involve other user-defined
constraints has been studied as well, e.g., in [3,11,9,7]. A RE-constraint is
generally neither anti-monotonic nor monotonic and thus can not be used directly
for pruning the search space. Furthermore, if a non anti-monotonic (nAM)
constraint is “pushed” inside an extraction algorithm, the requirement that the
sequences must satisfy both the minimal frequency and the nAM constraint can
lack of pruning [3]. To tackle RE-constraints, the authors of the SPIRIT
algorithms have proposed in [3] several relaxations of RE constraints. These
relaxations have led to four ad-hoc algorithms that use different pruning strategies
and perform unequally depending on the selectivity1 of the constraint. In other
terms, the choice of a given SPIRIT algorithm must be based on the selectivity of
the RE constraint which is a priori unknown. We would like a robust algorithm
which depends weakly of the selectivity of the constraint and the characteristics
of the data, i.e., an algorithm which would consider the individual selectivity of
the sub-expressions and choose the best pruning strategy during the extraction
according to the sequences in the database. This would be a major step towards
efficient sequence mining for many application domains.
We proposed in [2] the RE-Hackle (Regular Expression-Highly Adaptive Local
Extraction) framework. It is based on a hierarchical abstract syntax tree (AST) of
the RE that can collect much more information on the local properties of the
constraint than the previous methods based on Finite State Automata [3]. The
collected information is used to examine each sub-expression of the initial RE
and the RE-Hackle algorithm chooses the extraction strategy to favor pruning on
the minimal frequency constraint or on the RE-constraint. For that purpose,
candidate sequences are assembled during a bottom-up processing of the AST.
Each node of this tree, the Hackle-tree, encodes a part of the RE and, when the
algorithm reaches a node, it has information about the frequent sequences
generated by its sub-tree. The number of these sequences, the structure of the tree
in the neighborhood of the node and global information such as the cost per
candidate evaluation and per database scan can be used to determine a candidate
generation strategy and to optimize the execution time.

The contribution of this paper is threefold. We provide an introduction to the RE-
Hackle algorithm defined in [2] and we introduce a new optimization technique
based on Hackle-trees. Also, we provide experimental results on both synthetic
data and real biological data that were missing from [2]. It shows that our
algorithm adapts dynamically its pruning strategy and tends to take the shape of
the best SPIRIT algorithm without any prior knowledge of constraint selectivity.
Finally, we show that the framework can be extended to regular expressions with
variables. Adding variables clearly increases the expressive power of the
exploration language and reaches beyond the scope of context free grammars.

1 Selectivity is an intuitive characterization of REs which is roughly speaking inversely
proportional to the number of sequences in the database that match the initial constraint.

The paper is organized as follows. Section 2 provides the needed definitions. The
RE-Hackle basic algorithm is described in Section 3. An original optimization
technique is described in Section 4. Section 5 overviews the experimental results
and it compares RE-Hackle to our fair implementation of two SPIRIT algorithms.
Section 6 introduces an extension of the framework to regular expressions with
variables. Section 7 concludes.

2. Definitions
A RE constraint in a kind of a regular expression built over an alphabet of
sequences using the following operators: union (denoted +), concatenation
(denoted ¤k and sometimes “.” when k is 0) and Kleene closure (denoted *). The
empty set and the empty sequence are noted Ø and ε.
The k-telescoped concatenation of two sequences S=s1 s2 ...s||s|| and P= p1 p2 ...p||P||
is a new sequence. This operator requires that the sequences overlap in k
positions. When k is zero, we get the usual concatenation. It is used for candidate
generation.

Op¤k(S, P)= S ¤k P = { s1 s2 ... s||s||-k p1 p2 ...p||p||} if for all 0<j≤k we have
pj=s||s||-k+j and ||S|| > k and ||P|| > k. If ∃ 0<j≤k s.t. pj<>s||s||-k+j Op¤k(S, P)=ε.
Concatenating two sets of sequences {S1, S2, …, Sn} and {P1, P2, …, Pm} gives a
new set of sequences that contains all the sequences resulting from the Cartesian
product of the sequences from the two sets.
 {S1, …, Sn} ¤k {P1,…, Pm} = { Si ¤k Pj | 0<i ≤ n et 0<j ≤ m}
The k-telescoped concatenation of n sequences S1, S2, …, Sn is:
 Op¤k(S1, S2,…, Sn) = Op¤k(S1, Op¤k(S2,…, Sn))
E.g., Op¤3(ACDE,CDEF,DEFD) = Op¤3(ACDE,Op¤3(CDEF, DEFD)) =
Op¤3(ABCD,CDEFD) = ACDEFD.
The union of n sequences S1, S2, … Sn is the set of sequences:

Op+(S1, S2,…, Sn) = {S1, S2, …, Sn)}
The union of two sets of sequences is the union of these sets:

{S1,…, Sn} + {P1,…, Pm} = {S1,…, Sn, P1,…, Pm}
The Kleene closure applies to a set of sequences and denotes all the sequences
one can build from them using concatenations. It includes the empty set Ø.
 Op*{S1,…, Sn} = { Ø, {S1, …, Sn} ¤k {S1, …, Sn},
 Op*({S1,…, Sn} ¤k {S1,…, Sn}, S1,…, Sn)}
Moreover, the function frequent applied to a set of sequences {S1,…, Sn} scans
the database and returns a set that contains the frequent sequences.
The operators have a variable arity. The priority increases from + to ¤k and from
¤k to *. The concatenation can be distributed over the union. The union and the
concatenation are associative. When all the possible concatenations have taken
place, the resulting sequence is called an atomic sequence. Consider the RE-
constraint B.CD.E.A(H+F) which can be transformed into BCDEA(H+F) by 3
concatenations. According to our definition, BCDEA is a newly formed atomic

sequence. H and F were already atomic sequences as they cannot be concatenated
to their neighbors, but B, CD, E and A are not as they can be packed together to
form a longer sequence. The building bricks of our RE-constraints are the atomic
sequences, i.e., the smallest elements considered during the extraction phase.

Canonical form We say that a regular expression is in a canonical form if it
contains only atomic sequences. In the following, we assume that all the REs are
in the canonical form.

Examples of RE-constraints and their associated derivation phrases:
A+BE+CF+D = Op+(A, BE, CF, D)
A(B)*(CF+D) = Op¤0(A, Op*(B), Op+(CF,D))

Sub-constraints are taken from the initial RE-constraint: they correspond to terms
of the derivation phrase. Extraction must not break the priorities of the operators.
E.g., B+C can not be extracted from A¤0B+C as the priority of the concatenation
prevails over the union. Besides, a sub-constraint must contain as many terms as
the arity of the operator in the initial constraint. A maximal sub-constraint is a
sub-constraint, which is not contained in any other sub-constraint except the
initial constraint. E.g., A¤0B+C has two maximal sub-constraints: A¤0B and C.
The maximal sub-constraints naturally define partitions over the initial RE. The
active operator connects the maximal sub-constraints of a given constraint. E.g.,
the active operator for A¤0B+C is the union.

Hackle-tree. A Hackle-tree is an AST which encodes the structure of the
canonical form of a RE-constraint. Every inner node of this tree corresponds to an
operator, and the leaves contain atomic sequences of (possibly) unequal lengths.
The tree reflects the way in which these atomic sequences are assembled by the
operators to form the initial RE-constraint. Figure 1 provides such a tree for the
RE-constraint C((C(A+BC)D)+(A+B+C)*)C. Nodes are marked with roman
numbers to support the discussion. Attributes associated to each node have been
described in [2] and are given in the following table:

Attribute Semantics
type Type of the node: ⊥ leaf, ¤ concatenation, + union, * Kleene closure.

siblings List of the siblings. NULL for the leaves.
parent Parent of the node. NULL for the root.
ξth ,ξexp Theoretical and experimental cardinality of the node.
items Frequent legal sequences found by the node.
state Unknown – The exploration of the node has not yet begun.

Satisfied – Exploration has found frequent legal sequences.
Violated – The node did not generated a frequent sequence.

explored Coupled to the attribute State. True if the exploration is completed.
K Parameter for the k-telescoped concatenation: ¤k

age Only for Kleene closures: counts the times the node has been visited.
seq Only for the leaves: encoded atomic sequence or symbol.

The construction of the tree is not trivial. The RE has to be transformed in its
canonical form and arities have to be computed from the number of the maximal
sub-constraints. Then a node is created for the active operator as well as a sibling

for each maximal sub-constraint, which is expanded recursively. This method
minimizes the height of the tree and can be encoded efficiently.

The intuitive notion of selectivity can be formalized using cardinalities [2]. The
theoretical cardinality of a constraint is the number of sequences it can generate
after the expansion of all the operators if every possible sequence is in the
database. The experimental cardinality of a constraint is the number of sequences
extracted from the database. While the theoretical cardinality refers only to the
constraint, the experimental cardinality takes into account the database instance,
i.e., the results of the counting phases.

Figure 1 Hackle-tree encoding constraint C((C(A+BC)D)+(A+B+C)*)C.

The extraction phrase Ψ is the list of the nodes one must examine at a given step.
The whole extraction process is controlled by this phrase: its modification defines
a new generation and thus a new database scan. When the extraction starts,
Ψ contains all the leaves of the tree collected from left to right. It is updated after
each database scan by replacing the explored nodes with their parents.

The extractor functions (denoted C) are applied to the nodes of the Hackle-tree,
and return the candidates that have to be counted. They are defined as follows:

• Leaves: C(N) = N.seq
• Concatenation: all siblings of N must be explored,

C(N) = ¤k M.items, for all M∈N.siblings , k comes from the
node N

• Union: all siblings of N must be explored,
 C(N) = ∪ M.items, for all M∈N.siblings

• Kleene closure: the sub-tree of N must be explored,
 U

0

age)C(N,C(N)
>

=
age

 with C(N,age+1)=¤age-1frequent{C(N,age)}and C(N,1)=N.siblings.items

3. The RE-Hackle Algorithm
RE-Hackle extracts all the frequent sequences which match a given regular
expression, i.e., which are valid w.r.t. the root of its Hackle-tree. Details about the
basic algorithm are given in [2]. Here, we just provide informal comments that
enable to introduce our new optimization and the extension to RE-constraints
with variables. The algorithmic schema is as follows (T is a Hackle-tree, E a RE-
constraint, Ψ the extraction phrase, and C the set of candidates):

 T ← BuildTree (E)
loop Ψ ← BuildExtractionPhrase (T)

C ← GenerateCandidates (Ψ)
CountCandidates (C)
T ← TransformTree (T)

while Ψ<>Ø and C<>Ø
return T.root.items

Extraction relies on the extraction phrase. It starts at the leaves of the Hackle-tree
and lasts several generations. At every generation, the extraction functions are
applied to the nodes in the extraction phrase; the algorithm counts the candidates
and uses the frequent ones to feed the next generation (an upper level) which will
be assembled by the new nodes of the updated extraction phrase. It is a levelwise
algorithm in the structured space of the language associated to the RE-constraint.
The number of the levels is limited by the height of the Hackle-tree plus the
number of times Kleene nodes are evaluated. As candidates are built up from
atomic sequences, it takes usually less database scans than GSP-like algorithms
[1]. The Hackle-tree is transformed after each generation, e.g., for pruning
branches which can no longer generate new candidates.

Let us comment an execution of the algorithm given the following database, a
minimal frequency of 2, and the RE-constraint from Figure 1.

ID Sequences
1 CCADCABC
2 ECBDACC
3 ACCBACFBAC
4 CCBAC

The extraction needs for 7 generations and 6 database scans.
1st Generation

Ψ1 = II,X,XV,XVI,VIII,XII,XIII,XIV,IV
Candidates: A, B, C, D, BC
Frequent sequences: A, B, C, D

BC is not frequent and the algorithm prunes Node XVI.
2nd Generation

Ψ2 = VI,VII
Candidates: AA, AB, AC, BA, BB, BC, CA, CB, CC
Frequent sequences: AB, AC, BA, CB, CC

Ψ2’= XI,IX would have been the application of the defined principle: the
substitution of Nodes XV and XVI by XI and the substitution of Nodes XII, XIII
and XIV by IX. In fact, as unions never need to access the database, the algorithm
replaces them with their nearest concatenation or Kleene closure parent during an
intermediate generation. It is not necessary to compute explicitly Ψ2’. While
processing Ψ2, no frequent sequence has been found at node VII, so it is erased
from the tree. Its parent, the node V, can be pruned too thanks to the anti-
monotonicity of the minimal frequency constraint.
3rd Generation

Ψ3 = VI (age=1)
Candidates: ABA, ACB, ACC, BAB, BAC, CBA, CCB, CCC
Frequent sequence: ACC, BAC, CBA, CCB

A Kleene Closure node remains in the extraction phrase while it continues to
generate frequent sequences.
4th Generation

Ψ4 = VI (age=2)
Candidates: ACCB, BACC, CBAC, CCBA
Frequent sequences: CBAC, CCBA

ACC ¤2 CCB = ACB. Parameter k of the concatenation is given by the age of the
Kleene node.
5th Generation

Ψ5 = VI (age=3)
Candidates: CCBAC Frequent sequences: CCBAC

6th Generation
Ψ6 = VI (age=4)
Candidates: - Frequent sequences: -

No candidate to count since CCBAC ¤4 CCBAC = ε.
7th Generation

Ψ7 = I
Candidates: CC, CAC, CBC, CCC, CABC, CACC, CBAC, CCAC, CCBC,
CCCC, CACCC, CBACC, CCBAC, CCCBAC, CCBACC, CCCBACC
Frequent sequences: CC, CBAC, CCBAC

The Kleene closure returns every frequent combinations of A and B, plus the
empty sequence. The root assembles them to C and generates the result, i.e., the
frequent items associated to the root. Notice that the candidates of the kth
generation are not necessarily of length k.
Let us now discuss the processing of the Kleene closure nodes thanks to second-
level alphabets. For each atomic sequence of a constraint, we are defining a new
symbol which replaces it in an equivalent second-level RE-constraint. For
example, the RE-constraint A(AB|FE)DCA becomes A(α|β)χ given the new
symbols α=AB, β=FE and γ=DCA. Every initial symbol such as A is added
automatically to the second-level alphabet. The RE-Hackle algorithm works with
second-level alphabets.

The nodes corresponding to the Kleene closures collect the frequent sequences
extracted by their descendents. These sequences of unequal length must be
combined at later ages to compute the closures.
By definition, the age of a Kleene closure is the number of times it has been
visited (it begins with 1). Assume that A, ADC and BAD have been found frequent
by the siblings of a Kleene node, it means that the closure of {A,ADC,BAD} must
be computed. The candidates should be {AA, AADC, ABAD, ADCA, ADCADC,
ADCBAD, BADA, BADADC, BADBAD}. Assume now that all of them are
frequent. At the third age, the node must concatenate only the sequences, which
share a common sub-sequence of the first generation, i.e., A, ADC or BAD. For
example, even though ABAD and ADCA share a common sequence of length 2,
they should not be concatenated because ABADC does not belong to
{A,ADC,BAD}*. With a representation that keeps no information about the
composition of the second (nth) age sequences, the overlapped concatenation of
these sequences is practically impossible. It has motivated the introduction of
second-level alphabets. Dealing with {A,β,γ} given that β=ADC and χ=BAD is an
elegant solution for candidate generation. The second level candidate Aβ will be
converted to its first level representation, i.e., AADC for counting purposes and
handled in its second level representation when computing overlapped
concatenations. Notice that in our hierarchical representation, the overlapping
parts of the sequences are easily identified. For instance, the sequence Aβχ =
(A)(ADC)(BAD) contains only three symbols in its second level representation,
which is a shortcut for a flattened sequence of length 7. Candidates are generated
in the same way as with GSP [1] where the age of the Kleene node encodes the
number of the overlapping second-generation sequences (parameter k for the k-
telescoped concatenation ¤k). The use of a second level alphabet can boost the
extraction of the Kleene closure, as the candidates are assembled from sequences
rather than from simple symbols. Consequently, their length grows faster then
with any previous method and the number of database scans can drop drastically.

4. Optimization
Let us introduce an original optimization for RE-Hackle, the so-called ascending
flux of candidates. It can be easily shown that the exploration of each Kleene
node delays by one generation the evaluation of its parent, as parents can not be
put in the extraction phrases if the extraction of their siblings is not completed.
Although generally it does not penalize the extraction (the algorithm can continue
to work with some other branches of the tree), it would be better to have a
guarantee that the embedded structures will never lack of efficiency. Therefore,
we decided to forward the frequent sequences found by a Kleene node
immediately to its parent, i.e., without waiting for the completion of the
exploration. Indeed, the extraction against constraint A*B can be inefficient if the
database contains long sequences of symbols A but does not contain AB. We can
forward the extracted sequences immediately after having found them. Thus, the
optimized algorithm can work on several levels of the Hackle-tree. The extraction
phrase is now allowed to contain nodes which are in direct son-parent relations.

The reconstruction of the extraction phase becomes more complex, so does the
propagation of the violations and the candidate generation. Technically, it is
achieved by 3 possible values for attribute explored:

• Waiting: the exploration of the node has not yet begun
• Inprogress: the exploration has begun, but the node will generate some

more candidates during the next generation
• Finished: the exploration is finished and the node has been taken out

from the extraction phrase.
If the parent of a closure is a concatenation which generates no frequent sequence
at a given iteration, then its sub-trees can be pruned immediately and the
exploration of the closure can be stopped. The candidates from the nth age can be
counted together with the frequent sequences of the (n-1)th age concatenated to
the other siblings of the concatenation. In this way, when the nth age becomes
empty, the concatenations of the (n-1)th age with the other siblings are available
and no iteration is wasted. In Table 1, we compare the basic and the optimized
algorithm when AAAACBB is mined given the RE A*B. The optimized version
recognizes that AB does not occur in the database and it does not generate useless
sequences of A. Here, the optimization saves four database scans.

Scan RE-Hackle (basic) RE-Hackle (optimized)
1 A, B A, B
2 AA,B AA, B, AB
3 AAA STOP
4 AAAA
5 AAAAA
6 AB, AAB, AAAB,AAAAB
7 STOP

Table 1 Ascending flux of candidates. Infrequent candidates are stroked.

In some cases, the basic algorithm can give rise to a large number of candidates
without any pruning. For instance, assume a concatenation with a dozen of
siblings each of them producing 3 to 4 frequent sequences. The extractor
functions would return between 531.441 to 16.777.216 candidates and this is
clearly unacceptable.
Fortunately, the adaptation of the extraction method can avoid this combinatorial
explosion. It is always possible to group the nodes in larger overlapping buckets,
and to benefit of more frequency-based pruning. Figure 2 illustrates this principle.
Assume that the siblings A, B, C and D of the node X return many frequent
sequences (Here, A,B,C, and D denote the nodes of the tree and are not elements
of the alphabet), and that we do not want the concatenation to produce a large
number of candidates. So, to protect X, we replace it by a new node X2 which
introduces a new level (nodes Y, Z and W). The initial nodes are grouped two by
two and associated to Y, Z and W to enable pruning. As the suffixes of the
sequences in Y are the same as the prefixes of Z, the candidates of X2 will be
constituted by a 1-telescoped concatenation.

Figure 2 – Adaptation of the extraction method.

After the evaluation of the additional level the number of the candidates should
globally decrease. So, X2 contains only three sons and it is supposed to generate
fewer candidates than X. If this number is still too large, the algorithm can decide
to introduce one more additional level between Y, Z, W and X2. The number of
the inserted levels is determined by the algorithm during the extraction by the use
of the theoretical cardinality. If the theoretical cardinality of a concatenation
node exceeds a level, this optimization technique introduces a new level between
the node and its siblings. Each new level requires another whole database scan,
but the number of the candidates is expected to decrease. This mechanism enables
a tradeoff between the number of the candidates and the number of database
scans. One should notice, that the length of the candidates increases with each
level, so the RE-Hackle will never take more passes than GSP or SPIRIT(L and
V). The control of the tradeoff is however complex: it depends on the size of the
database, the cost per candidate for counting and the cardinalities of the siblings
of the node we are considering.

5. Experimental Results
We have used a semi-optimized implementation of the RE-hackle algorithm for
our experiments (no ascending flux of candidates). Furthermore, we have put the
data in main memory for both our SPIRIT and RE-Hackle implementations. We
used our fair implementations of SPIRIT(L) and SPIRIT(V) [3]. First, we have
generated synthetic datasets following a zipfian distribution. First, our synthetic
dataset contains 100k transactions of length 20 over an alphabet of 100 symbols.
We have then decreased the number of the symbols in the alphabet and created
conditions for the emergence of long patterns. The execution time of our
algorithm (see Figure 2) does not increase exponentially and take the properties
of the better algorithm for this case, i.e., SPIRIT(V).

We have been considering different RE-constraints with different granularities
(ratio between the number of symbols composing the RE and its number of
atomic sequences). E.g., the granularity of AB(CDE|RY)CF is 9/4=2.25, for
AC|T(G|BB)E we have 7/5=1.4, and for (A|B|C)*D(T|Z) we get 6/6=1. The
execution time of RE-Hackle decreases as the granularity increases (see Figure
4). Notice, that the SPIRIT algorithms are practically insensible to this factor.

Density

0

2000

4000

6000

8000

10000

12000

14000

16000

0 100 200 300 400 500 600

alphabet size

Ex
ec

ut
io

n
tim

e

SpiritL
spiritV
Re-Hackle

Figure 3 Influence of the data density

Granularity

0

1000

2000

3000

4000

5000

6000

0 0.5 1 1.5 2 2.5

Granularity

Ex
ec

ut
io

n
tim

e

SpiritL
spiritV
Re-Hackle

Figure 4 Influence of RE granularity

The power of RE-Hackle pruning strategy is somewhat between SPIRIT(L) and
SPIRIT(R)2. As SPIRIT(L) relies on frequency-based pruning and SPIRIT(R) on RE-
based pruning, RE-Hackle will not always beat both of them, but it is quite often the
best, as it uses both pruning criteria. We provide in Figure 5 a comparison between RE-
Hackle, SPIRIT(L) and SPIRIT(V) on real biological data (5000 sequences of length
3000 to 6000 items over an alphabet of four symbols given by Dr. O. Gandrillon from
University Lyon 1). Various RE-constraints (with an increasing experimental
cardinality) have been used. As the pruning strategy is adjusted dynamically according
to the cardinality of the constraint and the content of the database, RE-Hackle
approaches the performances of the best SPIRIT implementation without prior
knowledge of the selectivity of the constraint. This behavior was mainly obtained by
the use of the adaptive extraction method.

2 [3] introduces 4 SPIRIT algorithms denoted N, L, V and R. Following this order, the
algorithms do more and more RE-based pruning (almost no RE-pruning with SPIRIT(N), no
frequency-based pruning for SPIRIT(R)).

0

500

1000

1500

2000

100 1000 10000 100000

Experimental Cardinality

C
an

di
da

te
s

SpiritL SpiritV Re-Hackle

Figure 5 Comparison to SPIRIT variants

This is an important qualitative result. It is not surprising that both SPIRIT algorithms
have their operating areas and RE-Hackle is situated between the two curves. As the
experimental cardinality rises, RE-Hackle begins to use more and more frequency-
based pruning and avoids the combinatorial explosion which makes SPIRIT(V)
inadequate to deal with high cardinality constraints. At a given complexity, RE-Hackle
decides to use only frequency-based pruning and has the same behavior than
SPIRIT(L). Indeed, we have an adaptive pruning method.

6. Extension to RE-constraints with variables
Our partners, the biologists, have shown interest in being able to specify variables in
the RE constraints. For instance, it is interesting to look for frequent sequences that
match a generalized RE like X(A|B)C*XCB (where X denotes a variable which take
values in A*). Hackle-trees provide an elegant way for tackling variables which specify
that recurring sub-patterns are desired.
A variable X3 is a shortcut for any sequence built over A. Starting from now, we use
upper case letters for variables and sequences while lower case letters are used for
symbols. An extended RE-constraint is a RE-constraint that can contain variables. For
instance, constraint (A|C)XBX requires that every sequence begins with an A or a C and
contains two occurrences of the same sub-sequence X separated by the symbol B.
Sequences ACDBCD or CADBAD satisfy it. Sub-sequences CD and AD are two
instances for the variable X.
An augmented second-level alphabet is a second-level alphabet that contains a new
symbol for every distinct variable. An extended RE-constraint is built over an
augmented second-level alphabet, i.e., an alphabet that contains some variables.
Mining under extended RE-constraints is now straightforward using an X-tree, i.e., a
Hackle-tree on the augmented second-level alphabet associated to the extended RE-
constraint.
For practical reasons, we impose now that Kleene closures can not return the empty
sequence. If the result of a closure is empty, the node is immediately violated and
pruned out of the X-tree. As a variable is a shortcut for all possible frequent sequences,
every distinct variable can be modeled by the most general Kleene closure, i.e., a
closure applied to the initial alphabet A. A variable which appears only once can be

3 We reserve letters X and Y to denote variables.

replaced immediately by a Kleene closure. We thus assume that a variable appears at
least twice in the RE-constraint. It is important to instantiate the variables with values
that have been generated in the same generation. In other terms, when the expressions
with variables are flowing up in the tree, the so-called X-Hackle algorithm has to know
from which generation they come from. Therefore, they can be indexed by the number
of the active generation of the Kleene node. This count starts when they begin to flow
up in the X-tree. As variables are implemented via Kleene closures, the corresponding
nodes have the following fields.

Attributes Semantics
type * Kleene closure

siblings All the symbols of the initial alphabet.
parent Parent of the node. NULL for the root.

ξth , ξexp Same as in a Hackle-tree.
state, explored Same as in a Hackle-tree.

Age Counts the times the node has been visited.
items[1..age] Frequent legal sequences found by the node in

generation

Figure 6 provides the X-tree representation of the generalized RE-constraint
Y(AX*)BXY. It is not needed to represent explicitly Nodes 2 and 6: their parent points
directly to Node 11. Also, Nodes 5 and 9 are shortcuts for Node 10.

Figure 6 X-Tree of the generalized RE-constraint Y(AX*)BXY

Variables X and Y are shortcuts for two general Kleene closure nodes that will extract
any possible frequent sequence. This setup combined with the ascending flux of
candidates can extract the sequences described by generalized RE- expressions.
Conceptually, the ascending flux of candidates can be viewed as the creation of a new
X-tree at every generation even though, in practice, we can avoid the duplication of the
tree. At the kth evaluation of the variables, the algorithm creates a clone of the X-tree in
which the kth values of the variables are trapped. This tree is then explored by the RE-
Hackle algorithm. At the next generation, X-Hackle creates a (k+1)th tree again and
pass it to the RE-Hackle algorithm. Notice again, that in an implementation the

duplication of the tree can be avoided by clever indexing. We now sketch the X-Hackle
algorithm that uses the following definitions.

Let us denote Firstk(N1, …, Nm) the function that, given a list of nodes, returns the set of
the k-sequences (sequences of length k) which are prefixes of the concatenation of the
nodes. Let us denote Lastk(N1, …, Nm) the function that, given a list of nodes, returns the
set of the k-sequences which are suffixes of the concatenation of the nodes.

The X-Hackle algorithm can now be sketched. A longer version of this paper contains
more details and an example of execution.

(01) T ← BuildExpTree(E);
(02) For all X∈Variables, V1[X]= Ø
(03) For all A∈A
(04) If Freq(A,D) > minsup
(05) Then V1[X]← V1[X] U {A}
(06) gen ← 1
(07) While (Promising()) do
(08) Tgen ← T
(09) Vgen[.]← ComputeValues(Vgen-1[.])
(10) For k = 1 to gen
(11) Iterate RE-Hackle(Tk, Vk[.], k-gen+1)
(12) gen ← gen+1
(13) Return T1.root.items U … U Tgen.root.items

Vgen[X] contains all the possible values for the X variable in Tgen. These are (gen)-
sequences. ComputeValues(Vgen-1[.]) computes the (gen-1)-concatenation of the (gen-
1)-sequences for every variable X and returns the frequent (gen)-sequences. Iterate RE-
Hackle(Tk, Vk[.], c) performs an RE-Hackle iteration on the Tk tree using the values
from Vk[.] for the instanciation of the variables. If Tk is already explored it stops. The
third parameter c corresponds to RE-Hackle generation for the kth tree. Promising() is a
boolean function which decides wether X-Hackle should continue or not. Just to give a
hint, it takes all the concatenations containing variables and computes all the possible
First and Last functions. E.g., during the evaluation of (XA)*B, if CAB is not frequent
then it is useless to compute the other elements of the closure that finish by CA. The
idea is very similar to the one used in the ascending flux of candidates optimisation
technique. Formalisation will come in a future publication. If all the First and Last
functions from a given node are violated (e.g., they don’t generate any frequent
sequence) the node is pruned. The algorithm finishes when the X-tree gets empty.

7. Conclusion
We have proposed a framework that characterizes and exploits the local properties of
RE-constraints to benefit of both RE-based and frequency-based pruning. Our solution
computes dynamically a balance between the two pruning strategies and restricts the
search space for arbitrary RE-constraints. It enables to take the shape of the best
SPIRIT ad-hoc algorithm without any prior knowledge of the selectivity of the
constraint. Thanks to the two-level alphabets, complex expressions are handled
efficiently. The cardinalities of a sub-expression appear useful for choosing the

extraction method. It enables to introduce global information such as database access
costs in the reorganization of the extraction structures. This adaptative strategy
associated to powerful optimization techniques such as the transformation of Hackle-
trees introduced in [2] or the ascending flux of candidates introduced here enable to
tackle RE-constraints even though they are neither anti-monotonic nor monotonic
constraints on the search space of the initial symbols. The RE-Hackle approach opens a
new framework for the extraction of frequent sequences that satisfy rich syntactic
constraints. We did not yet identify all the possible uses of this hierarchical constraint.
However, we suspect that a larger (w.r.t. the class of RE-constraints) type of constraint
can be handled within this framework. We started to consider RE-constraints with
variables. Good properties of the framework are preserved and the potential for
applications is clearly enlarged since RE-constraints with variables enable to express
context-sensitive restrictions. Our future work concerns further optimizations for the
RE-Hackle algorithm. Furthermore, we have to implement X-Hackle and look for a
relaxation of the pruning strategy, as the computation of the Last/First sets is
expensive. We would like to find a faster termination condition as well.

Acknowledgements. This research is partially funded by Région Rhône-Alpes
(programme d’appui à la société Djingle) and the Future and Emerging Technologies
arm of the IST programme (project cInQ IST-2000-26469).

References
[1] R. Agrawal, R. Srikant. Mining sequential patterns. Proceedings ICDE’95, Tapei (Taiwan),
1995. pp. 3-14.
[2] H. Albert-Lorincz, J-F. Boulicaut. Mining frequent sequential patterns under regular
expressions: a highly adaptive strategy for pushing constraints (poster paper). Proceedings SIAM
DM’03, San Francisco (USA), May 1-3, 2003. pp. 316-320.
[3] M. Garofalakis, R. Rastogi, K. Shim. SPIRIT: Sequential Pattern Mining with Regular
Expression Constraints. Proceedings VLDB’99, Edinburgh (UK), 1999. pp. 223-234.
[4] J. Han, J. Pei, B. Mortazavi-Asl, Q. Chen, U. Dayal, M.-C. Hsu. FreeSpan: Frequent Pattern-
Projected Sequential Pattern Mining. Proceedings SIGKDD'00, Boston (USA), 2000. pp. 355-
359.
[5] H. Mannila, H. Toivonen. Levelwise search and borders of theories for knowledge discovery.
Data Mining and Knowledge Discovery journal, Vol. 1(3),1997, pp. 241-258.
[6] H. Mannila, H. Toivonen, and A. I. Verkamo. Discovery of frequent episodes in event
sequences. Data Mining and Knowledge Discovery journal, Vol. 1(3),1997, pp. 259-289.
[7] M. Leleu, C. Rigotti, J-F. Boulicaut, G. Euvrard. Constraint-based sequential pattern mining
over datasets with consecutive repetitions. Proceedings PKDD’03, Catvat-Dubrovnik (Croatia),
2003. To appear.
[8] J. Pei et al. PrefixSpan: Mining Sequential Patterns Efficiently by Prefix-Projected Pattern
Growth. Proceedings ICDE'01, Heidelberg (D), 2001. pp. 215-224.
[9] J. Pei, J. Han, and W. Wang. Mining sequential patterns with constraints in large databases.
Proceedings CIKM’02, McLean (USA), 2002. pp. 18-25.
[10] R. Srikant, R. Agrawal - Mining Sequential Patterns: Generalizations and perfor-mance
Improvements. Proceedings EDBT’96, Avignon (F), 1996. pp. 3-17.
[11] M. J. Zaki. SPADE: An Efficient Algorithm for Mining Frequent Sequences. Machine
Learning Journal, Vol. 42(1/2), 2001, pp 31-60.
[12] M. J. Zaki. Sequence Mining in Categorical Domains: Incorporating Constraints.
Proceedings CIKM’00, Washington (USA), 2000, pp. 422-429.

MR-SMOTI: A Data Mining System for Regression
Tasks Tightly-Coupled with a Relational Database

Annalisa Appice Michelangelo Ceci Donato Malerba

Dipartimento di Informatica, Università degli Studi
via Orabona, 4 - 70126 Bari - Italy
{appice, ceci, malerba}@di.uniba.it

Abstract. Tight coupling of data mining and database systems is a key issue in
inductive databases. It ensures scalability, direct and uniform access to both
data and patterns stored in databases, as well as proper exploitation of
information embedded in the database schema to drive the mining process. In
this paper we present a new data mining system, named Mr-SMOTI, which is
able to mine (multi-)relational model trees from a tightly coupled relational
database. The induced model tree is a (multi-)relational pattern that can be
represented by means of a set of selection graphs, which are translated into SQL
expressions and stored in XML format. A peculiarity of induced model trees is
that they can represent both local and global effects of variables used in
regression models. This distinction between local patterns and global models
addresses a limitation of current inductive database perspective, which mainly
focus on local pattern mining tasks. Preliminary experiments demonstrate the
ability of Mr-SMOTI to mine accurate regression predictors from data stored in
multiple tables of a relational database.

1 Introduction

The integration of data mining with database systems is an important issue in
inductive database research. Most data mining systems still process data in main
memory. This results in high performance for computationally intensive processes
when enough memory is available to store all necessary data. However, a common
aspect of many data mining algorithms is their frequent access to data that satisfy
some selection conditions. For data intensive processes, it is important to exploit
powerful mechanisms for accessing, filtering and indexing data, such as those
available in database management systems (DBMS). This motivates a tight coupling
between data mining and database systems. In an inductive database perspective, this
tight coupling also aims to support a direct and uniform access to both data and
patterns stored in databases. Other equally important reasons are: i) the applicability
of data mining algorithms to large data sets; ii) the exploitation useful knowledge of
data model available, free of charge, in the database schema, iii) the possibility to
specify directly what data stored in a database have to be mined, without any pre-
processing.

The last reason is even more justified by the emergent trend in KDD research,
namely (multi-)relational data mining [8], which looks for patterns that involve
multiple relations of a relational database. Thus data taken as input by relational data
mining systems typically consists of several tables and not just a single one. The
single-table assumption [28] forces the user of traditional data mining systems to
perform complex SQL queries in order to compute a single table whose rows (or
tuples) represent independ ent units of analysis.

Some examples of integration of data mining and database systems are presented in
[24] for association rules, in [18] for clustering and in [25] for decision trees. In [18] a
system named MiningMart has been proposed for approaching the knowledge
discovery in database by building upon database facilities and integrating data mining
algorithms into the database environment. In all these works it has also been
advocated the importance of implementing some data mining primitives to implement
them using DBMS extension facilities, e.g. packages, cartridges, extenders or
datablades. In [1] a package implemented in Oracle Spatial has been presented to
support the extraction of spatial relations between geographical objects. This is also a
rare example of (multi-)relational data mining system, named SPADA, (loosely)
integrated with an object-relational spatial database. Other two examples of tight
integration of (multi-)relational data mining systems with a database are MRDTL [14]
and SubgroupMiner [11]. These three examples refer to the tasks of association rule
mining, classification (with decision trees), and subgroup discovery, respectively.

In this work, we present Mr-SMOTI, a prototypical example of multi-relational
data mining system for regression tasks that is tightly integrated with a relational
database, namely OracleR 9i. Differently from traditional data mining regression
systems (e.g. M5 [22], RETIS, [9], M5’ [27], HTL [26], TSIR [15], SMOTI[16]) Mr-
SMOTI directly works on complex and structured objects represented through
multiple tables, and discovers relational regression models that involve attributes of
several tables related by foreign key constraints.

The idea of mining regression models from data distributed in multiple tables is not
new. The problem is generally solved by moulding a relational database into a single
table format, such that traditional attribute-value algorithms are able to work on [6].
In contrast, relational regression models can be induced by formulating the problem in
the normal ILP framework [5], where multiple relations can be directly managed
through first-order representations. FORS [10], SRT [13], S-CART [8] and TILDE-
RT [2] are examples of systems that solve relational regression problems by working
on data stored as Prolog facts. This means that a little attention has been given to data
stored in relational database and to how knowledge of data model can help to guide
the search process.

Contrarily to previous works, Mr-SMOTI directly deals with multiple tables or
relations as they are found in today’s relational databases. Induced relational model
trees can contain both regression nodes, which perform only straight-line regression,
and split nodes, which partition the feature space. The model associated to each leaf is
then the composition of the straight-line regressions reported along the path from the
root to the leaf. In this way, internal regression nodes contribute to the definition of
multiple models and capture global effects, while straight-line regressions at leaves
can only capture local effects. Global effect refers to the fact that the contribution of
an attribute to a regression model can be reliably estimated on more training objects

than those associated to the leaf. This overcomes one limitation of the inductive
database prospective proposed in [3] that addresses only local patterns mining tasks.
Mr-SMOTI upgrades the propositional system SMOTI, which induces model trees
from data stored in main memory in the form of a single table. Therefore, attributes
involved in nodes of relational regression models induced by Mr-SMOTI can belong
to different tables of the relational database. The join of these tables is dynamically
determined on the basis of the database schema.

In the next section we draw on the multi-relational regression framework, based on
an extended graphical language (selection graph), to mine relational model trees
directly from relational databases, through SQL queries. In Section 3 we show how
selection graphs can support the stepwise induction of multi-relational model trees
from structural data. Some experimental results are reported in Section 4. Finally, we
draw some conclusions and sketch possible directions of further research.

2 Regression problem in a multi-relational framework

Traditional research for a regression task in KDD has focused mainly on propositional
techniques involving the attribute-value paradigm. This implies that relationships
between fields of one tuple can be found, but not relationships between several tuples
of one or more tables. It seems that this is an important limitation, since a relational
database consists of a set of tables and a set of associations. Each association
describes how records in one table relate to records in another table. Most
associations correspond to foreign key relations. These relations can be seen as having
two directions. One goes from a table where the attribute is primary key to a table
where the attribute is foreign key (one-to-many), and the other one is in the reverse
way (many-to-one). An object in a relational database can consist of several records
fragmented across several tables and connected by associations (Fig. 1). Although the
data model can consist of multiple tables, there must be only a single kind of object
that is central to the analysis (target table). The assumption is that each record in the
target table will correspond to a single object in the database. Any information
pertaining to each object which is stored in other tables can be retrieved by following
the associations in the data model. Once the target table has been selected, a particular
numeric attribute of that table can be chosen for regression purposes (target attribute).

Thus, a multiple regression problem in a multi-relational framework can be
defined as follows. Given a schema of a relational database D, a target table T0, a
target attribute Y within the target table T0, the goal is to mine a multi-relational
multiple regression model to predict the estimated target attribute Y. Mined models

Fig. 1. The data model of an example database used in relational regression.

Target atribute

Article

Id:text
…
CreditLine:real
Agent:Text

Id:text
…
Commission:real 1

N

Id: text
Date: date
Client: text

Id: text
…
Order: text
Article: text

N

Id: text 1

N1

1

Customer Agent

Order

Detail

not only involve attribute-value descriptions, but also structural information denoted
by the associations in D.

Relational regression models, stepwise induced as in SMOTI can be expressed
in the graphical language of selection graphs. The classical definition of a
selection graph is reported in [12]. Nevertheless, we present an extension of this
definition in order to make the selection graphs more appropriate to our task. In
particular the selection graph must be able to represent a (multi-)relational
regression model incrementally built. The incremental construction is based on
the idea that when a new independent variable is added to the model its linear
effect on remaining variables has to be removed [4].
Definition of selection graph
A selection graph G is a directed graph (N, A), such that:

each node in N is a 4-tuple (T, C, R, s), named selection node, where:
- T = (X1,X2, … Xn) is a table in the relational schema D.
- C is a set of conditions on attributes in T of type T.X’i OP c, where X’i

is one of the attributes Xi in T after the removal of the effects of some
variables already introduced in the relational regression model through
regression nodes. OP is one of the usual comparison operators (<, ,
in, not in …) and c is a constant value.

- R is a set of tuples R={(RXj, j, j)| j=1,…,l}where RXj is a regression
term already introduced in the multiple linear model, l is the number of
such terms, j = (j1, j2, …, jn) and j = (j1, j2, …, jn) are the
regression coefficients computed to remove the effect of each term
RXj from all numerical attributes in T:

 X’i = Xi - j=1,...,l (ji+ ji RXj) i = 1,…,n and Xi is numerical
- s is a flag with possible values open or closed.

A, a set of tuples (p, q, fk, e), where:
- p and q are selection nodes.
- fk is a foreign key association between p.T and q.T in the relational

schema D (one-to-many or many-to-one).
- e is a flag with possible values present or absent.

Selection graphs contain at least a node n0 that corresponds to the target table T0.
They can be graphically represented by a directed labelled graph (Fig. 2.a). The value
of s is expressed by the absence or presence of a cross in the node, representing the
value open and close respectively. The value for e is indicated by the presence (absent

model(‘customer-124’)
customer(‘124’, …,’03’).
order(‘12489’,’02/09/02',’124’).
detail(‘D123,12,..,’12489’,’A1’).
detail(‘D124’,15,..’12489’,’A2’).
end.

SELECT n0.ID,…, n0Agent,n1.ID ,.., n1.Client, n2.Id,…, n2.Article
FROM Customer n0, Order n1, Detail n2 WHERE n0.ID=n1.Client AND n1.ID=n2.Order
AND n2.Price 15 AND n0.Id not in (select n1.Client from Order where Date=04/09/02)

selects

a)

Price 15

Custom Order Detail

Order

Date in
(04/09/02)

c)

Customer

Order Detail

b)

Fig. 2. (a) Example of selection graph; (b) corresponding grouping of data for an instance
of the example database and (c) translation into an SQL query.

value) or absence (present value) of a cross on the corresponding arrow representing
the labelled arc. The direction of the arrow (left-to-right and right-to-left) corresponds
to the multiplicity of the association fk (one-to-many and many-to-one, respectively).
Every arc between the nodes p and q imposes some constraints on how one or more
records in the table q.T are related to each record in table p.T according to the list of
conditions in q.C. The association between p.T and q.T induces some grouping (Fig.
2.b) in the records in q.T, and thus selects some records in p.T. In particular, a present
arc selects those records that belong to the join between the tables and match the list
of conditions. On the other hand, an absent arc corresponds to the negation of the
joining condition and the representations of the complementary sets of objects.
Intuitively, the tuples in the target table T0 that are explained by a selection graph G
are those for which tuples exist or not in linked tables that satisfy the conditions
defined for those tables. The given definition of selection graph does not allow to
represent recursive relationships. Therefore a selection graph can be straightforwardly
translated into either SQL or into first order logic expressions (Fig. 2.c). In this case a
subgraph pointed by an absent arc is translated into a negated inner sub-query.

3 Multi-relational stepwise model tree induction

Mr-SMOTI induces model trees whose nodes (regression, split or leaf) involve
multi-relational patterns that can be represented with selection graphs, that is
each node of the tree corresponds to a selection graph. Essentially Mr-SMOTI,
like the propositional version SMOTI, builds a tree-structured multi-relational
regression model by adding split and/or regression nodes through a process of
successive refinements of the current selection graph until a stopping criterion is
fulfilled and a leaf node is introduced. Thus, the model associated to each leaf is
computed by combining all straight-line regressions in the regression refinements
along the path from the root to the leaf.

3.1 The algorithm

Mr-SMOTI is basically a divide-and-conquer algorithm that starts with a root
selection graph G containing only the target node n0. This graph corresponds to
the entire set of objects of interest in the relational database D (the target table
T0). At each step the system chooses the optimal refinement (split or regression)
according to a heuristic function. In particular, a split refinement corresponds to
either the updating of an existing node by adding a new selection condition or the
introduction of a linked node in the current selection graph. On the other hand, a
regression refinement corresponds to update the list of regression terms in
existing nodes in order to remove the linear effect of those numeric attributes
already included in the model Thus, descendants of a regression node must
operate on modified training data. This transformation is coherent with the
statistical procedure for the incremental construction of multiple linear regression
models, according to which each time a new independent variable is added to the
model its linear effect on remaining variables has to be removed [4].

The eventually modified training tuples selected by the optimal refinement
(and its complement in case of a split), are used to select the regression functions

associated to the root of the left (/right) branch. This procedure is recursively
applied to each branch until a stopping criterion is fulfilled.

Mr-SMOTI (D: database, G: selection_graph)
GS, GR, R: selection_graph; T_left, T_right: model_tree;
 GR:= optimal_regression_refinement (G, D);

if stopping_criteria (GR, D) then return leaf (GR);
GS:= optimal_split_refinement (G, D);
R:= best_refinement (GR, GS);
if(R=GR) T_left := Mr-SMOTI (D,R); T_right := ;
else T_left := Mr-SMOTI (D,R); T_right := Mr-SMOTI (D, comp (R));

return model_tree(R, T_left, T_right).
The functions optimal_split_refinement and optimal_regression_refinement take

the selection graph G associated to the current node and consider every possible split
and regression refinement. The choice of which refinements are candidates is
determined by the current selection graph G, the structure of data model in D, and
notably by the multiplicity of associations within this data model. The validity of
either a split refinement (GS) together with its complement (comp(GS)), or a
regression refinement (GR) is based on two distinct evaluation measures, (GS,
comp(GS)) and (GR), respectively. Let T be the multi-relational model tree currently
stepwise built, G the selection graph associated to the node t in T and tGs (tcomp(Gs)) the
left (right) child of t, associated to a split refinement GS (the complementary split
refinement comp(GS)) of the selection graph G, (GS, comp(GS)) is defined as:

)),R(comp(G
)N(t)N(t

)N(t
)R(G

)N(t)N(t
)N(t

))comp(G,(G S
)comp(GG

)comp(G
S

)comp(GG

G
SS

SS

S

SS

S

where N(tGs) (N(tcomp(Gs))) is the number of training tuples covered by the
refinement GS (comp(GS)), and R(GS) (R(comp(GS)) is the resubstitution error of
the left (right) child, computed as follows:

Therefore the evaluation measure (Gs, comp(Gs)) is coherently defined on the
basis of the partially defined multiple linear regression models Ŷ built by
combining the best straight-line regression associated to tGs (tcomp(Gs)), with all
regressions introduced along the path from the root to tGs (tcomp(Gs)).

In the case of a regression refinement GR, the definition of a heuristic evaluation
function (GR) of the effectiveness of GR cannot be naïvely based on the
resubstitution error R(GR) [16]. Indeed, the splitting test “looks-ahead” to the best
multiple linear regressions after the current split is performed, while the regression
step does not perform such a look-ahead. A fairer comparison would be to grow the
model tree at a further level in order to base the computation of (GR) on the best split
refinement GRs, after the current regression refinement is performed. Therefore,

(GR) is defined as follows:
(GR) = min {R(GR), (GRs,comp(GRs)) }.

The function stopping_criteria determines whether the current optimal refinement
must be transformed into a leaf according to the minimal number of target objects

.)ŷ(y
)N(t

1))R(comp(G)ŷ(y
)N(t

1)R(G
)N(t

1j

2
jj

)comp(G
S

)N(t

1j

2
jj

G
S

)SComp(G

S

SG

S

(minObject) covered by the current selection graph and the minimal threshold for the
coefficient of determination (minR) of the prediction function built stepwise [4].

The regression model built stepwise by Mr-SMOTI is a set of SQL queries, each
of which is associated to a node in the tree. SQL queries are stored XML format and
can be in turn the object of a query according to an inductive database perspective.
Moreover, they can be applied to new instances stored in the relational database in
order to predict an estimate of the unknown target attribute. The prediction is
averaged by means of a grouping on the target objects.

3.2 The refinements

Split refinements are an extension of the refinement operations proposed in [12] to
perform a split node in a multi-relational decision tree. Whenever a split is introduced
in a model tree, Mr-SMOTI is in fact refining the selection graph associated to the
current node, by adding either a condition or an open node linked by a present arc.
Given a selection graph G, the add condition refinement returns the refined selection
graph GS by simply adding a split condition to an open node ni G.N without
changing the structure of G.

The add linked node refinement instantiates an association of the data model D by
means of a present arc, together with its corresponding table, represented as an open
node, and adds these to the selection graph G. Knowledge of the nature and
multiplicity is used to guide and optimise this search. Since the investigated
associations are foreign key associations, the proposed refinements can have two
directions: backward or forward. The former correspond to many-to-one associations,
while the latter describe one-to-many associations in the data model. This means that
a backward refinement of the selection graph G does not partition the set of target
objects covered by G but extends their descriptions (training data) by considering
tuples joined in the table which are represented by the new added node. Each split
refinement Gs of type add condition or add linked node is introduced together with its
complementary refinement (comp(GS)) in order to satisfy the mutual exclusion
principle. Let QG be the SQL or first order expression translating the selection graph
G, and QGs (Qcomp(Gs)) the expression translating the split refinement (complementary
refinement) QGs (Qcomp(Gs)). For each target object selected by QG exactly one of both
queries (QGs and Qcomp(Gs)) should succeed.

In [12], Knobbe et al. propose a complementary refinement named add negative
condition that should solve the problem of mutual exclusion between an add
condition refinement and its complement. If the node that is being refined does not
represent the target table, comp(GS) must be built from G by introducing an absent arc
from the parent of ni to the clone of the entire sub-graph of G that is rooted in ni. The
introduced sub-graph has a root (a clone of the node to be refined) that is a closed
node updated with the refinement condition that is not negated. In this way the query
translating comp(GS) negates an entire inner sub-query and not simply a condition.
As was observed in [14], this approach fails to build complementary refinements
when the node to be refined is not directly connected to the target node. The example
in Figure 4 proves that the proposed mechanism could build a refinement GS (Fig 4.a)
and a complementary refinement comp(GS) (Fig 4.b) that are not mutually exclusive.
To overcome this problem the complementary refinement comp(GS) should be

obtained by adding an absent arc from the target node n0 to the clone of the sub-graph
containing the entire join path from the target node to the node to be refined. The
introduced sub-graph has a root (a clone of n0) that is a closed node and is updated
with the refinement condition that is not negated. A new absent arc is also introduced
between the target node and its closed clone. This arc is an instance of the implicitly
relationship between the primary key of the target table and the own itself (Fig 4.c).

Similarly, when we consider the complementary refinement for an add linked node
refinement we make the same considerations as when a negated condition is going to
be added. This means that when the closed node to be added is not directly connected
to the target node in G, a procedure similar to that described when an add condition
refinement is complemented must be followed.

Finally, a regression refinement GR of the selection graph G corresponds to
performing a regression step (Y’= Y+ Y ni.T.Xj’) on the residuals of a continuous
attribute not yet introduced in the model currently. The coefficients Y and Y are
estimated using all (joined) tuples selected by the current selection graph G. This
means that the regression refinement is performed by considering a
propositionalization of the (multi-) relational descriptions of the training objects
selected by G. The regression attribute must belong to a table represented by a node
in G. For each node, the list of regressions R is updated by adding the regression term
(ni.T.Xj’) introduced in the model and the coefficients and computed to update the
residuals of all continuous attributes in the node.

Fig. 4. Example of (a) refinement (GS) by adding the a condition on a node not directly
connected to the target node, (b) the corresponding complementary refinement, proposed in [11],
that does not satisfy the mutual exclusion and (c) correct complementary refinement.

SELECT n0.ID, …, n0Agent, n1.ID, …,
n1.Client, n2.Id,…n2.Order, n3.Article
FROM Customer n0, Order n1, , Detail
n2 WHERE n0.ID=n1.Client AND
n1.ID=n2.Order AND n0.ID not in
(select n0. ID from Customer n3,
Order n4, , Detail n5 where
n3.ID=n4.Client and n4.ID=n5.Order
and n5.Price 15)

model(‘customer-124’)
customer(‘124’, …,’03’).
order(‘12489’,’..,’124’).
detail(‘D123,12,..,’A1’),
detail(‘D124’,15,..,’A2’)
end .
model (‘customer-256’).
 customer(‘256’,…,’06’).

SELECT n0.ID,…,n0Agent, n1.ID,
 .. , n1.Client, n2.Id,…n2.Order,
n2.Article FROM Customer n0, Order
n1, Detail n2 WHERE
n0.ID=n1.Client AND n1.ID=n2.Order
AND n1.ID not in (select n3. Order
from Order n3 where n3.Price 15)

model (‘customer-124’)
 customer(‘124’,, …,’03’).
 order(‘12500’,…, 124).
 detail(‘D125’, 16,’A3’)
end.
…

SELECT n0.ID,…, n0Agent,
n1.ID ,.., n1.Client, n2.Id,…,
n2.Article FROM Customer n0,
Order n1, Detail n2
WHERE n0.ID=n1.Client AND
n1.ID=n2.Order AND n2.Price 15

Order Customer Detail

price 15

Detail

Detail

Order Customer

price 15

Customer

Order Detail

Detail OrderCustomer

price 15

OrderCustomer Detail

selects

selects

a)

b) c)

GS

Comp(GS)Comp(GS)

4 Experimental evaluation

Mr-SMOTI has been applied to the biological problems of predicting both the
mutagenic activity of molecules [19] and the biodegradability of chemical compounds
in water [7]. Mutagenesis dataset consists of 230 molecules divided into two subsets:
188 molecules for which linear regression yields good results and 42 molecules that
are regression-unfriendly. In our experiments we used the atom and bond structure of
regression-friendly molecules by adding boolean indicators Ind1 and Ind2 as one
setting (B1) and adding Lumo and Logp properties to get a second setting (B2).
Similarly Biodegradability dataset consists of 328 chemical molecules structurally
described in terms of atoms and bonds. In all the experimental results reported below
the thresholds for stopping criteria are fixed as follows: minObjectis is set to the
square root of the number of target objects in the entire training set and minR must be
below 0.80. Each dataset is analysed by means of a 10-fold cross-validation. Figure 5
shows the test set performance of Mr-SMOTI and TILDE-RT in both domains, as
measured by the Pearson correlation coefficient that measures of how much the value
of target attribute (yj) in test objects correlates with the value predicted by the induced
model. Since the Pearson correlation coefficient does not measure the quantity error
of a prediction, we include several other measures [23] such the average error (AE)
and the root mean square error (RMSE). For pairwise comparison with TILDE-RT the
non-parametric Wilcoxon two-sample paired signed rank test is used [21]. The results
of the Wilcoxon signed rank test on the accuracy of the induced multi-relational
prediction model are reported in Table 1.

Table 1. Results of the Wilcoxon signed rank test on the accuracy of the induced models. The
best value is in boldface, while the statistically significant values (p , =0.05) are in italics.

Dataset Accuracy Mr-SMOTI TILDE-RT W+ W- P
Avg.MSE 1.165 1.197 23 32 0.69 B1 Avg.AE 0.887 0.986 12 43 0.13
Avg.MSE 1.118 1.193 15 40 0.23 M

ut
a

ge
ne

si
s

B2
Avg.AE 0.845 0.985 11 44 0.10
Avg.MSE 0.337 0.588 0 55 0.0019 Biodegradability
Avg.AE 0.186 0.363 0 55 0.0019

The Wilcoxon test statistics W+ (W-) is the sum of the ranks from the positive
(negative) differences between TILDE-RT and Mr-SMOTI. Therefore, the smaller

Fig. 5 Pearson correlation coefficient (Y axis) for multi-relational prediction models induced
from the 10-fold cross validated datasets (X axis) of Mutagenesis (B1, B2) and
Biodegradability datasets. The comparison concerns two systems: TILDE-RT (square) vs.
Mr-SMOTI (diamonds).

W+ (W-), the better for Mr-SMOTI (TILDE-RT). Differences are considered
statistically significant when the p-value is less than or equal to /2. Interestingly all
experimental results confirm the good performance of Mr-SMOTI.

5 Conclusions

This paper presents a novel approach to mining relational model trees. The
proposed algorithm can work effectively when training data are stored in multiple
tables of a relational DBMS. Information on the database schema is used to reduce the
search space of patterns. Induced relational models are represented by selection
graphs whose definition has been extended in order to describe model trees with
either split nodes or regression nodes. As future work, we plan to extend the
comparison of Mr-SMOTI to other multi-relational data mining systems on a larger
set of benchmark datasets. Moreover, we intend to use SQL primitives and parallel
database servers to speed up the stepwise construction of multi-relational model trees
from data stored in large database. Finally, following the mainstream of our research
on data mining query languages for spatial databases with an object-oriented logical
model[17], we intend to pursue the investigation of defining a data mining query
language appropriate to support both the discovery and the query of model trees.

Acknowledgments

This work has been supported by the annual Scientific Research
Project "Metodi di apprendimento automatico e di data mining per sistemi di
conoscenza basati sulla semantica" Year 2003, funded by the University of Bari. The
authors thank Hendrik Blockeel for providing mutagenesis and biodegradability
datasets.

References
[1]Appice A., Ceci M., Lanza A., Lisi F.A., Malerba D.: Discovery of Spatial Association Rules

in Georeferenced Census Data: A Relational Mining Approach, Intelligent Data Analysis,
numero speciale su "Mining Official Data" (in press).

[2]Blockeel H.:Top-down induction of first order logical decision trees. Ph.D thesis, Department of
Computer Science, Katholieke UniversReit Leuven, 1998.

[3]De Raedt L.: A perspective on inductive databases. In SIGKDD Explorations ACM, Gehrke J (Ed.)
Volume 4, Issue 2, 2002

[4]Draper N.R. & Smith H.: Applied regression analysis, John Wiley & Sons, 1982.
[5]Dzeroski S.: Numerical Constraints and Learnability in Inductive Logic Programming. Ph.D

thesis, University of Ljubljana, Slovenia, 1995.
[6]Dzeroski S., Todoroski L. & Urbancic T: Handling real numbers in inductive logic programming: A

step towards better behavioural clones. In Machine Learning: ECML-95, Eds. Lavrac N & Wrobel
S., Springer , Berlin Heidelberg New York, 1995.

[7]Dzeroski S., Blockeel H., Kramer S., Kompare B., Pfahringer B., and Van Laer W..
Experiments in predicting biodegradability. Proceedings of the Ninth International

Workshop on Inductive Logic Programming (S. Dzeroski and P. Flach, eds.), LNAI, vol.
1634, Springer, pp. 80-91, 1999.

[8]Dzeroski S. & Lavrac N. (Eds). Relational Data Mining. Springer-Verlag, 2001.
[9]Karalic A.: Linear regression in regression tree leaves. In Proc. of ISSEK ’92 (International

School for Synthesis of Expert Knowledge), Bled, Slovenia, 1992.
[10]Karalic A.: First Order regression. Ph.D thesis, University of Ljubljana, Slovenia, 1995.
[11]Klosgen W. & May M.:Spatial Subgroup Mining Integrated in an Object-RelationalSpatial

Database. In Principles of Data Mining and Knowledge Discovery,6th European
Conference, PKDD 2002,Elomaa T.,Mannila H. & Toivonen H.(Eds.),Helsinki, Finland,
Springer-Verlag , 2002.

[12]Knobbe J., Siebes A.&Van der Wallen D.M.G: Multi-relational decision tree induction.In Proc. 3rd
European Conf. on Principles and Practice of Knowledge Discovery in Databases,PKDD'99, 1999.

[13] Kramer S.: Structural regression trees. In Proc. 13th National Conf. on Artificial Intelligence, 1996.
[14]Leiva H.A.:MRDTL: A multi-relational decision tree learning algorithm. Master thesis,

University of Iowa, USA, 2002.
[15]Lubinsky D.: Tree Structured Interpretable Regression. In Learning from Data, Fisher D. &

Lenz H.J. (Eds.), Lecture Notes in Statistics, 112, Springer, 1994.
[16]Malerba D., Appice A., Ceci M. & Monopoli M.: Trading-off versus global effects or

regression nodes in model trees. In Foundations of Intelligent Systems, 13th International
Symposium, ISMIS'2002, Hacid H.S., Ras Z.W. , Zighed D.A. & Kodratoff Y. (Eds.),
Lecture Notes in Artificial Intelligence, 2366, Springer, Germany, 2002.

[17]Malerba D., Appice A. & Vacca N.:SDMOQL: An OQL-based Data Mining Query
Language for Map Interpretation Tasks. In Proc. of the EDBT Workshop on “Database
Technologies for Data Mining”, Prague, Czech Republic, 2002.

[18]Morik K. & Scholz M.: The MiningMart Approach to Knowledge Discovery in Databases.
In Handbook of Intelligent IT, Ning Zhong and Jiming Liu (Eds.),IOS Press,2003, to appear.

[19]Muggleton S., Srinivasan A., King R. & Sternberg M.: Biochemical knowledge discovery
using Inductive Logic Programming. In Proceedings of the first Conference on Discovery
Science, Motoda H. (ed), Springer-Verlag, Berlin, 1998.

[20]Ordonez C. & Cereghini P.: SQLEM: Fast Clustering in SQL using the EM Algorithm. In
Proc. ACM SIGMOD 2000, Chen W., Naughton J.& Bernstein P.(Eds.), Dallas, USA, vol.
29, 2000.

[21] Orkin. M. & Drogin. R.: Vital Statistics. McGraw Hill. New York . 1990.
[22]Quinlan J. R.: Learning with continuous classes, in Proceedings AI'92, Adams & Sterling

(Eds.), World Scientific, 1992.
[23]Quinlan J. R.: A case study in Machine Leaning, in Proceedings ACSC-16, Sixteenth

Australian Computer Science Conferences, 1993.
[24] Sarawagi S., Thomas S. & Agrawal R.: Integrating Mining with Relational Database

Systems: Alternatives andImplications. In Proc. ACM SIGMOD’98, L. Haas and A. Tiwary
(Eds), Seattle, USA., 1998.

[25]Sattler K. & Dunemann O.: SQL Database Primitives for Decision Tree Classifiers. In Proc. of the
10th ACM CIKM Int.Conf. on Information and Knowledge Management, Atlanta, USA, 2001.

[26]Torgo L.: Functional Models for Regression Tree Leaves. In Proceedings of the 14th
International Conference (ICML 97), D. Fisher (Ed.), Nashville, Tennessee, 1997.

[27]Wang Y. & Witten I.H.: Inducing Model Trees for Continuous Classes. In Poster Papers of
the 9th European Conf. on Machine Learning (ECML 97), M. van Someren, & G. Widmer
(Eds.), Prague, Czech Republic,1997.

[28]Wrobel, S.: Inductive logic programming for knowledge discovery in databases. In
Dzeroski S. & Lavrac N. (Eds). Relational Data Mining. Springer-Verlag, 2001.

Inductive Databases of Polynomial Equations

Sašo Džeroski, Ljupčo Todorovski, and Peter Ljubič

Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia

Abstract. Inductive databases (IDBs) contain both data and patterns.
Knowledge discovery processes can be viewed as sequences of inductive
queries to such databases, where inductive queries can perform both data
selection and data mining. Inductive queries consist of conjunctions of
primitive constraints that have to be satisfied by target patterns. The
constraints can be different for different pattern domains.

Many pattern domains, mostly concerning the discovery of frequent
patterns, have been considered separately: these include the domains of
frequent itemsets, episodes, Datalog queries, sequences, and molecular
fragments. Here we consider inductive databases in the pattern domain of
polynomial equations and present a heuristic solver for this domain. We
first evaluate the use of this solver on standard regression problems, then
proceed to illustrate the use of constraints in discovering dynamics. We
finally consider IDBs containing both the pattern domains of equations
and molecular fragments, as well as combining them in order to derive
QSAR (Quantitative Structure-Activity Relationships) models.

1 Inductive Databases

Inductive databases [7] embody a database perspective on knowledge discovery,
where knowledge discovery processes are considered as query processes. In ad-
dition to normal data, inductive databases contain patterns (either materialized
or defined as views). Data mining operations looking for patterns are viewed as
inductive queries posed to the inductive database. In addition to patterns (which
are of local nature), models (which are of global nature) can also be considered.

Given an inductive database that contains data and patterns, several different
types of queries can be posed. Data retrieval queries use only the data and their
results are also data: no pattern is involved in the query. Cross over queries cross
over patterns and data in order to obtain new data. In processing patterns, the
patterns are queried without access to the data: this is what is usually done in
the post-processing stages of data mining. Data mining queries use the data and
their results are patterns: new patterns are generated from the data and this
corresponds to the traditional data mining step. When we talk about inductive
queries, we most often mean data mining queries.

A general formulation of data mining [11] involves the specification of a
language of patterns and a set of constraints that a pattern has to satisfy with
respect to a given database. The constraints that a pattern has to satisfy can be
divided in two parts: language constraints and evaluation constraints. The first

only concern the pattern itself, the second concern the validity of the pattern
with respect to a database. Constraints thus play a central role in data mining
and constraint-based data mining is now a recognized research topic [1]. The use
of constraints enables more efficient induction as well as focusing the search for
patterns on patterns likely to be of interest to the end user.

In the context of inductive databases, inductive queries consist of constraints
and the primitives of an inductive query language include language constraints
(e.g., find association rules with item A in the head) and evaluation primitives.
Evaluation primitives are functions that express the validity of a pattern on a
given dataset. We can use these to form evaluation constraints (e.g., find all item
sets with support above a threshold) or optimization constraints (e.g., find the
10 association rules with highest confidence).

Different types of patterns have been considered in data mining, including
frequent itemsets, episodes, Datalog queries, and graphs. Designing inductive
databases for these types of patterns involves the design of inductive query lan-
guages and solvers for the queries in these languages. For each type of pattern,
or pattern domain, a specific solver is designed, following the philosophy of con-
straint logic programming [2].

While many different types of patterns have been considered in data mining,
constraints have been mostly considered in mining frequent patterns, typically
frequent itemsets and association rules. Some related tasks, such as mining fre-
quent episodes, Datalog queries, molecular fragments, etc., have also been con-
sidered. Here we consider IDBs that contain models in the form of polynomial
equations: constrains on these are considered and a heuristic solver is proposed.
We first evaluate the use of this solver on standard regression problems, then
proceed to illustrate the use of constraints in discovering dynamics. We finally
consider IDBs containing both the pattern domains of equations and molecular
fragments, as well as combining them in order to derive QSAR (Quantitative
Structure-Activity Relationships) models.

2 The pattern domain of polynomial equations

Here we consider the pattern domain of polynomial equations. We first define
the language of polynomial equations, then consider syntactic/subsumption con-
straints on these. We next define several evaluation primitives for equations and
finally discuss inductive queries in this domain.

2.1 The language of polynomial equations

In this paper, we will concentrate on polynomial equations that can be used to
predict the value of a dependent variable vd. Given a set of variables V , and a
dependent variable vd ∈ V , a polynomial equations has the form vd = P , where
P is a polynomial over V \ {vd}. A polynomial P has the form

∑r
i=1 consti · Ti,

where Ti are multiplicative terms, and consti are real-valued constants. Each
term is a finite product of variables from V \ {vd}, i.e., Ti =

∏
v∈V \{vd} vdv,i ,

where dv,i is (a non-negative integer) degree of the variable in the term. The
degree of 0 denotes that the variable does not appear in the term. The sum of

degrees of all variables in a term is called the degree of the term, i.e., deg(Ti) =∑
v∈V \{vd} dv,i.
The degree of a polynomial is the maximum degree of a term in that poly-

nomial, i.e., deg(P) = maxr
i=1 deg(Ti). The length of a polynomial is the sum of

the degrees of all terms in that polynomial, i.e., len(P) =
∑r

i=1 deg(Ti).
For example, consider a set of variables V = {x, y, z}, where z is chosen to

be a dependent variable. The term x (that is equivalent to x1y0) has degree
1, the term x2y has degree 3, while x2y3 is a term of degree 5. An example
polynomial of degree 4 is 1.2x2y + 3.5xy3. An example polynomial equation is
z = 1.2x2y + 3.5xy3. This equation has r = 2, d = 4 and len(P) = 7.

2.2 Syntactic Constraints

We will consider two types of syntactic constraints on equations: parametric
constraints and subsumption constraints.

Parametric constraints on polynomial equations include setting upper limits
for the degree of a term (in both the LHS and RHS of the equation), as well as the
number of terms in the RHS polynomial. For example, one might be interested in
equations of degree at most 3 with at most 4 terms. Such parametric constraints
can already be taken into account by the equation discovery system LAGRANGE
[5].

Of more interest are subsumption constraints, which bear some resemblance
to subsumption/generality constraints on terms/clauses in first-order logic. A
term T1 is a sub-term of term T2 if the corresponding multi-set M1 is subset of
the corresponding multi-set M2. For example, XY 2 is sub-term of X2Y 4Z since
{X, Y, Y } ⊂ {X, X, Y, Y, Y, Y, Z}.

The sub-polynomial constraint is defined in terms of the sub-term constraint.
Polynomial p1 is a sub-polynomial of polynomial p2 if each term in p1 is a sub-
term of some term in p2. There are two options here: one may, or may not,
require that each term in p1 is a sub-term of a different term in p2.

In looking for interesting equations, one might consider constraints of the
form: LHS is a sub-term of t, t is a sub-term of LHS, RHS is a sub-polynomial
of p, and p is a sub-polynomial of RHS. Here t and p are a term and a polyno-
mial, respectively. These set upper and lower bounds on the lattice of equation
structures, induced by the relations sub-term and sub-polynomial.

Consider the following constraint: LHS is a sub-term of X2Y and both XY
and Z are sub-polynomials of RHS. The equation XY = 2X2Y 2 + 4Z satisfies
this constraint, under both interpretations of the sub-polynomial constraint. The
equation X2Y = 5XY Z, however, only satisfies the constraint under the first
interpretation (different terms in p1 can be sub-terms of the same term in p2).

2.3 Evaluation Primitives

The evaluation primitives for equations calculate different measures of the degree
of fit of the equation to a given dataset/table. Assume that i is an index that
runs through records/rows of a database table. Denote with yi the value of the

LHS of a given equation on record i (actual value of the dependent variable vd);
with ŷi the value of the RHS as calculated for the same record (predicted value
of vd); and with y the mean value of yi over the table records.

Below we define five measures for the degree of fit for an equation to a
dataset. These are the multiple correlation coefficient R (defined as R2 = 1 −∑N

i=1
(yi−ŷi)

2

∑N

i=1
(yi−y)2

), the normalized standard deviation S (S2 =
1
N

∑N

i=1
(yi−ŷi)

2

y2+e−y2),

mean absolute error (MeanAE = 1
N

∑N
i=1 |ŷi − yi|), maximum absolute error

(MaxAE = maxN
i=1 |ŷi − yi|), mean square error (MSE = 1

N

∑N
i=1(ŷi − yi)2),

and root mean square error (RMSE =
√

MSE). Most of these are well known
from statistics. In the machine learning literature, the measure RE, defined as
RE2 = 1−R2 is often used to evaluate the performance of regression approaches.

We will also use a MDL (minimal description length) based heuristic function
for evaluating the quality of equations that combines the degree of fit with the
complexity of the equation: MDL(vd = P) = len(P) log N + N log MSE(vd =
P), where len(P) is the length of a polynomial (the sum of the degrees of all
terms in that polynomial) and N number of training examples (data points in
D). The second term in the MDL heuristic function introduces a penalty for
the complexity of the equation. Thus, the MDL heuristic function introduces a
preference toward simpler equations.

2.4 Inductive queries in the domain of equations

Inductive queries are typically conjunctions of constraints. The primitive con-
straints typically are evaluation and language constraints. Evaluation constraints
set thresholds on acceptable values of the evaluation primitives: M(e, D) < t;
M(e, D) > t, where t is a positive constant/threshold and M is one of the
measures defined above.

Instead of evaluation constraints one can consider optimization constraints.
Here the task is to find (the n best) e so that M(e, D) is maximal / minimal. Lan-
guage constraints, as discussed above, can be parametric and/or subsumption
constraints.

It is rarely the case that an inductive query consists of a single constraint.
Most often, at least one syntactic and at least one evaluation or optimization
constraint would be a part of the query. For example, we might look for the
equations, where the LHS is sub-polynomial of X2Y 3 and X + Z is a sub-
polynomial of the RHS, which have the highest multiple correlation coefficient.

3 A heuristic solver for the domain polynomial equations

While most systems for discovering frequent patterns look for all frequent pat-
terns that satisfy a given set of constraints, most approaches to predictive mod-
eling perform heuristic search through the space of possible models. Here we
present CIPER (which stands for Constrained Induction of Polynomial Equa-
tions for Regression) that heuristically searches through the space of possible

equations for solutions that satisfy the given constraints. CIPER employs beam
search through the space of polynomial equations.

Table 1. A top-level outline of the CIPER beam search algorithm.

procedure Ciper(D, vd, C, b)
1 E0 = simplest polynomial equation (vd = const)
2 E0.MDL = FitParameters(E0, D)
3 Q = {E0}
4 repeat
5 Qr = {refinements of equation structures in Q

that satisfy the language constraints C}
6 foreach equation structure E ∈ Qr do
7 E.MDL = FitParameters(E, D)
8 endfor
9 Q = {best b equations from Q ∪ Qr according to MDL }

10 until Q unchanged during the last iteration
11 print Q

The algorithm, shown in Figure 1, takes as input the training data D, i.e, the
training examples, each of them containing the measurements of the observed
(numerical) system variables, and a designated dependent variable vd. In addi-
tion, a set of language constraints C can be specified. The output of CIPER
consists of the b polynomial equations for vd that satisfy the constraints C and
are best wrt the data D according to the MDL heuristic function defined in the
previous section.

Before the search procedure starts, the beam Q is initialized with the simplest
possible polynomial equation of the form vd = const. The value of the constant
parameter const is fitted against the training data D using linear regression and
the MDL heuristic function is calculated. In each search iteration, the refine-
ments of the equations in the current beam are computed first and checked for
consistency with the specified language constraints C. The refinement operator
increases the length of a given equation by one, either by adding a new linear
term or by adding a variable to an existing term in the equation. Finally, at the
end of each search iteration, only the best b equations, according to the MDL
heuristic function, are kept in the beam. The search proceeds until the beam
remains unchanged during the last iteration.

The refinement operator used is not optimal: the same polynomial equation
can be generated through different paths. While an optimal refinement operator
is desired for complete/exhaustive search, it may prevent the generation of good
equations in greedy heuristic search. We thus choose to use the above in-optimal
operator and check for duplicates when adding new equations to the beam.

Each polynomial equation structure considered during the search contains a
number of generic constant parameters (denoted by consti). In order to evaluate
the quality of an equation, the values of these generic constants have to be
fitted against training data consisting of the observed values of the variables in

V . Since the polynomial equations are linear in the constant parameters, the
standard linear regression can be used.

The quality of the obtained equation is usually evaluated using an evaluation
primitive, i.e., a degree of fit measure that measures the discrepancy between
the observed values of vd and the values predicted using the equation. One such
measure is mean squared error (MSE), defined in the previous section. Other
measure that beside degree of fit takes into account the complexity of the induced
equation and introduce preference toward simpler equations is MDL.

CIPER can also discover differential equations. Just like LAGRANGE, it can
introduce the time derivatives of system variables by numerical derivation. It can
then look for equations of the form ẋi = P (x1, x2, ..., xn), where ẋi denotes the
time derivative of xi and P (x1, x2, ..., xn) denotes a polynomial of x1, x2, ..., xn.

4 Polynomial equations on standard regression datasets

Equation discovery approaches, such as LAGRANGE [5], have been typically
evaluated in terms of successful rediscovery of quantitative laws. In particu-
lar, data generated from known laws/models has been used. The emphasis has
mainly been on the comprehensibility and general validity of the laws found,
rather than their predictive power. One of the reasons for this has been the
prohibitive computational complexity of applying exhaustive search to general
regression problems involving many variables and potentially complex laws. Hav-
ing a heuristic approach for equation discovery, we evaluate it on a number of
regression datasets.

Table 2. The 14 regression UCI datasets and their characteristics (left four columns).
The performance of CIPER in terms of RE, as compared to three other regression
approaches: linear regression (LR), model trees (MT), and regression trees (RT) (right
four columns).

Dataset Exs Vars NERPV CIPER LR MT RT

autoprice 159 16 3.24 0.15 0.23 0.15 0.32
baskball 96 5 4.87 0.61 0.67 0.63 0.78
bodyfat 252 15 2.22 0.03 0.03 0.03 0.11
elusage 55 3 7.56 0.18 0.23 0.28 0.44
fruitfly 125 5 3.94 1.01 1.10 1.03 1.01
housing 506 14 1.24 0.19 0.29 0.17 0.28
mbagrade 61 3 6.97 0.78 0.83 0.83 1.05
pollution 60 16 7.06 0.55 0.55 0.42 0.77
pwLinear 200 11 2.68 0.15 0.25 0.11 0.33
quake 2178 4 0.35 1.00 1.00 0.99 1.00
sensory 576 12 1.11 0.89 0.87 0.75 0.85
strike 625 7 1.04 0.95 0.84 0.83 0.87
veteran 137 8 3.66 0.90 0.92 0.88 0.91
vineyard 52 4 7.89 0.29 0.43 0.48 0.73

Average RE 0.55 0.59 0.54 0.67

We take 14 regression datasets from the UCI repository, listed in the left
part Table 2. In addition to the number of examples (data points) and variables,
we also list the reduction of MSE (in percent) necessary to counterbalance an
increase in len(P) of 1 in the MDL heuristic (Needed Error Reduction Per
Variable - NERPV).

We perform ten-fold cross-validation to evaluate the performance of our ap-
proach. The performance is measured in terms of RE. We compare the perfor-
mance of our approach to the performance of linear regression (with no feature
selection, no feature elimination), model trees, and regression trees (all of these
within WEKA). The results are given in the right part of Table 2.

Note that a beam of 16 was used in CIPER. Our approach performs better
than linear regression and regression trees and comparably to model trees. We
should note that this is achieved using a single equation/model over the entire
instance space, rather than a piece-wise model (as in model trees).

It is interesting to compare the complexity of the equations found by our
approach to that of model trees. The complexity of model trees can be mea-
sured as the number of parameters/constants in them, including the thresholds
in internal nodes and the coefficients in linear regressions in the leaves. The com-
plexity of equations can be measured in several ways (d + r, len(P)), including
the number of coefficients (where we count the degree of a variable in a term as
a coefficient). The average total number of parameters in model trees is 16.83
and in regression trees 13.72. The average d, r and len(P) are 1.64, 4.93 and
6.00, respectively. The polynomial equations discovered thus compare favorably
in terms of complexity to regression trees and model trees and are about the
same level with linear regression (which has on the average 11.93 parameters).

5 Using constraints in modeling chemical reactions

To illustrate the use of constraints in discovering dynamics, we address the task
of reconstructing a partially specified network of chemical reactions. The network
is shown in Fig. 1: the part of the network given in bold is assumed to be known,
while the part shown in gray is unknown (except for the fact that x6 and x7 are
involved in the network). This is a task of revising an equation-based model.

x1

x2

x3

x4

x6x5

x7

Fig. 1. A partially specified network of chemical reactions.

A network of chemical reactions can be modeled with a set of polynomial
differential equations (see, e.g., [8]). The transformation of a network to a set
of differential equations is performed in the following manner. The reaction rate
is proportional to the concentrations of inputs involved in the reaction. For

example, consider the reaction {x5, x7} → x1, on the left-hand side of Figure 1.
It takes x5 and x7 as inputs, therefore the corresponding term in the equations is
x5 · x7. The reaction rate influences the rate of change of all (input and output)
compounds involved in the equations. Therefore, the term x5 · x7, will appear
in the equations for x1, x5, and x7. In the equation for the output compound
x1 the term positively influences the change rate, while in the equations for the
input compounds the term negatively influences the change rate.

Following the algorithm outlined above, the following set of differential equa-
tions can be composed and used for modeling the network from Figure 1:

ẋ1 = 0.8 · x5 · x7 − 0.5 · x1 − 0.7 · x1 · x2 · x7

ẋ2 = 0.7 · x1 + 0.2 · x4 + 0.1 · x4 · x6 − 0.3 · x1 · x2 · x7

ẋ3 = 0.4 · x1 + 0.3 · x1 · x2 · x7 − 0.2 · x3

ẋ4 = 0.5 · x3 − 0.7 · x4 · x6

ẋ5 = −0.6 · x5 · x7

ẋ6 = 0.2 · x4 − 0.8 · x4 · x6

ẋ7 = −0.1 · x1 · x2 · x7 − 0.1 · x5 · x7

These equations were simulated for 1000 time steps of 0.01 from a randomly
generated initial state (where the value of each variable was randomly chosen
from the interval (0,1)). This provides a trace of the behavior of the 7 system
variables over time, suitable for discovering dynamics.

The domain of modeling networks of chemical reactions lends itself naturally
to the use of constraints in polynomial equation discovery. On one hand, para-
metric constraints have a natural interpretation. A limit on r, the number of
terms in an equation, corresponds to a limit on the number of reactions a com-
pound is involved in. A limit on d, the degree of terms, corresponds to a limit on
the number of compounds that are input to a chemical reaction. On the other
hand, subsumption constraints can also be used in a natural way. A partially
specified reaction network gives rise to equations that involve subpolynomials of
the polynomials modeling the entire network.

If only the bold part of the network was present, the following equations
could be used to model its behavior.

ẋ1 = −const · x1 + const · x5 − const · x1 · x2

ẋ2 = const · x1 + const · x4 − const · x1 · x2

ẋ3 = const · x1 + const · x1 · x2 − const · x3

ẋ4 = const · x3 − const · x4

ẋ5 = −const · x5

The knowledge of the partial network can be used to constrain the search
through the space of possible equations. The polynomials in the equations for
ẋ1 ... ẋ5 in the partial network should be subpolynomials for the corresponding
equations in the complete network. These subpolynomial constraints were given

to Ciper together with the behavior trace for all 7 variables. No subsumption
constraints were used for the equations defining ẋ6 and ẋ5. No parametric con-
straints were used for any of the equations. Beams of size 64 and 128 were used
in the experiments.

Ciper then successfully reconstructs the equations for the entire network,
i.e., for each of the 7 system variables, for each of the two beam sizes. Discov-
ery without constraints, however, fails for two of the equations. If we provide
Ciper only with the behavior trace and no constraints, it fails to reconstruct
the equations for ẋ1 (beam 128) and ẋ2 (for both beams) correctly. In addition,
the unconstrained search inspects more equations than the constrained (for ẋ2

and beam 128, 18643 and 12901 equations were considered). For comparison,
exhaustive search through all equations with d ≤ 3 and r ≤ 4 would have to
consider 637393 equations.

6 Towards inductive databases for QSAR

Here we first describe the pattern domain of molecular fragments. We then pro-
ceed with a proposal of how to integrate the pattern domains of equations and
molecular fragments in order to obtain an inductive database for QSAR (Quan-
titative Structure-Activity Relationships). Preliminary experiments in the do-
main of predicting biodegradability, illustrating how the two domains can be
combined, are presented.

6.1 The pattern domain of molecular fragments

Here we briefly summarize the pattern domain of molecular fragments, intro-
duced by Kramer and De Raedt [9], in terms of the syntactic constraints and
evaluation primitives considered. The system MolFea, which implements a solver
for this pattern domain, looks for interesting molecular fragments (features) in
sets of molecules. Interestingness is defined as a conjunction of primitive con-
straint that the fragment has to satisfy.

A molecular fragment is defined as a sequence of linearly connected atoms.
For instance, o−c = o is a fragment meaning: ”an oxygen atom with a single bond
to a carbon atom with a double bond to an oxygen atom”. In such expressions
’c’, ’n’, ’o’, etc. denote elements, and ’−’ denotes a single bond, ’=’ a double
bond, ’#’ a triple bond, and ’∼’ an aromatic bond. Only non-hydrogen atoms
are considered. Fragments are partially ordered by the relation ”is more general
than”/”is a subsequence of”: when fragment g is more general than fragment s,
one writes g ≤ s.

The primitive language constraints that can be imposed on unknown target
fragments f are of the form f ≤ p, p ≤ f , ¬(f ≤ p) and ¬(p ≤ f), where
f is the unknown target fragment and p is a specific pattern. This type of
primitive constraint denotes that f should (not) be more specific (general) than
the specified fragment p. E.g., the constraint ’c = o’ ≤ f specifies that f should
be more specific than ’c = o’, i.e., that f should contain ’c = o’ as a subsequence.

The evaluation primitive freq(f, D) denotes the relative frequency of a frag-
ment f on a set of molecules D. The relative frequency is defined as the percent-
age of molecules (from D) covered (by f). Evaluation constraints can be defined
by specifying thresholds on the frequency or relative frequency of a fragment
on a dataset: freq(f, D1) ≤ t and freq(f, D1) ≥ t denote that the relative fre-
quency of f on D should be larger than (resp. smaller than) or equal to t. For
example, the constraint freq(f, Pos) ≥ 0.95 denotes that the target fragments
f should have a minimum relative frequency of 95% on the set of molecules Pos.

The primitive constraints defined above can conjunctively be combined in
order to declaratively specify the target fragments of interest. Note that the
conjunction may specify constraints w.r.t. any number of datasets, e.g. imposing
a minimum frequency on a set of active molecules, and a maximum one on a set of
inactive ones. For example, the constraint (’c = o’ ≤ f)∧¬(f ≤ ’c−c−o−c = o’)
∧freq(f, Deg) ≥ 0.95 ∧ freq(f, NonDeg) ≤ 0.05) queries for all fragments that
include the sequence ’c = o’, are not a subsequence of ’c − c − o − c = o’, have
a frequency on Deg that is larger than 95 percent and a frequency on NonDeg
that is smaller than 5 percent.

6.2 Combining molecular fragments and equations in an inductive
database for QSAR

The basic idea of our proposal is to consider the pattern domains of equations
and molecular fragments in a single inductive database. One could then easily use
the results of one inductive query (e.g., the set of interesting features resulting
from a MolFea query) as input to another inductive query (e.g. to find a QSAR
equation for biodegradability). This is of interest as QSAR models most often
take the form of equations and molecular fragments are often used as features.

This is similar to what Kramer and De Raedt [9] do. They look for interesting
features with MolFea, then use these for predictive modeling (classification with
a number of data mining approaches). However, no constraints are used in their
predictive modeling phase. Also, the data mining approach that performs best in
their setup is that of support vector machines, which does not yield interpretable
models.

Each of the two pattern domains offers potentially useful functionality. Taken
by themselves, equations are the approach of choice for QSAR modeling. While
non-linear transformations of bulk features are sometimes used, most often lin-
ear equations are sought. Our constraint-based approach to equation discovery
would allow the QSAR modeler to pose inductive queries that focus the search
on interesting equations, such as: ”find me the best equation that involves fea-
tureX”, supposing featureX is of interest to the QSAR modeler.

Also, molecular fragments (or in general substructures) are often used as fea-
tures in QSAR modeling. Using feature mining in the pattern domain of molec-
ular fragments, the QSAR modeler can find patterns involving substructures of
special interest. These can then be used in QSAR models.

The basic form of exploiting the connection between the two pattern do-
mains is to use the molecular fragments found by MolFea as input for a data

mining query looking for QSAR equations. Here one can exploit the subpoly-
nomial constraints in the equations pattern domain to ask for equations that
contain a specific molecular fragment: the fragment in question should be a sub-
polynomial of the RHS of the equation sought. However, additional constraints
can be defined. For example, one may look for equations that involve a subfrag-
ment or superfragment of a given fragment, rather than just the fragment itself.
We have implemented the latter in our system CIPER as an extension of the
subpolynomial/superpolynomial constraint.

At present, we assume all frequent fragments are given and look for equations
that involve the given equations and satisfy the constraints. As an illustration,
in the biodegradability dataset, we may be interested in the two best equations
that contain only one feature that is a superfragment of ’c = o’. The equations
logHLT = 6.9693− 1.19013 ∗ c = o and logHLT = 6.91524− 1.24286 ∗ c− c = o
are returned as a result of this query.

When we are looking for equations involving binary variables, such as the
presence/absence of a molecular fragment in a molecule, we should take into
account that higher degrees of such variables are identical to the variables them-
selves. Thus the higher degrees of molecular fragment should not appear in
equations. This can drastically reduce the space of possible equations.

At present, the above is not taken into account explicitly. However, the search
heuristic used in CIPER, which takes into account equation complexity (punishes
complex equations) prevents equations with higher degrees of fragment features
from being chosen. This because such equations have the same accuracy/degree
of fit as the equation with a linear degree of the fragment and higher complexity.

Other constraints might arise from the properties of molecular fragments
and generality/specificity relationships among them, which might be used to re-
duce/heuristically prune the space of possible QSAR equations. For example,
when refining a fragment, i.e., making it more specific, the value of the corre-
sponding feature can only go from one to zero for any molecule considered. This
can be used to bind the possible error reduction and also the maximum heuristic
value an equation can achieve.

Originally, our constraint-based approach to equation discovery was meant
for regression problems (with continuous class variable). However, we can easily
adapt it to classification problems where the features are numeric (including
binary features). We can use CIPER to perform classification via regression
(multi-response polynomial regression), an approach shown to perform well in
many cases.

6.3 Experiments on the biodegradability dataset

The QSAR application that we consider here is the one of predicting biodegrad-
ability of compounds [4]. The database used was derived from the data in the
handbook of degradation rates [6] and contains the chemical structure and mea-
sured (or estimated) degradation rates for 328 chemicals. In our study we focus
on aqueous biodegradation half life time (HLT) in aerobic conditions. The target
variable (denoted logHLT) is the natural logarithm of the arithmetic mean of

the low and high estimate of the HLT for aqueous biodegradation in aerobic
conditions, measured in hours. Two discretized versions (2-class and 4-class) of
logHLT were also considered.

A global feature of each chemical is its molecular weight. This was included
in the data. Another global feature is logP, the logarithm of the compound’s
octanol/water partition coefficient, used also in the mutagenicity application.
This feature is a measure of hydrophobicity, and can be expected to be important
since we are considering biodegradation in water. The two global features were
used in addition to the discovered molecular fragments in the QSAR models
developed.

Kramer and De Raedt [9] used the two-class version of the biodegradability
dataset to mine for interesting features. They looked for features that are above
a prespecified minimum frequency threshold and below a maximum threshold.
No generality constraints were used. The resulting features (fragments) together
with MolWeight and log P were then used for predictive modeling (classification
with a number of data mining approaches, of which support vector machines
performed best).

For our experiments, the features generated with thresholds of minimum
0.05 and maximum 0.95 were kindly provided by Stefan Kramer. A total of 124
fragments were found by MolFea. Of these, only 69 are distinct, in the sense that
there is at least one compound where one fragment is present and the other is not.
The major reason for getting duplicates is that MolFea reported all fragments
that satisfied the frequency thresholds and not the minimal (maximal) ones:
duplicates can be avoided by taking the borders of the versionspace produced by
MolFea. Only 69 distinct fragments were taken as input for equation discovery.

Table 3. The equation generated by CIPER on the biodegradability dataset.

logHLT = 0.0645738*logP - 0.825858*c=o + 0.374477*logP*cl + 0.487245*c-n

+ 2.43385*c~c~c~c~c~c~c~c~c~c~c~c~c~c - 0.529246*c~c~c~c~c

+ 0.757922*n=o + 0.570323*c-c-c~c~c~c~c~c

- 0.632581*c-c-c-o + 0.817581*c-o-c - 0.621152*c-o

+ 0.00231708*MolWeight + 5.94176

Taking the 69 fragments, logP and MolWeight as the independent and
logHLT (or the discretization thereof) as the dependent variable, we applied our
system for equation discovery CIPER to the biodeg dataset. For the continuous
version, the equation in Table 3 was generated by CIPER (with beam 4). For
the two-class and four-class version, classification via regression was performed:
as many equations were produced as the number of classes.

The predictive performance of CIPER, estimated by 10-fold cross validation,
was also measured (Table 4). It was compared to the performance of three other
algorithms: J48, Linear Regression and M5. For the latter two, comparison was
done for both the continuous (regression) and the discrete (classification via
regression) versions of the dataset.

Table 4. The predictive performance of CIPER on the biodegradability dataset, esti-
mated by 10-fold cross validation, as compared to several other learning algorithms.

Data version / Algorithm J48 (Class via) LinReg (Class via) M5 (Class via) CIPER

2 class (acc.) 71.34 74.09 78.05 78.66
4 class (acc.) 56.40 52.24 54.57 56.40

continuous (RE) 0.627 0.560 0.576

CIPER performs much better than J48 for the two-class version and the
same for the four-class version. It performs better than linear regression (higher
accuracy, lower error / RE). It performs better than M5 for classification via
regression and slightly worse for regression. Overall, CIPER performs best. In
addition, the equation produced can be easily interpreted (e.g., three fused aro-
matic rings greatly contribute to longer degradation time).

7 Summary

Here we have considered the problem of predictive modeling via polynomial
equations within the framework of inductive databases (IDBs). We have defined
primitives for the pattern domain of polynomial equations, including language
constraints (such as sub-polynomial), evaluation primitives, evaluation and op-
timization constraints. We have also shown how to combine such primitives to
form inductive queries in this pattern domain.

We have then presented a heuristic solver for data mining queries in this pat-
tern domain. The algorithm CIPER performs beam search through the space of
polynomial equation that satisfy a set of given language constraints and reports
the beam of equations that satisfy the evaluation constraints or best satisfy
the optimization constraints. It uses a refinement operator derived from the
subsumption (sub-polynomial) relationship between polynomials and a heuristic
function that takes into account both the accuracy and complexity of equations.

We have finally illustrated the use of the developed approach in three differ-
ent areas. First we have applied CIPER to standard regression datasets, where it
performs competitively to existing regression methods while producing smaller
models. We have then shown that constraint-based discovery of polynomial equa-
tions is suitable for modeling the dynamics of chemical reaction networks, since
the language constraints in our pattern domain naturally correspond to com-
plexity limits on reaction networks. Finally, we have indicated how the pattern
domains of equations and molecular fragments can be combined into an IDB
for QSAR and illustrated the used of such an IDB on the problem of predicting
biodegradability.

8 Discussion

The present paper emphasizes the use of equations as predictive models in data
mining. Regression equations are commonly used for predictive modeling in
statistics, but receive considerably less attention in data mining. While equa-
tion discovery [10] is a recognized research topic within machine learning, it has
been previously mainly used to rediscover quantitative scientific laws, with an

emphasis on the comprehensibility and general validity of the laws found, rather
than their predictive power. Here we show that equation discovery can build
models that have similar predictive power and lower complexity as compared to
state of the art regression approaches.

In the framework of inductive databases (IDBs), different types of patterns
have been considered within different so-called pattern domains [2]. Most consid-
ered pattern domains concern the discovery of frequent patterns, such as frequent
itemsets, episodes, Datalog queries and sequences. One of the main contributions
of this paper is that global predictive models (equations) have been considered in
the framework of IDBs, following the same general structure of a pattern domain
as for the discovery of frequent patterns. Predictive modeling lends itself to being
described in terms of the same types of primitives: language constraints, evalu-
ation primitives, evaluation and optimization constraints, as shown by defining
such primitives for the pattern domain of equations.

Considering predictive models in the same framework as frequent patterns
brings out the contrast between the practice of mining patterns and models.
Techniques for mining frequent patterns typically aim at finding all frequent
patterns that satisfy a user provided set of constraints (such as minimal fre-
quency). On the other hand, predictive modeling techniques heuristically search
for a single model trying to maximize predictive accuracy. (usually not taking
into account any other constraints).

In the frequent pattern setting, frequency constraints enable pruning of the
space of candidate patterns and using constraints can mean drastic improve-
ments in terms of efficiency. The monotonicity/anti-monotonicity of such con-
straints, used in conjunction with a generality relation on the patterns, is crucial
in this respect. In mining for models, one typically uses constraints (like accu-
racy) that are neither monotonic nor anti-monotonic. In such cases, the search
space over the possible models can still be structured according to the con-
straints, but effective pruning is no longer possible. As a consequence, heuristic
(rather than complete) solvers have to be designed, as was the case in our pattern
domain of polynomial equations.

The use of constraints in predictive data mining is less likely to be driven
primarily by efficiency considerations. This is because constraints there are less
likely to be monotone/anti-monotone, i.e., to enable efficient pruning. In this
context, it is important that the constraints are intuitively understandable for the
domain experts and have natural interpretation in the domain of use. This has
been illustrated by the use of constraints in modeling the dynamics of networks
of chemical reactions.

So far, in the framework of IDBs, different types of patterns have been con-
sidered separately, within different pattern domains. Here we have considered
an IDB with two different pattern domains, equations and molecular fragments:
the latter has been considered in an IDB approach targeted at bio- and chemo-
informatics applications [3]. Molecular fragments are of interest for QSAR mod-
eling, as the discovered fragments can be used as features in QSAR models.
We have presented preliminary experiments showing how the pattern domains

of equations and molecular fragments can be combined by posing queries that
involve constraints both on the QSAR equations and the molecular fragments
involved therein.

We believe that both global models (like equations) and local patterns (like
molecular fragments) will need to be considered in IDBs. Moreover, different
types of patterns will need to be used in the same IDB for practical applications,
such as QSAR (and other applications in bioinformatics). To our knowledge,
global models in the form of equations have so far not been considered in IDBs
(even though they are routinely used in practical applications, such as QSAR)
and neither have combinations of local patterns and global models.

9 Further work

Concerning work on IDBs with predictive models, we have just began to scratch
the surface. Even for the pattern domain of equations there are several direc-
tions for further work. One concerns the definition, implementation and use of
similarity constraints, which allow the formulation of queries such as: ”find the
equation most similar to e, which has mean absolute error smaller than x”. An-
other concerns the extension of the pattern domain of equations towards general
equations (non-polynomial ones). Here the connection to grammar-based equa-
tion discovery [12] might prove useful. Finally, extensions towards other types
of regression models (e.g. model trees) as well as classification models would
be in order. The latter would be especially relevant for predictive regression
(modeling) applications, such as the ones considered in Section 4.

In the domain of modeling reaction networks, an immediate direction for
further work concerns the further formulation and exploitation of constraints.
For example, instead of a partially specified network with missing reactions, one
might consider a given maximal network of reactions and look for a subnetwork.
In this case, superpolynomial constraints might be used to focus/constrain the
search for equations. Experiments on real data are needed to thoroughly evaluate
our approach.

Concerning the work towards IDBs for QSAR, much work remains to be
done as well. We have not even completely and formally specified the language
of queries involving both fragments and equations that can be posed to (and
solved by) our current implementation. As immediate direction for further work,
we thus plan a formal specification of the inductive query language for QSAR
that we hint at in this paper.

On the technical side, further exploration of the possibilities for integration
between fragment and equation discovery deserves attention. At present, tighter
integration seems possible and desirable. This could involve, for example, inter-
leaving the processes of feature mining and equation discovery. Both could, in
principle, provide useful feedback for each other.

The evaluation on one dataset without significance tests of the differences in
performance can be hardly considered sufficient. Evaluation on more datasets is
thus needed and planned. But even more than an evaluation on a larger number

of datasets, an evaluation in cooperation with a domain expert in QSAR and
bioinformatics is needed in order to determine what scenarios of usage of IDBs
are needed, feasible, and/or desirable from an application point of view.

Acknowledgments

Thanks to Stefan Kramer for interesting discussions on the topic of this paper
and for providing the MolFea generated features for the biodegradability dataset.
We acknowledge the support of the cInQ (Consortium on discovering knowledge
with Inductive Queries) project, funded by the European Commission under
contract IST-2000-26469.

References

1. R. Bayardo. Constraints in data mining. SIGKDD Explorations, 4(1), 2002.
2. De Raedt, L. Data mining as constraint logic programming. In Computational

Logic: From Logic Programming into the Future (In honor of Bob Kowalski).
Springer, Berlin, 2002.

3. L. De Raedt and S. Kramer. Inductive databases for bio and chemoinformatics. In
P. Frasconi, R. Shamir (editors), Artificial Intelligence and Heuristic Methods for
Bioinformatics. IOS Press, Amsterdam, 2002. To appear.

4. S. Džeroski, H. Blockeel, B. Kompare, S. Kramer, B. Pfahringer, and W. Van Laer.
Experiments in predicting biodegradability. In Proc. Ninth International Confer-
ence on Inductive Logic Programming, pages 80–91. Springer, Berlin, 1999.

5. S. Džeroski and L. Todorovski. Discovering dynamics: from inductive logic pro-
gramming to machine discovery. Journal of Intelligent Information Systems, 4:89–
108, 1995.

6. Howard, P.H., Boethling, R.S., Jarvis, W.F., Meylan, W.M., and Michalenko, E.M.
1991. Handbook of Environmental Degradation Rates. Lewis Publishers.

7. T. Imielinski and H. Mannila. A database perspective on knowledge discovery.
Communications of the ACM, 39(11):58–64, 1996.

8. Koza, J.R., Mydlowec, W., Lanza, G., Yu, J., and Keane, M.A. Reverse engi-
neering of metabolic pathways from observed data using genetic programming. In
Proc. Sixth Pacific Symposium on Biocomputing, pages 434-445. World Scientific,
Singapore, 2001.

9. S. Kramer and L. De Raedt. Feature construction with version spaces for bio-
chemical applications. In Proc. Eighteenth International Conference on Machine
Learning, pages 258–265. Morgan Kaufmann, San Francisco, 2001.

10. Langley, P., Simon, H. A., Bradshaw, G. L., & Żythow, J. M. (1987). Scientific
discovery. Cambridge, MA: MIT Press.

11. H. Mannila and H. Toivonen. Levelwise search and borders of theories in knowledge
discovery. Data Mining and Knowledge Discovery, 1(3):241–258, 1997.

12. Todorovski, L., and Džeroski, S. Declarative bias in equation discovery. In Proc.
Fourteenth International Conference on Machine Learning, pages 376–384. Morgan
Kaufmann, San Francisco, CA, 1997.

Towards Optimizing Conjunctive Inductive
Queries

Johannes Fischer and Luc De Raedt

Inst. für Informatik
University of Freiburg

Georges Koehler Allee 79
D-79110 Freiburg, Germany

deraedt@informatik.uni-freiburg.de

jfischer@informatik.uni-freiburg.de

Abstract. Conjunctive inductive queries are queries to an inductive
database that can be written as a conjunction of a monotonic and an
anti-monotonic subquery. We introduce the conjunctive inductive query
optimization problem, which is concerned with minimizing the cost of
computing the answer set to a conjunctive query. In the optimization
problem, it is assumed that there are costs ca and cm associated to eval-
uating a pattern w.r.t. a monotonic and an anti-monotonic subquery. The
aim is then to minimize the total cost needed to compute all solutions
to the query. Secondly, we present an algorithm that aims at optimiz-
ing conjunctive inductive queries in the context of the pattern domain
of strings. It employs a data structure based on version space trees, a
combination of suffix tries and version spaces. Even though the approach
is presented in the pattern domain of strings, the ideas are more widely
applicable. Finally, the presented algorithm is empirically evaluated on
a challenging data set in computational biology.

1 Introduction

Many data mining problems address the problem of finding a set of patterns that
satisfy a constraint. Formally, this can be described as the task of finding the set
of patterns Th(Q,D,L) = {φ ∈ L | Q(φ,D), i.e. those patterns φ satisfying query
Q on database D}. Here L is the language in which the patterns or rules are
described and Q is a predicate or constraint that determines whether a pattern φ
is a solution to the data mining task or not [18]. This framework allows us to view
the predicate or the constraint Q as an inductive query to an inductive database
system. It is then the task of the inductive database management system to
efficiently generate the answers to the query [7].

In this paper, we will study inductive queries that can be written as the con-
junction Qa ∧Qm of an anti-monotonic and a monotonic subquery. Conjunctive
inductive queries of this type have been studied in various contexts, cf. [5, 6, 17,
4]. One important result is that their solution space Th(Q,D,L) is convex, which
is related to the well-known concept of version spaces [19] and boundary sets [18].

This fact is exploited by several pattern mining algorithms. Indeed, consider a
constraint such as freq(φ,D) ≥ 10. If a certain pattern ψ does not satisfy this
constraint, then no pattern that is more specific than ψ can satisfy the con-
straint. This follows from the monotonicity property of the constraint and shows
that testing one pattern provides information about whether a corresponding set
of patterns may belong to the solution space or not. At this point, the question
arises as to whether we can exploit the analogy with concept-learning further
in order to obtain strategies that would minimize the cost of evaluating the
patterns. The key contribution of this paper is that we introduce an algorithm
for computing the set of solutions Th(Q,D,L) to a conjunctive inductive query
that aims at minimizing the cost of evaluating patterns w.r.t. the primitive con-
straints in the inductive query. More precisely, we assume that the query is of
the form Qa ∧Qm where Qa is anti-monotonic and Qm is monotonic, that there
is a cost cm and ca associated to testing whether a pattern satisfies Qm, resp.
Qa, and we aim at minimizing the total cost of computing Th(Q,D,L). The
algorithm that we introduce builds upon the work by [6] that has introduced an
effective data structure, called the version space tree, and algorithms for com-
puting Th(Q,D,L) for string patterns. In the present paper, we modify this data
structure into the partial version space tree and also present an algorithm that
employs it in order to minimize the total evaluation cost. The approach is also
empirically evaluated on the task of finding patterns in a computational biology
data set. It is compared to the more traditional levelwise approach introduced
in [6].

The paper is organized as follows. Section 2 introduces the problem of con-
junctive query optimization. Section 3 presents a data structure and algorithm
for tackling it. Section 4 reports on an experimental evaluation and finally, Sect.
5, concludes and touches upon related work.

2 Conjunctive Inductive Queries

In this section, we define conjunctive inductive queries as well as the pattern
domain of strings. Our presentation closely follows that of [6].

A pattern language L is a formal language for specifying patterns. Each
pattern φ ∈ L matches (or covers) a set of examples φe, which is a subset of the
universe U of possible examples.

Example 1. Let Σ be a finite alphabet and UΣ = Σ∗ the universe of all strings
over Σ. We will denote the empty string with ε. The traditional pattern language
in this domain is LΣ = UΣ . A pattern φ ∈ LΣ covers the set φe = {ψ ∈ Σ∗ |
φ � ψ}, where φ � ψ denotes that φ is a substring of ψ.

One pattern φ is more general than a pattern ψ, written φ � ψ, if and only
if φe ⊇ ψe.

A pattern predicate defines a primitive property of a pattern, usually relative
to some data set D (a set of examples), and sometimes other parameters. For
any given pattern, it evaluates to either true or false.

We now introduce a number of pattern predicates that will be used for il-
lustrative purposes throughout this paper. Our first pattern predicates are very
general in that they can be used for arbitrary pattern languages:

– minfreq(φ,n,D) evaluates to true iff φ is a pattern that occurs in database
D with frequency at least n ∈ N. The frequency f(φ,D) of a pattern φ
in a database D is the (absolute) number of examples in D covered by φ.
Analogously, the predicate maxfreq(φ, n,D) is defined.

– ismoregeneral(φ,ψ) is a predicate that evaluates to true iff pattern φ is more
general than pattern ψ. Dual to the ismoregeneral predicate one defines the
ismorespecific predicate.

The following predicate is an example predicate tailored towards the specific
domain of string-patterns over LΣ .

– length atmost(φ,n) evaluates to true for φ ∈ LΣ iff φ has length at most n.
Analogously the length atleast(φ,n) predicate is defined.

In all the preceding examples the pattern predicates have the form pred(φ,pa-
rams) or pred(φ,D,params), where params is a tuple of parameter values, D is a
data set and φ is a pattern variable.

We also speak a bit loosely of pred alone as a pattern predicate, and mean
by that the collection of all pattern predicates obtained for different parame-
ter values params. We say that m is a monotonic predicate, if for all possible
parameter values params and all data sets D:

∀ φ, ψ ∈ L such that φ � ψ : m(ψ,D, params) → m(φ,D, params)

The class of anti-monotonic predicates is defined dually. Thus, minfreq, ismore-
general, and length atmost are monotonic, their duals are anti-monotonic.

A pattern predicate pred(φ,D,params) defines the solution set Th(pred(φ,D,
params),L) = {ψ ∈ L | pred(ψ,D, params) = true}. Furthermore, for monotonic
predicates m these sets will be monotone, i.e. for all φ � ψ ∈ L : ψ ∈ Th(m,L) →
φ ∈ Th(m,L).

Example 2. Let L = LΣ with Σ = {a, c, g, t} and D = {acca, at, gg, cga,
accag, at, g}. Then the following predicates evaluate to true: minfreq(acca; 2;
D), minfreq(g; 4; D), maxfreq(ca; 2; D), maxfreq(t; 1; D).

The pattern predicate Qm := minfreq(φ, 2,D) defines Th(Qm,LΣ) = {ε, a, c,
g, ac, ca, cc, acc, cca, acca}, and the pattern predicate Qa := maxfreq(φ, 3,D)
defines the infinite set Th(Qa,LΣ) = LΣ \ {ε, g}.

The definition of Th(pred(φ,D, params),L) is extended in the natural way to
a definition of the solution set Th(Q,L) for boolean combinations Q of pattern
predicates over a unique pattern variable: Th(¬Q,L) := L \ Th(Q,L), Th(Q1 ∨
Q2,L) := Th(Q1,L)∪Th(Q2,L). The predicates that appear in Q may reference
one or more data sets D1, . . . ,Dn.

We are interested in computing solution sets Th(Q,D,L) for boolean queries
Q that are constructed from monotonic and anti-monotonic pattern predicates.
De Raedt et al. [6] presented a technique to rewrite an arbitrary boolean query Q
into an equivalent query of the form Q1∨ ...∨Qk such that k is minimal and each
of the subqueries Qi is the conjunction Qai

∧Qmi
of a monotonic and an anti-

monotonic query. This type of subquery is called conjunctive. De Raedt et al.
argued that this is useful because 1) there exist effective algorithms for comput-
ing the solution space to such queries Qi (cf. [5, 4, 6, 17] and below), and 2) that
minimizing k in this context would also minimize the number of calls to such al-
gorithms and thus corresponds to a kind of inductive query optimization. In the
present paper, we focus on the subproblem of optimizing conjunctive inductive
queries, which is an essential step in this process. Observe that in a conjunctive
query Qa ∧Qm, Qa and Qm need not be atomic expressions. Indeed, it is well-
known that both the disjunction and conjunction of two monotonic (resp. anti-
monotonic) predicates are monotonic (resp. anti-monotonic). Furthermore, the
negation of a monotonic predicate is anti-monotonic and vice versa.

We will assume that there are cost-functions ca and cm associated to the
anti-monotonic and monotonic subqueries Qa and Qm. The idea is that the cost
functions reflect the (expected) costs of evaluating the query on a pattern. E.g.,
ca(φ) denotes the expected cost needed to evaluate the anti-monotonic query Qa
on the pattern φ. The present paper will neither propose realistic cost functions
nor address the nature of these cost functions. Even though it is clear that some
predicates are more expensive than other ones, more work seems needed in or-
der to obtain cost estimates that are as reliable as in traditional databases. The
present use of cost-functions is only a first step in this direction. One point to
mention is also that several of the traditional pattern mining algorithms, such
as Agrawal et al.’s Apriori [2] and the levelwise algorithm [18], try to minimize
the number of passes through the data. Even though this could also be cast
within the present framework, the cost functions introduced above better fit the
situation where the data can be stored in main memory. One direct application
would concern molecular feature mining [17, 16], where one aims at discovering
fragments (i.e. subgraphs) within molecules (represented as graph structures).
In this case, a natural cost function is to minimize the number of covers tests
(i.e. matching a pattern with a molecule or graph) because each covers test cor-
responds to a subgraph isomorphism problem, a known NP-complete problem.

By now, we are able to formulate the conjunctive inductive query optimiza-
tion problem that is addressed in this paper:

Given
– a language L of patterns,
– a conjunctive query Q = Qa ∧Qm
– two cost functions ca and cm from L to R

Find the set of patterns Th(Q,D,L), i.e. the solution set of the query Q in the
language L with respect to the database D, in such a way that that the total
cost needed to evaluate patterns is as small as possible.

One useful property of conjunctive inductive queries is that their solution
space Th(Q,D,L) is a version space (sometimes also called a convex space).

Definition 3. Let L be a pattern language, and I ⊆ L. I is a version space, if
∀φ, φ′, ψ ∈ L : φ � ψ � φ′ and φ, φ′ ∈ I =⇒ ψ ∈ I.

Version spaces are particularly useful when they can be represented by bound-
ary sets, i.e. by the sets G(Q,D,L) of their maximally general elements, and
S(Q,D,L) of their minimally general elements. Finite version spaces are always
boundary set representable, cf. [14], and this is what we will assume from now
on.

Example 4. Continuing from Ex. 2, let Q = Qm ∧ Qa. We have Th(Q,LΣ ,D) =
{a, c, ac, ca, cc, acc, cca, acca}. This set of solutions is completely characterized
by S(Q,LΣ ,D) = {acca} and G(Q,LΣ ,D) = {a, c}.

3 Solution Methods

In this section, we first introduce a data structure, called the partial version
space tree, and then show how it can be used for addressing the optimization
problem.

3.1 Partial version space trees

A partial version space tree is an extension of of a suffix trie. This is a tree T
with the following properties:

– Each edge is labelled with a symbol from Σ, and all outgoing edges from a
node have different labels.

– Each node n ∈ T uniquely represents a string s(n) ∈ Σ� which is the
concatenation of all labels on the path from the root to n. We define s(root) =
ε. If it is clear from the context, we will simply write n instead of s(n).

– For each node n ∈ T there is also a node n′ ∈ T for all suffixes n′ of n.
Furthermore, if n �= root, there is a suffix-link to the longest proper suffix
of n, which we denote by suffix (n). We write suffix2(n) for suffix (suffix (n))
etc. and define suffix i(root) =⊥ ∀ i ∈ N, where ⊥ is a unique entity.

To obtain a partial version space tree, we augment each node n ∈ T with the
following information:

– There are two different labels lm and la, one for the monotonic and one for
the anti-monotonic constraint. Each label may obtain one of the values or

, indicating that the string s(n) satisfies the constraint or not. If the truth
value of a constraint has not been determined yet, the corresponding label
gets a ? .

– There is a link to the father of n, denoted by parent(n). For example, with
n = abc we have parent(n) = ab. As for suffix (n) we write parent2(n) for
parent(parent(n)) etc. and define parent i(root) =⊥ ∀ i ∈ N.

+

+
?

?
?

?
?

?

?
?

+
+

+ ?
?

?
?

?
+

?
+

+
b

c

a

c
a

a

c

a
b
c

b

b

Fig. 1. An example of a partial version space tree. Here and in the rest of this paper,
suffix-links are drawn lighter to distinguish them from the black parent-to-child links.

– There is a list of links to all incoming suffix-links to n which we denote by
isl(n). For example, if n = ab and aab, cab are the only nodes in T that
have n as their suffix, isl(n) = {aab, cab}.
Furthermore, the following conditions are imposed on partial version space

trees:

(C1) for all leaves n in T , either lm(n) = or lm(n) = ? , and all nodes with
lm = are leaves.

(C2) all expanded nodes n have lm(n) =

The first condition is motivated by the monotonicity of our query Qm: if n does
not satisfy Qm, none of its descendants can satisfy the monotonic constraint
either, so they need neither be considered nor expanded. A consequence of these
requirements is that nodes n with lm(n) = must always be expanded. An
example of a partial version space tree can be seen in Fig. 1, where the upper
part of a node stands for the monotonic and the lower part for the anti-monotonic
label.

The algorithm given in the next subsection computes the version space tree
starting from the tree containing only the root and then expanding the tree until
no ? -labels are found. Then, the solution to the original query consists of all
nodes n in T that have a in both of their labels, i.e. they are of type +

+ . As
described in [6], it is also possible to construct the boundary sets S and G from
the partial version space tree.

3.2 An Algorithmic Framework

We are now ready to present an algorithmic framework for computing Th(Qm ∧
Qa,D,LΣ). The key idea is that instead of constructing the version space tree
in a top-down, Apriori-like manner, we allow for more freedom in selecting the
pattern φ and the query Qa(φ) or Qm(φ) to be evaluated. By doing so, we

φ?

?

?

?

?

(a) Node φ is tested against Qm. Note
that φ can’t have any children due to
condition (C2).

φ+?

?
?

?

(b) If it is positive, we mark it accord-
ingly. . .

φ+

+

+

?

?

(c) . . . and propagate this label up to
the root until we reach a node that
has already been marked positive.

φ?

?

(d) If it is negative, the label is prop-
agated down to the leaves by recur-
sively following the incoming suffix-
links.

Fig. 2. How monotone labels are propagated in the tree.

hope to decrease the total cost of obtaining the solution space. As a motivating
example, assume our alphabet is Σ = {a, b, c} and pattern φ = abc turns out to
satisfy Qm. Then, by the monotonicity of Qm, we know that all patterns more
general than φ satisfy Qm as well, so ε, a, b, c, ab and bc need no longer be
tested against Qm. Thus, by evaluating φ, we also obtain the truth values (w.r.t.
Qm) of six other patterns, which would all have been tested using a levelwise
strategy. If, on the other hand, φ does not satisfy Qm, we know that all patterns
more specific than φ cannot satisfy Qm, so the node representing φ need not be
expanded. (This last observation corresponds to the Apriori pruning-strategy.)

This suggests the following approach: Whenever a pattern φ is positive w.r.t.
Qm, we propagate the monotonic -label up to the root by recursively following
φ’s parent- and suffix-links, until we reach a node that has already been marked
positive. Furthermore, φ will be expanded and all of its children are labelled
appropriately. If φ does not satisfy Qm, we stop the expansion of this node
and propagate the monotonic down to the leaves by following the incoming
suffix-links of φ. See Fig. 2 for a schematic overview of these operations.

For the anti-monotonic query Qa, we propagate the labels in opposite direc-
tions. That is, a is propagated down to the leaves (by following the children-

and incoming suffix-links) and a up to the root. The corresponding algorithm
is shown in Fig. 3. We use a priority queue P to store those nodes whose truth
value has not been fully determined, i.e. all nodes of types ?

? , ?
+ , ? and +

? . The
queue not only returns the next pattern φ to be evaluated, but also a variable
pred that tells us which of the predicates Qm or Qa should be evaluated for φ.
Whenever a change of labels results in a label of the other type (+

+ , + , + , or
?), we remove the node from P . Note that nodes of type ? are also deleted from
P although their anti-monotonic part is undetermined; cf. the above discussion.

Input: a query Q = Qm ∧Qa and a database D
Output: a version space tree T representing Th(Q,D,L)
VSTree T ← {(ε, ?

?)} // insert empty string and mark it as unseen
PriorityQueue P ← {ε}
while (|P | > 0)

(φ, pred)← P.next // get next pattern and predicate to be evaluated

if (pred = antimonotone) // evaluate Qa by accessing D
if (Qa(φ,D)) // a pattern satisfying Qa

propagate + down to the leaves and remove determined patterns from P
else // a pattern not satisfying Qa

propagate up to the root and remove determined patterns from P

else if (pred = monotone) // evaluate Qm by accessing D
if (Qm(φ,D)) // a pattern satisfying Qm

propagate + up to the root and remove determined patterns from P
expand φ in T
for all children ψ of φ // set children’s labels

if (lm(suffix (ψ)) =) lm(ψ)← else lm(ψ)← ?

if (la(φ) = or la(suffix (ψ)) =) la(ψ)← else la(ψ)← ?

insert ψ in P if it is not fully determined
else // a pattern not satisfying Qm

propagate down to the leaves and remove determined patterns from P
return T

Fig. 3. An algorithmic framework

The choice of priorities for nodes determines the search strategy being used.
By assigning the highest priorities to the most shallow nodes (i.e. nodes that
are close to the root), a level wise search is simulated as in [6]. On the other
hand, by assigning the highest priorities to the deepest nodes, we are close to
the idea of Dualize & Advance [10, 9], since we will go deeper and deeper into
the tree until we encounter a node that has only negative children. Somewhere
in the middle between these two extremes lies a completely randomized strategy,
which assigns random priorities to all nodes. In the next subsection, we propose
an algorithm that tries to approximate an optimal strategy.

3.3 Towards An Optimal Strategy

Let us first assign four counters to each node φ in the partial version space tree
T : zm(φ), z¬m(φ), za(φ) and z¬a(φ). Each of them counts how many labels of
nodes in T would be marked if φ’s label were changed (including φ itself). For ex-
ample, zm(φ) counts how many monotone labels would be marked if φ turned
out to satisfy Qm. In the tree in Fig. 1, we have zm(cab) = 3, because marking
cab with a + would result in marking ab and b as well, whereas zm(ac) = 1, be-
cause no other nodes could be marked in their monotonic part. Likewise, z¬m(φ)
counts how many monotone labels would change to if Qm(φ,D) turned out to
be false. The za(φ)- and z¬a(φ)-counters form the anti-monotonic counterpart.
We define zm(φ) = z¬m(φ) = 0 if φ’s monotonic label is �= ? , and likewise for
za and z¬a. If there is no confusion about which node we talk, we will simply
write zm instead of zm(φ) etc.

Assume further that we know the following values for each pattern:

– Pm(φ,D), the probability that φ satisfies the monotonic predicate Qm in
database D,

– Pa(φ,D), the dual of Pm for the anti-monotonic predicate Qa,
– cm(φ,D), the costs for evaluating the monotonic predicate Qm(φ,D) and
– ca(φ,D), the dual of cm for the anti-monotonic predicate Qa.

Now
Pm(φ,D) · zm(φ) + (1 − Pm(φ,D)) · z¬m(φ)

is the expected value of the number of monotone labels that get marked by
evaluating Qm for pattern φ. Since the operation of evaluating Qm(φ,D) has
costs cm(φ,D), we see that the average number of marked labels per cost unit
are

1
cm(φ,D) (Pm(φ,D) · zm(φ) + (1 − Pm(φ,D)) · z¬m(φ)).

A similar formula holds for the average number of marked anti-monotone labels,
so the optimal node in the partial version space tree is the one where

max { 1
cm

(Pmzm + (1 − Pm) · z¬m), 1
ca

· (Paza + (1 − Pa) · z¬a)} (1)

is maximal.
The question now is how to determine the probabilities and costs. For certain

types of queries and databases it is conceivable that costs grow with increasing
complexity of the patterns. For example, testing the coverage of a string becomes
more expensive as the pattern becomes longer. On the other hand, short patterns
are more likely to satisfy Qm than long ones (and vice versa for Qa). Therefore,
length could be taken into account when approximating the the above costs and
probabilities, but let us for now assume that there is no prior knowledge about
those values, so we simply take Pm = Pa = 1

2 and cm = ca = 1. With uniform
costs and probabilities (1) breaks down to 1

2 max {zm + z¬m, za + z¬a)}, where
we can drop the constant factor 1

2 because it has no impact on the relative order
of the nodes.

φ
φ
φ

φ

φ

parent(suffix()) =
suffix(parent())

suffix()

parent()

.

Fig. 4. Calculating zm: When sum-
ming up zm(parent(φ)) and zm(suffix (φ)),
zm(parent(suffix (φ))) has been counted
twice.

parent(parent()) =

φ

φ
φ φ

φ
φ

parent()

parent(suffix())
suffix()

suffix(suffix())

Fig. 5. If φ = γ1 . . . γn (γi ∈ Σ)
and suffix2(φ) = parent2(φ), we have
γ1 . . . γn−3 = γ3 . . . γn, i.e. γ1 = γ3 =
γ5 = . . . , γ2 = γ4 = . . .

3.4 Calculating the Counter-Values

Next, we show how the four counter-values can be computed. Let us start with
the zm(φ)-counter. Since a monotone -label for φ would be propagated up to
the root by following φ’s parent- and suffix-link, we basically have that zm(φ) is
the sum of zm(parent(φ)) and zm(suffix (φ)) plus 1 for φ itself. But, due to the
fact that parent(suffix (φ)) = suffix (parent(φ)), we have that this zm-value has
been counted twice; we thus need to subtract it once (see Fig. 4):

zm(φ) ≈ zm(parent(φ)) + zm(suffix (φ)) − zm(parent(suffix (φ))) + 1 (2)

There are some exceptions to this equation: The easiest case is when suffix (φ) =
parent(φ), which happens if φ = γn for γ ∈ Σ,n ∈ N. We then have zm(φ) =
zm(parent(φ)) + 1 because parent(φ) is the only immediate generalization of
φ. A slightly more complicated exception is when suffix2(φ) = parent2(φ),
which happens when φ = γδγδγ . . . for γ, δ ∈ Σ (see Fig. 5). Then zm(φ) =
zm(parent(φ)) + 2, because all patterns that are more general than φ (apart
from suffix (φ)) are already counted by zm(parent(φ)). Similar rules for calculat-
ing zm hold for exceptions of the type suffix3(φ) = parent3(φ) etc. We summarize
these results in the following

Lemma 5. The counter-value for zm is given by

zm(φ) =




zm(parent(φ)) + n if suffixn(φ) = parentn(φ)
zm(parent(φ)) + zm(suffix (φ))−
zm(parent(suffix (φ))) + 1

otherwise

where we have to take the smallest value of n for which the “exceptional” case
applies.

In practical implementations of this method it is advisable to “cut off”
the search for the exceptional cases at a fixed depth (e.g. up to suffix2(φ) =
parent2(φ)) and take the value of the “otherwise”-case as an approximation to
the true value of zm.

φ

....
....

....
....

....

Fig. 6. Calculating za: When summing
up za of φ’s children and incoming suffix-
links, the za’s of the children of the incom-
ing suffix-links have been counted twice.

ψφ
....

....
....

Fig. 7. One of φ’s grandchildren (ψ) has
one of φ’s incoming suffix-links as its own
suffix. So ψ has been counted twice and
needs to be subtracted once.

Since anti-monotone -labels are propagated in the same direction as mono-
tone -labels, lemma 5 holds for z¬a as well. For the remaining two counters,
we have to “peek” in the other direction, i.e. we have to consider the children
and incoming suffix-links of φ. In a similar manner as we did for zm, we have to
consider the values that have been counted twice when summing over the za’s
of φ’s children and incoming suffix-links. These are exactly the children of all
incoming suffix-links, because their suffix-links point to the children of φ (see
Fig. 6). We thus get the basic formula

za(φ) ≈
∑

ψ∈children(φ)

za(ψ) +
∑

ψ∈isl(φ)

za(ψ) −
∑

ψ∈children(isl(φ))

za(ψ) + 1. (3)

Again, we need to consider some special cases where the above formula does not
hold. The first is when one of φ’s children has φ as its suffix, which happens
iff φ = γn for γ ∈ Σ,n ∈ N, because one of φ’s sons is γn+1. In this case,
we just sum once over this node and do not subtract za of γn+1’s children,
because they were counted only once. The second exception arises when one of
φ’s grandchildren, say ψ, has one of φ’s incoming suffix-links as its suffix, see
Fig. 7. Again, this happens when φ = γδγδγ . . . for γ, δ ∈ Σ and ψ = φγδ. Then
a 1 for ψ needs to be subtracted from (3), because it has been counted twice.
Note that the za’s of ψ’s children have not been counted twice; they have already
been subtracted by the last sum in (3). There are many more exceptions, and the
correct formula for the update is relatively complicated; as we only experimented
with an approximation, we just give the equation that captures the above two
cases (children is abbreviated as ch):

za(φ) ≈
∑

ψ∈ch(φ)

za(ψ) +
∑

ψ∈isl(φ)
ψ �∈ch(φ)

(
za(ψ) −

∑
χ∈ch(ψ)

za(χ)
)

(+1) (4)

Here, the 1 is only added if the exception from Fig. 7 does not arise. Note that
the equations for zm and za have a recursive structure, because for calculating
a counter-value we employ the corresponding counter-values of other nodes. So
care has to be taken in which direction we traverse the tree when updating
these values. In general, we work in the opposite directions than we would do if
we propagated the corresponding label in the tree. Take, for example, the case
where φ’s monotonic label changes from ? to . Whereas we propagate this
label down to the leaves, we then need to adjust the z¬m-counters of all nodes
between φ and the root. So we first adjust z¬m of φ’s father and suffix, then
proceed to their fathers and suffices, etc. Again, the recursion stops when we
reach a node that has already been marked in its monotonic part (and thus has
zm = z¬m = 0).

4 Experimental Results

We implemented the algorithm from Fig. 3 with two different queuing-strategies.
The first, called Random, uses random priorities for the nodes in queue P . The
second strategy, called CounterMax, works with the counter-values from Sect.
3.3, where we chose uniform costs and probabilities. We checked for exceptional
cases up to suffix2, as explained in Sect. 3.4. According to the algorithm and to
(1), each pattern is tested either against Qm or Qa, depending on which of the
subquery yields the maximum. We compared the results to an implementation
of algorithm VST which constructs the version space tree in two passes (called
Descend and Ascend). The Descend algorithm is a straightforward adapta-
tion of the Apriori and levelwise algorithm for use with strings and version space
trees. It computes the set of all solutions w.r.t. Qm. Ascend starts from this
result working bottom up and starting from the leaves of the tree. For each leaf,
Ascend tests whether it satisfies Qa, if it does, the parent of the leaf will be
tested; if it does not, the pattern is labelled � and the labels are propagated
towards the parents and suffixes, more details can be found in [6].

We used a nucleotide database to compare the three algorithms, so our al-
phabet was Σ = {a, c, g, t}. The first dataset D1 was used for a minfrequency
query and consisted of the first hundred nucleotide sequences from the Hepati-
tis C virus of the NIH genetic sequence database GenBank [22]. The second
dataset D2 held the first hundred sequences from the Escherichia coli bacterium
and was used for a maxfrequency query. The average length of the entries in D1

was about 500, the maximum 10,000. For D2 we had the values 2,500 and 30,000,
respectively. We do not pretend that our results have any biological relevance;
we simply used these datasets as a testbed for the different methods. We ran
each algorithm several times for the query

minfreq(φ;min;D1) ∧ maxfreq(φ;max;D2),

where each of the variablesmin andmax could take one of the values {2, 3, 4, 5, 6,
7, 8, 9, 10, 15, 20, . . . , 95}. Some of the results can be seen in Fig. 8.

100

1000

10000

100000

10 20 30 40 50 60 70 80 90

ev
al

ua
tio

ns
 o

f Q
m

minfrequency (%)

maxfrequency = 1

CounterMax
Random

VST

(a)

10

100

1000

10000

100000

10 20 30 40 50 60 70 80 90

ev
al

ua
tio

ns
 o

f Q
a

minfrequency (%)

maxfrequency = 1

CounterMax
Random

VST

(b)

0

5000

10000

15000

20000

0 20 40 60 80 100

ev
al

ua
tio

ns
 o

f Q
m

maxfrequency (%)

minfrequency = 10

CounterMax
Random

VST

(c)

0

2000

4000

6000

8000

10000

12000

14000

0 20 40 60 80 100

ev
al

ua
tio

ns
 o

f Q
a

maxfrequency (%)

minfrequency = 10

CounterMax
Random

VST

(d)

Fig. 8. A comparison of the three algorithms. Note that in figures (a) and (b) a loga-
rithmic scale has been used.

Figures (a) and (b) show how the number of database accesses grows with
decreasing values for min when the maximum frequency is constant. Although
max has been fixed to 1, similar graphs could be shown for other values of
max. Note that in the region where the hard instances lie (min ∈ {2, . . . , 10}),
CounterMax performs significantly better than VST. This is in particular true for
the number of evaluations of Qa (Fig. (b)). For the easy instances, our method
takes slightly more evaluations of both predicates. This is obvious; if the length
of the longest pattern satisfying Qm is small, it is very unlikely to beat a levelwise
method.1 The random strategy lies somewhere in the middle between those two
other methods.

1 This fact has already been pointed out by [10]. We double-checked CounterMax on a
different database (containing ORFs from yeast) where no performance improvement
compared to VST could be seen either.

Figures (c) and (d) show the performance when min is fixed and max
changes. The first thing to note is that in Fig. (c) the number of evaluations
of Qm is constant for VST. This is a simple consequence of how the algorithm
works. Again, CounterMax takes less evaluations than VST, and Random is in
between. In Fig. (d) we can see that for VST, the number of evaluations of
Qa levels off when max decreases, whereas the other two methods behave con-
versely. The reasons for this are clear: VST treats the anti monotonic query in
a bottom-up manner by starting at the leaves. When it encounters a negative
pattern w.r.t. Qa, it propagates this label up to the root. This is more likely to
happen at the leaves for small max, so in these cases it saves a lot of evaluations
of the anti monotonic predicate. For methods CounterMax and Random it is
better when positive patterns (w.r.t. Qa) are close to the root, which happens
for large max, because then all newly expanded nodes will “automatically” be
marked with a + and need never be tested against Qa.

5 Related Work and Conclusions

Algorithms that try to minimize the total number of predicate evaluations have
been around for several years, most notably Gunopulos et al.’s Dualize & Ad-
vance-algorithm [10, 9] that computes S(minfreq(φ, ·,D),L) in the domain of
itemsets. This works roughly as follows: first, a set MS of maximal specific sen-
tences is computed by a randomized depth-first search. Then the negative border
of MS is constructed by calculating a minimum hypergraph transversal of the
complements of all itemsets in MS. This process is repeated with the elements
from the hypergraph transversal until no more maximal specific sentences can
be found. The result is then set of all maximal interesting itemsets.

Although Gunopulos et al. work with itemsets and only consider monotonic
predicates, there is a clear relation to our approach. Whereas the former method
needs to compute the minimum hypergraph transversals to find the candidates
for new maximal interesting sentences, these can be directly read off the partial
version space tree. In fact, all nodes whose monotonic part is still undetermined
are the only possible patterns of S(minfreq(φ, ·,D),L) that have not been found
so far. These are exactly the nodes that are still waiting in the priority queue.
So by performing a depth-first expansion until all children are negative, our
algorithm’s behaviour is close to that of Dualize & Advance. It should be noted
that the two strategies are not entirely equal: if a node φ has negative children
only, it is not necessarily a member of S because there could still be more specific
patterns that have φ as their suffix and satisfy Qm.

One of the fastest algorithms for mining maximal frequent sets is Bayardo’s
Max-Miner [3]. This one uses a special set-enumeration technique to find large
frequent itemsets before it considers any of their subsets. Although this is com-
pletely different from what we do at first sight, CounterSum also has a tendency
to test long strings first because they will have higher zm-values. By assigning
higher values to Pm for long patterns this behaviour can even be enforced.

As mentioned in the introduction, the work is related — at least in spirit
— to several proposals for minimizing the number of membership queries when
learning concepts, cf. [20].

Finally, let us mention that the present work is a significant extension of
that by [6] in that we have adapted and extended their version space tree and
also shown how it can be used for optimizing the evaluation of conjunctive
queries. The presented technique has also shown to be more cost effective than
the Ascend and Descend algorithms proposed by [6].

Nevertheless, there are several remaining questions for further research. They
include an investigation of cost functions for inductive queries, methods for es-
timating or approximating the probability that a query will succeed on a given
pattern, determining the complexity class of the query optimization problem, ad-
dressing query optimization for general boolean queries, and considering other
types of pattern domains. The authors hope that the presented formalization
and framework will turn out to be useful in answering these questions.

Acknowledgements

This work was partly supported by the European IST FET project cInQ. The
authors are grateful to Manfred Jaeger, Sau Dan Lee and Heikki Mannila for
contributing the theoretical framework on which the present work is based, to
Amanda Clare and Ross King for the yeast database and to Sau Dan Lee and
Kristian Kersting for feedback on this work.

References

1. R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In Proc.
VLDB, 1994.

2. R. Agrawal, T. Imielinski, A. Swami. Mining association rules between sets of items
in large databases. In Proc. SIGMOD, pp. 207-216, 1993.

3. R. Bayardo. Efficiently mining long patterns from databases. In Proc. SIGMOD,
1998.

4. C. Bucila, J. Gehrke, D. Kifer, W. White. DualMiner: A dual pruning algorithm
for itemsets with constraints. In Proc. of SIGKDD, 2002.

5. L. De Raedt, S. Kramer. The levelwise version space algorithm and its application
to molecular fragment finding. In Proc. IJCAI, 2001.

6. L. De Raedt, M. Jäger, S. D. Lee, H. Mannila: A Theory of Inductive Query
Answering. In Proceedings of the 2002 IEEE International Conference on Data
Mining (ICDM’02), 123–130, Maebashi (Japan), 2002.

7. L. De Raedt, A perspective on inductive databases. SIGKDD Explorations, Vol. 4
(2), 2002.

8. B. Goethals, J. Van den Bussche. On supporting interactive association rule min-
ing. In Proc. DAWAK, LNCS Vol. 1874, Springer Verlag, 2000.

9. D. Gunopulos, H. Mannila, S. Saluja. Discovering All Most Specific Sentences by
Randomized Algorithms. In Proc. ICDT, LNCS Vol. 1186, Springer Verlag, 1997.

10. D. Gunopulos, R. Khardon, H. Mannila, H. Toivonen: Data mining, Hypergraph
Transversals, and Machine Learning. In Proceedings of the 16th ACM Symposion
on Principles of Database Systems (PODS), Tuscon (Arizona), 1997.

11. J. Han, Y. Fu, K. Koperski, W. Wang, and O. Zaiane. DMQL: A Data Mining
Query Language for Relational Databases.In Proc. SIGMOD’96 Workshop on Re-
search Issues on Data Mining and Knowledge Discovery, Montreal, Canada, June
1996.

12. J. Han, L. V. S. Lakshmanan, and R. T. Ng. Constraint-Based, Multidimensional
Data Mining, Computer, Vol. 32(8), pp. 46-50, 1999.

13. J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate generation.
In Proc. SIGMOD, 2000.

14. H. Hirsh. Generalizing Version Spaces. Machine Learning, Vol. 17(1): 5-46 (1994).
15. H. Hirsh. Theoretical underpinnings of versionspaces. In Proc. IJCAI, 1991.
16. Akihiro Inokuchi, Takashi Washio, Hiroshi Motoda: Complete Mining of Frequent

Patterns from Graphs: Mining Graph Data. Machine Learning 50(3): 321-354
(2003)

17. S. Kramer, L. De Raedt, C. Helma. Molecular Feature Mining in HIV Data. In
Proc. SIGKDD, 2001.

18. H. Mannila and H. Toivonen. Levelwise search and borders of theories in knowledge
discovery, Data Mining and Knowledge Discovery, Vol. 1, 1997.

19. T. Mitchell. Generalization as Search, Artificial Intelligence, Vol. 18 (2), pp. 203-
226, 1980.

20. T. Mitchell. Machine Learning. McGraw Hill. 1997.
21. R. T. Ng, L. V.S. Lakshmanan, J. Han, and A. Pang. Exploratory mining and

pruning optimizations of constrained associations rules. In Proc. SIGMOD, 1998.
22. NIC Genetic Sequence Database. Available at www.ncbi.nlm.nih.gov/

Genbank/GenbankOverview.html

23. E. Ukkonen. On-line construction of suffix trees. Algorithmica, 14(3):249–260,
1995.

24. P. Weiner. Linear pattern matching algorithm. In Proc. 14th IEEE Symposium on
Switching and Automata Theory, pages 1–11, 1973.

What You Store Is What You Get
(extended abstract)

Floris Geerts, Bart Goethals, and Taneli Mielikäinen

HIIT Basic Research Unit
Department of Computer Science
University of Helsinki, Finland

Abstract. Recent studies emerged the need for representations of fre-
quent itemsets that allow to estimate supports. Several methods have
been proposed that achieve this goal by generating only a subset of all
frequent itemsets. In this paper, we propose another approach, that given
a minimum support threshold, stores only a small portion of the original
database from which the supports of frequent itemsets can be estimated.
This representation is especially valuable in case one is interested in fre-
quent itemset of size at least some threshold value. However, we also
present methods for estimating the support of smaller frequent itemsets.

1 Introduction

Due to the large amount of frequent itemsets that can be generated from trans-
actional databases, recent studies emerged the need for concise representations
of all frequent itemsets. In the context of inductive databases, one wants to an-
swer support queries as efficiently as possible. Not only the effort to obtain the
supports is important, but also the storage capacity needed plays an important
role. This resulted in several successful algorithms that generate only a small
portion of all frequent itemsets that allow to derive the support of all other fre-
quent itemsets [2,3,4,5,6,7]. The drawback of some of these algorithms is that
they compute representations which are difficult to interpret and to understand.

Two extreme examples of such algorithms are the following: When the pri-
mary concern is the data storage, the database itself can serve as representation
for the frequent sets. Indeed, in many cases the number of unique transactions in
the database is smaller than the number of all frequent itemsets. To obtain the
support of itemsets, one simply scans the database and count. When time is of
importance, the set of frequent itemsets itself provides an efficient representation
since the support of an itemset is obtained by a simple lookup.

It is therefore only natural to ask for intermediate representations that store
parts of both the transaction database and the set of frequent itemsets. In this
paper, we define such a representation and report some initial investigations.
To the best of our knowledge, such intermediate representations have not been
considered before.

The transaction database part of this representation is obtained by trimming.
The idea is to modify the transaction database optimally for finding all frequent

sets of size larger than a certain size k. This is done by throwing away transac-
tions from the database that do not contribute to the support of any frequent
k-itemset and by throwing away items from all transactions that no longer occur
in any frequent k-itemset supported by that transaction. A similar technique is
used to speed up Apriori-like algorithms, such as DHP [11] and DCI [10].

Although the frequencies of frequent itemsets of size larger or equal to k can
be retrieved easily from such a trimmed database, this is less obvious for smaller
itemsets.

We provide three approaches to obtain information about the support of
itemsets of size smaller than k. The first approach consists of simply adding
these frequent sets to the representation; in this way, the representation be-
comes intermediate. The second approach estimates the support of an itemset
by computing it relative the the trimmed database. The last approach uses affine
transformations to obtain more accurate estimates for the supports of these small
itemsets.

The paper is organized as follows. In Section 2 we provide the necessary
definitions. Section 3 explains the process of database trimming and Section 4
shows three ways of dealing with small itemsets. In Section 5, we end the paper
with some final thoughts and ideas for future work.

2 Preliminaries

Let I be a set of items. A subset of I is called an itemset, or a k-itemset if
it consists of k items. A transaction over I is a pair (tid, I) where tid is the
transaction identifier and I is an itemset. A transaction (tid, I) supports an
itemset J ⊆ I if J ⊆ I. A transaction database D over I is a finite set of
transaction over I.

The cover of an itemset I in D is the set of transactions in D which support
I:

cover (I,D) := {(tid, J) ∈ D | I ⊆ J} .

The support of an itemset I in D, denoted by s(I,D), is the size of its cover in D.
The cover of a set of itemsets I1, . . . , Ik in D, denoted by cover({I1, . . . , Ik},D),
is the union of the covers of the itemsets.

Let σ be a natural number, then an itemset I is σ-frequent in D if s(I,D)
≥ σ. We will denote the set of σ-frequent k-itemsets in D by Fk,σ(D), or Fk,σ

when D is clear from the context. Also, Fσ := ∪∞
i=0Fi,σ, F≥k,σ := ∪∞

i=kFi,σ and
F<k,σ := ∪k−1

i=0 Fi,σ.
For any (tid, I) ∈ D and a set of itemsets S, let

I [S] := {i | i ∈ J ∧ J ∈ S ∧ J ⊆ I} .

3 Trimming the database

In this section we propose a representation for all frequent itemsets of size at
least a certain k. The representation consists of a transaction database which is
smaller than the original transaction database, and is obtained by trimming the
original database.

3.1 Horizontal Trimming

The horizontal trimming consists of throwing away transactions from the database
that do not contribute to the support of any frequent k-itemset. Define for
k = 1, 2, . . . , |I|,

Hk,σ := cover(Fk,σ,D).

Since the number of transactions supporting frequent k-itemsets decreases as k
increases. i.e.,

D ⊇ H1,σ ⊇ · · · ⊇ H|I|,σ,

we have that cover(F≥k,σ,D) = cover(Fk,σ,D). We obtain the following:

Lemma 1. For any k = 1, 2, . . . , |I|, we have that for any I ∈ F≥k,σ,

s(I,D) = s(I,Hk,σ). (1)

Proof. Since Hk,σ ⊆ D, we immediately have the inequality s(I,D) ≥ s(I,Hk,σ).
We now prove that for I ∈ F≥k,σ also s(I,D) ≤ s(I,Hk,σ) holds. Let (tid, J) ∈
cover(I,D). Now, I ∈ F≥k,σ implies that cover(I,D) ⊆ cover(F≥k,σ,D) = Hk,σ,
and hence also (tid, J) ∈ cover(I,Hk,σ). �	

This lemma implies that itemsets of size at least k are σ-frequent in D if and
only if they are frequent in Hk,σ. Hence, the following theorem holds.

Theorem 1. For any k and σ,

F≥k,σ(Hk,σ) = F≥k,σ(D).

3.2 Vertical Trimming

The vertical trimming consists of throwing away items from all transactions that
no longer occur in any frequent k-itemset supported by that transaction.

Define for k = 1, 2, . . . , |I|,

Vk,σ := {(tid, I[Fk,σ]) | (tid, I) ∈ D}.

Similar to Theorem 1 we obtain:

Theorem 2. For any k and σ,

F≥k,σ(Vk,σ) = F≥k,σ(D).

3.3 Combined Trimming

The combined trimming consists of performing both horizontal and vertical trim-
ming. Define for k = 1, 2, . . . , |I|,

Dk,σ := cover(Fk,σ,Vk,σ)

or equivalently,
Dk,σ := {(tid, I[Fk,σ]) | (tid, I) ∈ Hk,σ}.

Again, we obtain:

Theorem 3. For any k and σ,

F≥k,σ(Dk,σ) = F≥k,σ(D).

Note that Dk,σ actually consists of all non-empty transactions in Vk,σ.

3.4 An example

We illustrate the effect of trimming on the BMS-Webview-1 database [15]. The
support is fixed to σ = 36 = 0.06 × 59 602. A lower support is not feasible due
to the combinatorial explosion of the number of frequent itemsets. For σ = 36,
the database contains 461 521 frequent itemsets.

The size of the trimmed database Dk,σ in function of k is shown in Figure 1.
As can be seen, the size of the trimmed transaction database decreases very
quickly when k increases.

Of course, in general this is not always the case. For example, the reg-
ularly used mushroom dataset from the UCI repository of machine learning
databases [1] contains approximately 8 000 transactions of which almost all of
them contain frequent itemsets of all sizes (for most widely used minimum sup-
port thresholds).

4 Taking care of the smaller itemsets

The database trimming we proposed in the previous section provides a concise
representation for the frequent sets of size at least k. However, sometimes one
is also interested in the small frequent sets. In this section, we propose three
methods for estimating the support of itemsets of size smaller than k.

4.1 A naive lossless approach

A naive approach to obtain the exact support of any itemset of size smaller
than k is to augment Dk,σ to a representation for all frequent sets by adding the
frequent sets of size smaller than k.

Theorem 4. For any k and σ,

F<k,σ(D) ∪ F≥k,σ(Dk,σ) = Fσ.

0

20000

40000

60000

80000

100000

120000

140000

160000

2 4 6 8 10 12 14 16

si
ze

 o
f t

rim
m

ed
 d

at
ab

as
e

�

k

Fig. 1. Effect of trimming on BMS-Webview-1 database with σ = 36.

Note that for k = 1, the proposed representation actually consists of the
original database from which all infrequent items and uncovered transactions
are removed. The only frequent set stored in this case is the empty set whose
support corresponds to the number of transactions in the original database. For
other values of k, this representation consists of a part of the database and a
part of all frequent itemsets.

In Figure 2 the representation for all frequent sets for the BMS-Webview-1
dataset and σ = 36 is shown. The figure shows for each k the size of this lossless
representation. Additionally, the total size of the original database is shown, as
well as the total size of all frequent itemsets. That is, the sum of the sizes of all
transactions or itemsets respectively. As can be seen, for small k, the size of the
proposed representation becomes half of the original database. For larger k, the
trimmed database becomes much smaller (as could be seen on Figure 1), and
hence, a lot of information contained in those transactions get lost, such that
much more frequent itemsets need to be stored. Eventually, the other extreme
is reached in which all frequent itemsets are stored and the trimmed database
is empty. Note that for this dataset with the used minimum support threshold,
the original database itself is already orders of magnitude smaller than the total
size of all frequent itemsets. Hence, the space-time tradeoff of storing all frequent
itemsets, or only storing the database becomes eminent in this case. Fortunately,
intermediate solutions are near.

The complexity of retrieving the support of an arbitrary frequent itemset
I then amounts to a simple lookup in F<k,σ(D) if |I| < k. In the other case,

0

500000

1e+06

1.5e+06

2e+06

2.5e+06

3e+06

3.5e+06

2 4 6 8 10 12 14

si
ze

 o
f r

ep
re

se
nt

at
io

n

�

k

lossless representation
database

frequent sets

Fig. 2. The representation for Fσ for the BMS-Webview-1 dataset and σ = 36.

if |I| ≥ k, we have to compute the support of I in the sometimes significantly
smaller database Dk,σ. Additionally, we can use any other concise representation
on F<k,σ(D) to reduce the total size even more [2,8,9,12,13].

4.2 A naive lossy approach

If the exact support of the itemsets of size smaller than k is not important, but
an approximation suffices, then in many cases, Dk,σ itself can already provide a
useful estimate for the support of these smaller itemsets.

In Figure 3 we show the squared error

sqrerr (Fσ(D),Fσ(Dk,σ)) =
∑

I∈Fσ(D)

(s(I,D) − s(I,Dk,σ))2

in function of k. Here, we used again the BMS-Webview-1 database with σ = 36.

4.3 A less lossy less naive approach

Another approach is to partition the frequent sets by grouping the frequent sets
of size at most k−1 and to determine how each group should be corrected using
one correction operator within one group. The grouping and correction operators
for each group should have simple descriptions.

0

1e+08

2e+08

3e+08

4e+08

5e+08

6e+08

7e+08

8e+08

2 4 6 8 10 12 14

sq
er

r

�

k

lossy
less lossy

Fig. 3. The squared error for a = 1 and b = 0 compared with the squared error
for optimal values for a and b for the BMS-Webview-1 database with σ = 36.

1

2

3

4

5

6

7

2 4 6 8 10 12 14

lo
ss

y/
le

ss
 lo

ss
y

�

k

Fig. 4. The ratio of the squared error for a = 1 and b = 0 and the squared error
for optimal values for a and b for the BMS-Webview-1 database with σ = 36.

As a concrete example, we consider the case where the grouping is de-
termined by the size of the sets. That is, our groups that need to be cor-
rected are F0,σ, . . . ,Fk−1,σ. As a correction we compute an affine transformation
(x, ai, bi)
→ aix + bi for each group Fi,σ, 0 ≤ i ≤ k − 1 that minimized the sum
of squared differences between the correct support and the support estimated
from Dk:

sqrerr (Fσ(D),Fσ(Dk)) =
∑

I∈Fσ

(
s(I,D) − (a|I|s(I,Dk,σ) + b|I|)

)2

=
∑

I∈F<k,σ

(
s(I,D) − (a|I|s(I,Dk,σ) + b|I|)

)2
.

The error sqrerr is minimized by choosing (ai, bi), 0 ≤ i ≤ k − 1 to be (see e.g.
[14]):

ai =
|Fi,σ|

∑
I∈Fi,σ

s(I,D)s(I,Dk,σ) −
(∑

I∈Fi,σ
s(I,D)

)(∑
I∈Fi,σ

s(I,Dk,σ)
)

|Fi,σ|
∑

I∈Fi,σ
s(I,Dk,σ)2 −

(∑
I∈Fi,σ

s(I,Dk,σ)
)2

bi =

∑
I∈Fi,σ

s(I,D) − ai

∑
I∈Fi,σ

s(I,Dk,σ)

|Fi,σ|
For example, the correction (a0, b0) for the support of the empty set (i.e., all

frequent sets of size 0 as F0,σ = {∅}) is equal to (|D|/|Dk|, 0). In general (ai, bi)
attempts to tell how much the databases D and Dk differ when only considering
the frequent i-itemsets: ai scales the supports and bi shifts them.

This method is illustrated in Figure 3, where we show the squared error for
a = 1 and b = 0 compared with the squared error for optimal values for a and
b for the BMS-Webview-1 database with σ = 36. To adjust the estimates even
more, we also use the trivial information that supports are non-negative and
cannot be larger than the number of transactions in the database. In Figure 4
we also compare the lossy approach with the less lossy approach by showing the
ratio of the squared error for a = 1 and b = 0 and the squared error for optimal
values for a and b.

5 Conclusions and future work

In the context of inductive databases for frequent itemsets, it is important to
find good representations of the dataset in order to efficiently answer support
queries. Instead of storing only a subset of all frequent itemsets, we propose to
store parts of both the set of frequent itemsets and the database. In this way, the
support of small frequent itemsets can be computed using a simple lookup, and
the support of large frequent itemsets can be computed using a scan through a
sometimes significantly reduced database.

When the representation is allowed to be lossy, two techniques are proposed
which already show promising results with respect to the error on the support
of an approximated itemset.

The proposed methodology of storing only a part of the database and a part
of the frequent itemsets sheds a new light on representations, which we will
investigate further. An interesting question is whether there exists an optimal
separation of transactions and frequent itemsets, such that the resulting repre-
sentation is small but still offers an efficient method to compute or approximate
the support of all frequent itemsets.

Acknowledgements

We thank Blue Martini Software for contributing the KDD Cup 2000 data which
we used in our experiments.

References

1. C.L. Blake and C.J. Merz. UCI Repository of machine learning databases. Uni-
versity of California, Irvine, Dept. of Information and Computer Sciences, http:
//www.ics.uci.edu/~mlearn/MLRepository.html, 1998.

2. J.-F. Bouliçaut and A. Bykowski. Frequent closures as a concise representation for
binary data mining. In T. Terano, H. Liu, and A. L. P. Chen, editors, Knowledge
Discovery and Data Mining, volume 1805 of Lecture Notes in Artificial Intelligence,
pages 62–73. Springer-Verlag, 2000.

3. J.-F. Bouliçaut, A. Bykowski, and C. Rigotti. Free-sets: a condensed representation
of Boolean data for the approximation of frequency queries. Data Mining and
Knowledge Discovery, 7(1):5–22, 2003.

4. T. Calders and B. Goethals. Mining all non-derivable frequent itemsets. In T. Elo-
maa, H. Mannila, and H. Toivonen, editors, Principles of Data Mining and Knowl-
edge Discovery, volume 2431 of Lecture Notes in Artificial Intelligence, pages 74–
865. Springer-Verlag, 2002.

5. T. Calders and B. Goethals. Minimal k-free representations of frequent sets. In
Nada Lavrac, Dragan Gamberger, Ljupco Todorovski, and Hendrik Blockeel, ed-
itors, Proceedings of the 7th European Conference on Principles of Data Mining
and Knowledge Discovery, Lecture Notes in Artificial Intelligence. Springer-Verlag,
2003. To appear.

6. M. Kryszkiewicz. Concise representation of frequent patterns based on disjunction-
free generators. In N. Cercone, T. Y. Lin, and X. Wu, editors, Proceedings of
the 2001 IEEE International Conference on Data Mining, pages 305–312. IEEE
Computer Society, 2001.

7. H. Mannila and H. Toivonen. Multiple uses of frequent sets and condensed rep-
resentations. In E. Simoudis, J. Han, and U. M. Fayyad, editors, Proceedings of
the Second International Conference on Knowledge Discovery and Data Mining
(KDD-96), pages 189–194. AAAI Press, 1996.

8. T. Mielikäinen. Frequency-based views to pattern collections. In IFIP/SIAM
Workshop on Discrete Mathematics and Data Mining, 2003.

9. T. Mielikäinen and H. Mannila. The pattern ordering problem. In Nada Lavrac,
Dragan Gamberger, Ljupco Todorovski, and Hendrik Blockeel, editors, Proceedings
of the 7th European Conference on Principles of Data Mining and Knowledge Dis-
covery, Lecture Notes in Artificial Intelligence. Springer-Verlag, 2003. To appear.

10. S. Orlando, P. Palmerini, R. Perego, and F. Silvestri. Adaptive and resource-aware
mining of frequent sets. In V. Kumar, S. Tsumoto, P.S. Yu, and N.Zhong, editors,
Proceedings of the 2002 IEEE International Conference on Data Mining, pages
338–345. IEEE Computer Society, 2002.

11. J.S. Park, M.-S. Chen, and P.S. Yu. An effective hash based algorithm for mining
association rules. In Proceedings of the 1995 ACM SIGMOD International Confer-
ence on Management of Data, volume 24(2) of SIGMOD Record, pages 175–186.
ACM Press, 1995.

12. D. Pavlov, H. Mannila, and P. Smyth. Beyond independence: probabilistic methods
for query approximation on binary transaction data. IEEE Transactions on Data
and Knowledge Engineering, To appear.

13. J. Pei, G. Dong, W. Zou, and J. Han. On computing condensed pattern bases. In
Proceedings of the 2002 IEEE International Conference on Data Mining (ICDM
2002), 9-12 December 2002, Maebashi City, Japan, pages 378–385. IEEE Computer
Society, 2002.

14. W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery. Numerical
Recipes in C++: The Art of Scientific Computing. Cambridge University Press,
2002.

15. Z. Zheng, R. Kohavi, and L. Mason. Real world performance of association rule
algorithms. In F. Provost and R. Srikant, editors, Proceedings of the Seventh
ACM SIGKDD International Conference on Knowledge Discovery and Data Min-
ing, pages 401–406. ACM Press, 2001.

��������� 	
������ 	
�
������� �
�������
�

����� ����	
	� �

��� ����	
	� ���� ��
�
���	
	� �	� ��
��� ��
���	
	

����� �����	
� ��
��	� ������� ���� ��������� ����� �	���� ��
��

���������	�
�
�
��		������
�
�����������		�
�
�����������		�
�
��
��������

�������� !��� ����	 �
�	� �
�� � "���� #�	 ��"�
��

�"�	�����
 �#

��	$� ��$ ���
����
���
�� %
���� "��� �# ��� &�����
�&
 ���
�"�	���

���
 "���� �� ��� �	����� "���� "��
���
 ��� 	�� �'����(�#
�"�

�	���� ��$)���� !��� "���� �� �����'�� �� *��	(���
�"�	���� ���

���� !�� "���� �� '��� �
 ��� ��� �# �������� �	
��� ����� &��
�
�

'� ���	�
�� #	�" ��� ��� '(��+�	�� ��� "�
�
$ ��$�	���"�� �
 ����

����	� &� �
��(�� ��� ��� �# ��$�	���" ������� #�)
 �
$ ����� �����

,� ���& ���� �� ��
�"�������
���(#����'�� �� ��� �+�
 &��� ��	$� ��$�

&��� ��
 	� � �# ������
 � �# �
�	����

� �������	�
��

������

 �	� �����	������	 	
���
�� �	� ��
�
 ��	���
�	� ����������	� �

�
�����	� ���
 ����	�� ��
�
	� ����� ��
�

�
	� ���� ���
 �� �
 ���

� ��

� �

���	 �

��� �� ���
�
��
��!

���
� ����� ��

"����
� ����� �
 	

�
�
�
�

�� ��	��� �

�
	 !
�
� ���

 ��
�
 �

����	 �	 �
�

 �� �
��

�! �	��!�

�
��
��! �

���
� ���� ���� ����
 ��	� ���
 ����

#	 �
�����
 ���� �� ��$���� ��	�
 ��
 ��� %�
� �

 ���
& �� ��
�� ������	� ��
��	
� �

 ��!� '
�����	� �� ���� ���� �
�� 	

�� ���� �� �����	

���
�
�� (�
	
� ����

 �
���
� �� �� %	� ��
��%� ���� ���� �

 	

�
� �	� ���� ��
� �
�� ��

�
����
 �� ��
 ��

	� �	��!���
	��
�	�
	��

��
 �
���
� �� 	�� �	�! ���� ��
 ��)
 �� ���� ��� ���� ���� ��
 	���

 ��
��
�� #	 �
�
�����	������	 �!��
��� ��

"����
� ��

 �

 �
	� �� ��*

	�
��� %�
� �	� �������
� ���� ������ �
 ��������
 ��
 ��*

	� �
����
 ������	� �

�
��
��! ��	���
�	� ��
���
�� +�

"����
�
�
	� ���� �
�� ,
���
� (�
�
	�
��

���	� �!��
��� 	
���
� ���
� ����� �	� �
�

�� �
��
��! ���� �� 	��
 � �
��
,
� ����� �	� 	
� ���� �

 �	�
����
� �
������!�

-�� %�
� �

 �!������! �
����
� �	 ����

��
� ��
�� ����

����	 ��� �	 ��	!
���
�� ��	
 ���� ��
 �
��.�	��	 -
��
�./�� ����

����	 ����
���� 0-/1 2345 �

���� ���
 ���

 ��

���	��	� ����
����� 6�
	 ��
 ��� %�
� �

���

� �	� �
7�

! �
 �

����

"�

����	 �
�
�� ��

�
��	� ��	
� �� ���
� ��
 ����
 �
����

���� �
 �
.����

��
��

'	���

 ����������! �� �
����
 �����
! ���� �� �� %
�� �	�

� ��
� �� � ����
���
 ��	��
�
	� �!��
� �	� ��
	� ���

 � �

���	 �

���� ����

�� ��
 ����

�������
 ����
 �� � %�
 ���� �� �	�

�
� �� � ���� ���
��
� ��
 �
���
� �
���
�

�� ��
	 ��

 �� � 	

� �� �	��!�
 ��� �������� '	
"�

� ��� �� %	� ��
 ��

��
�
���� �
.����

�� ��
 ����
 �������
 �	� ���� �� �� ��
 ���� ���
 ��	��
�
	�

������� ��	�
��
� ���
�����	

�
���� ��� ������ �� ���� 	�
����� 	� �
����
��� ��� ��� �	���
� ������ ���� 	�� ���
�������	�� ��� ������	�� �����
� ��� �� �	���

�� ���
�������	�� 	� ��� ���� 	� ��� ��
�	�	�� ��� ���
��� 	� �� �� ���
����
��� �� ���� ������� ���	� ��� ��	��
� �
�� �� ������ ��� ���	��� �����
���
�� �� ���� ������� ���	�� ����
�	��
�������� ���� 	� ������
�� ����
� ���
���
����
�� ��	�� ����� ����� ��
� ��	�� � ��� �� ���� ��	���� 	��� ��
�	����
����
�	�� �	��� ���� ���� 	�������� 	�������	��� ��	
� 	� ��� �

����
��� ���
�������� 	� ��
��	�� ����	
��	�� �����

�� ��� ���� ���� �� ��	� ����� �� ���� ��� 	� 	� ����	
�� �� ��� ������ ����

 !" ��
����� � �����������	�� ���� 	� �
�� �� 	����	�� ���
��� ������ ��� �����

��
	���	���� ��	
� �

�� �� ���������� 	� ��� ���� ���� ����
����	� ���� ��
��� ������ �� ��� ���� ��	�
��	�� ����
�� ��� �	#� �� ��� ������ ���� ���
��	��

��
� ���� �	����� ��� ��	�� ��������� �
��� ��� ������� �� �����$� ���� ���
	�������	�� ��� ��� ��	�	��� ��� ���
�� ���	��
� ��������� ��	� ������
� 	� ����
����	����������
������� �� ��� �����	��� �������� ��� ������	

�������	�� ��
����
���� %" ��� ��
������ &"� '�� ������
� 	� �������� ��� ��	���� ����� ����
������ ��������� �
��� ��� ���� �� ��� ��� ����	��� ��� �	�� �� ����
�	�� ��
������ ����	�� �
��� ��� �����

�� ��� ������ ���� �� ��	� ����� �� �	�
��� �
��� ����	
	�	�	�� �� 	��������
��� ���	�	#� ��� ��������
�������	�� �����	���� �	�
� ��� �����	���� ���� ���
��������
����� ���� ����	
�� ����	�� ��������	�� ���
��	�� �	�� �	�� �����
� ��
��� ������ �� �������� ����� �� ���� ��
�
������ ��� ���� ��� ����� (� ����
��� �)����� ��
���� �)�
� �� ���
��	�� �	��� �� ��� ����
��� �����	���
�����
������� *�+"�

�� ��� ������	�� ��
�	�� �� ���
�	
� ��� ��������
�������	�� ������� ��
��
�	�� ! �� ������� ��� �������	
��
�
������� ��� ��	��
����� ���� 	� ���

�������	��� �� ��
�	�� * �� ���
�	
� ��� �����	����� �� �	� �� �����	����
������� ��� �	��
�� ��� ���� ��� �����	���� �������� ,	������ 	� ��
�	�� +�
�� ������� �
��
���	�� ��� ����
� ������� ����	���

� �������	�
���	���
�
 �����������

��	
����
���� ��� ��	
������
 -���. /" 	� � ������� ��	
� �����
�� ����	��
������	�� ���� ��� ��� ������
�	��� ��� ���� 	� �� ������	#� ��������� �����

��
	���	��� �	����� ���	�� ��� 	�������	��� ��� ������ ���� �������� ��� ���
���� ��� ����
��� ��� ������ ���	����� (��� �	���� �	�� ��� ������
�	���� ��	
�
������� ����� ����� ���� ��� ���	� 	�
���	�� �����
��
� ���� �� ���	���	����
�	��� �� ��� ��������

0����� ����
�� �������
� ���� ��
����� ��
����� ��
��
�����
 ���	�����
����� �������� ��� ���� �� 	����	�� ��� ������ �����	�	�� �����
��
	���	���
���� ������
�	���� ���
��������	�� �������� ��� ������ �������� �	�� ��� ���
��	�	�� ����� �� ��� ����� �� ��� ��	�	��� ��
�� 	� ������� ��� ��������
��
�
���� �� ������� 	�
��������� 1 �� 	�������	�� �	��
� �����

�������������� �	��	�
�����
���������������
���������
�������������� �	��	
������
���������������
���������

�������������� �	��	
����
��������������������������
�������������� �	��	
����
��������������������������
�������������� �	��	�
�����
���������������
���������

�������������� �	��	�������
���������������
���������

�������� �� ������� 	�
� �
������ �
��

����
	���������� �
���������	���������������� � ���	���� �
 !��
	��
�� "#� �	$ �
����
	���������� �
���������	��������
���� # ���	���� "
 !��
	����
���� "#� �	� " �	��$ �

������	� ��
��� ���� ������� 	�
� ���
������ �
� ��������

������ �� 	
� ���
���� ��
�� �� ������� 	�

 � �������� �
�������� ������
����
�� ���� ��
�� ������� �
� ������� ��
����� �� ������
����� ����������� �
��� �� ����� ��� ���������
�� ��� ����� ���� ������� ���� ����� �
��������� !����
�

������
�� ��� ����� ����� ��� �

� ����� ��
�� !����� ��� !������" ����� �����
��� ���� ��� �� ����� ���� ��� �������� 	�

 ���� �
 �����

#� ������ $� ����� ��� ��
��� ���� ���� ��� ������ �� ���� �

������
�� %���
�
����� ��
�� ���
� ���� ��!� ��� ������� �
!������ ����� ���� �
!�� ��� �������
�

���
	 ���� !����� �� ��� ������ %���� ���� ��� ������ ���	
���
�� 	����
���
%��
���
� �
�� ���
��� ���� ���������
�� #� �

����� ��� ���������
� �
 ���
�

������
� ��������� #	 ��� ���������
� ����
��� ���
	 ��� ��������� !�����
�������� �� ��� ������� ��� ��

!�� 	�

 �� ��� ��� ����
	 �� �� �������� �

��� �����!� �
������ ���� � ��	������ �
 ��� ������� �������� %���� ��� ��!����
���������� ���� ��� �� ���� �
 �
������� ��� �����!�� #� ������ & ��� �

�������
���� ��� ��
�� �� ����� �� '()������� 	
�
���

%��
���
� ������� ���
���
�����
�
	 *����
�������
� �� �������� ���
��
���
	 ����� �
 ����� � *����
� � ������� ��������
� ��� �
 �� ������� ������
��� ������ 	
� �� ������� %��� �� �
������ ����� ��� ������ ���� �������� ��� ���
��������� ���
 �������� ���

�� 	��*������
�������� !������ +���� � *���� 	
�
��� ����� �� �!�������� �� �� ��
��� ����� ��,����� �
 *����
��� ��� ��������
��� ��� ����� ���� ���� �
� �
!���� �� ���
	 ���
�

� ������ ��	�
�� ���
�������

+� ��
�� ���� ��� �������
�
	 � ��� 	����
� ����
� �� �� �� ��!�� �� -.�/��� ��
��� 012 #� ��!�� ��� �������
�
	 � ��������
	 �������� �� �!������
� 	�����
�� ����
������ � ���������
� �
 ���� ������� �� � ��!�� �
� �� ��� ��������� 	
� ���
���!�
�
��������� ���� �����	� ��� ������� ��������� %�� �������
� ���� �
����
�
	 �
�
������� ���� ����� �
������ ��� ���� �� � 	
�

	 ��� ���

�� ��� �������� ����
��� �
�������
�������� ����� ��� ����
	 ������� ���	�� �����
	 �
� ��������

-��� �� ������� ��� �������
�
	 ��� 	����
� ����
� ���� �
������ ����
��� ������ �� �
� �

������
� ��� ����

������
� �������

������� ��	
���
�������
������������������������������� ��������	
������� ��	
���
�������
������
���������������������� ��������	
���� �����������	

���� �����������	
�� � ��������������	

���� ��������������	
���� �����������	

���� �����������	

�������� ���������� 	��
��� ��
 �������

��������� � 	
���
������ �����
��� � ����������	 �
����	 ������ �� �

��������� �� ���� ���� ����������� � �	
���� � �� �
���� ������
� ����������

��������� � 	
���
������ ��
������� � ����������	 ����
�
� �������	
���
�� � ��� �� ����������� �������� �������

������� ���� ��� ��
 ��

��������� � 	
���
������ ������ ��� ����������	 ���� �� � �����������

������� ������ �� � ��
 � �� ������ �� ������������� �� � ���������� �� � 	� �
��������	
���� 	 ������� ��� ���� �� ��� ��������� �� ��� �������	 ��� �
� �������
��� ����������� �� ��� ����������� ������� �������

��������� � 	
���
������ ������ ��� ����������	 �
�	 ����	 �� �

����������� ������� ������ �� � ��
 � �� ������ �� ����	�������� �� �
����������� ��� ������������� ���

	
���
 ��
 �

������
 ���������� ��
 ������

�� ���� �������� ������ ���� ���

�� ������� ����������� �������� �������	
���
�� ������ ��
 ��������

�������� �� ��
������ ��� ��
 ������������

�� �
	 �� ���	 ���� ���
�� � ��� ��� ����������	 ��
 ���
��������
�� �����

���	� ����� ��� ������ ���� �	 ��� ����	 ��� �
�� ���	 ���	������ ���
��������

������� ������ ����� �����
�� �� ����
 ����	 ���������
	� ����� ����������	

�
�	 �� ��������� ���� ��� �� ����������	 �
����	� �� ���	
��� �� ������ ���

�
���	� �
�
� �����	
���	�
�
� ���� ��� ��� �	������ ��� ������� �
�
��
��

����
��� ����
 ������	�� �� ��� �
����	 ��
� �
�
��� �� ���	���� ����� ��� ���

��
����	� �� ��	� ������ ��� ���� �������� ����� ��� ��	����� ����������	 �
����	

��
�
������ �� ��� ��� �	����

��� ����
�
���	
� ������ ��� �� ���
�������� �
�	�� ����	�� �	 ���
����

����� ��
� ��
����� ��� ������ ����� !��������� ��� ������ ��� �� ��
������ "���

���� �� ���� �	 �
�	 ���	 �	
�	� �� 	��	
��	��� �� �
���
� ��
�
�	�� ��	 	�	�
������ ��
���
����� ��������� ����	� �	��� ��	
	����� �� ��	�	 	��	
��	���

	

	��
�	� �� �	����� ��

��	 �	�����
	����� �� ��� �
�
 ��
� �����	
� ��	 ����
	������ ��	
���
����
��	� ��
���� ��	 ����
	��	� ��� 	��
�	�
�� 	��
��� ��	� ���� ��	 �
��	� ��
��	 ����
	����� �
��	
� ��
� �
� ��	� ��
 ����
	������

������ ���������� 	�
 ������� �
��� �
������� ���
����� ��� �� ��
 ������� ���

�� �	
 ���� ������� � � �������	
��� �	
�� �� ����� ����	�� � � � ����� ����	�� � � �
��

�� �� �
� � � ����	� � ����	� �
��

�� �	
 ���� � � �����	
��� �	
�� �� � �� 	
� �
�	����� 	 ��
�� 	�

 � �

!� ����� ��� � ���� ����� � �
 ���� ����� � � ������� ���� ���� � ���� �
��

"� �� �������#� 	 �� �$� %���� � � �����	
��� �
��
�&� �� � �� 	
� �
�	����� 	 ��
��� �

��� 	�

��� �	
 ���� ����� � � ������ �
�� ���� ��� � �������	
���
 �	���� � � �	

��� �� �������#���$ �
��
��� �� � ��	
��
��� �

� � 	�

�!�
���
�#��$�

����
��� '� ��
������ ��� �
��� �(��
����� �� ���������� ��
�

��	 �� ��	 �
��
��
��
�	� �� ��	 �
����	� ����
	����� �	���� �� ���
������
�� �����
� ��	
�	� �� ����
	��	� ��
�� ��	 ��	
� 	�
��
���� �� �
�	� �� ��	 ��	
�� ����
	����� �
��	
�� ��		 ���
	 !"� ��	� �
���
	 ��� ���� ��	 �����	 �� ��	
��� �
�
 ���
��� ��	 �
��	 ������
������ ��	
	��
	# �� �� �������	 �� 	�
��
�	
��
��	
� $
��
�
���� ��	 ����
	����� �
��	
��� %�
 �
��	
� ����
���
 �
��	 ��

��
�� ��	 �

�
��	� �	�����	� �� ��	 ��	
�
�� ����	 �
��	� �
��� ��
 ��	 ��	
�	�
�
��	�# ��	�
�� ��	 ���	� �� ��	 �����
� �� ��
� �
��	
� ���� �	 ������	� �� ��	

���	
� %� ��	 �
��	
� ����
��� ���� ���	 �� ��	 ��	
�	� �

�
��	�
��
�� ����	
�
��	� �
��� �� ��	 ��	
�# ��	�
�� ��	 ���	� �� ��	 �����
� ���� �	 ��	�&	��
����	 	��
�	� ��
�

	 ��� ��
 �����
� ��
�� �� ��	 ����
	����� �
��	
�� ����
�	 ��	�&	�
���
��

��	 ��	 �� ����
	����� �
��	
�� �� ��	
� 	�
��
���� �	�
	
�	�
����� ��
	��
�	� ��
� �
� �� �	 ��	�&	�� %�
 �
��	
� ����
��� ����
 �
��	 ��

 ��	
�	�

�������� �	��
���
�� ����	 �� �	� ������ �	�
 ��� �	� ��
�� �
 ��� ������� ��
 ��
���� ��� ���� �	� �
����� �	�� ��
���� �	� �����	 ����� ����� �����
����
�	��� ��� ������� �������� �������	�� ��� �

�
� �����
 ���� ���� � 	���

�
����
 � �������
 �	�� ���� �

� �� �����
 �������� ���� ���� �

 �	�
 ���
����
�	��� �������� �!�"�� �	�� �� �����
� ��
�� �	� ����
��� �������� �� �
��#��
���
���
����� � $�� �������� ��� �
 �����
� ��������
� �� �	� �����	 ������ %���� �� ���#
����
 �� �������#��$� �������	�� �&�� ���	 �	�� �������	� �� �� �������� �� ��
�#
��'�
����� ��
��� ���� ���
� �(�)��

0

20

40

60

80

100

120

4 6 8 10 12

E
xe

cu
tio

n
tim

e
(s

)

Number of columns

Mining on different mimimum supports with Apriori

90% confidence interval

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

4 6 8 10 12

E
xe

cu
tio

n
tim

e
(s

)

Number of columns

Mining on different minimum supports with acminer

Threshold 1%
Threshold 5%

Threshold 10%

�������� ��������	 ��
�� �� �������
����� �	� ����	
� ���� ��� ��
� �	��� �����
���� ��� ������	� ������ �	 ��
� �����

*
 ��
�� �� �����
 � ������
�� ���
�� �� � ������
�� ��� �	� �+������
�� �� ��
#
��
���
 � �����
����
 �� � ����#$
��
 �

 ����#���
��
 �������	� ������� �&�
�

 �
 �������	� ��� ��

�
��
� �	� ��� �� ������
� ����� �	� ������� �� �	���
����� ��� �	��
 �
 ,����� -� %� ��� �+�����

�� �� �	� ����#$
��
 ����������
�� �	� ������� �������	�� �	�
 �	�
����� �� ���

������� �����
� .�
���
���������/ ��� �
������
� �	� �+������
 ����� �� ������� �
������
 �� �+��#

�
���� �����
� �	�� 	����
� ������� �	�
��� ��
���
� ���� �� ���������
� �����
�����
����
� �

 �	�
����� �� ��

�
��� ���� ��
�����

���
� ���	 ���������
��������
 ����� ����
��� � ���
 �	� ����
��� �� ������� �	� �����
 ���� ���	
����	
� �!�"�� %� ��
 �� ���
 ���� ,����� - �	� ����	
� �� ���� �� 	�

�� �	�
�����
� ����
� �� ���������
� ������ �
 �	� �
���
��� �
 ��
��� ���	��
�

� ��������	
�

�� ��� �����	
�����
� ���� ���
��� ���� �� 	���� ����� �	��
��� ���� ��� �
���
	�� ������
 ��� ���������� ���� ��� ���� ��� 	� ����� �� �� ���� �� �����
��
� ����	��� 	��	����� ���� ���� �������� ������� �
�	�� ���� ���� ���� �� ��
������ ��� ��	�� � ���� �	
��

� ���
��� ��� 	� � ������ ��������	���� �������� �����	��� ��� ���
��� 	� !"�
#��� ����
�� 	� 	� ������	���� ���� � ���� ����� ��� �� ����	��� ������� ����� ���
��	�	���	�� ������� ��� �� ��� �$ ������� 	� ��� ���
���� %	
����������� ��
�
�� ��� ����
��
�� �� ���� �����& ���� ���� ���� � ��
 ����	��� ������ ���

�	�� ��� 	�
���
��� ��

�� ���� ��� ������� ��	�
���� ���� ��� �����
�	���	���	�� �� � ����
� �����
� � ���� ���
�� �	���	���	��� ����� ��� ���� ����
�� ����� ��������	��� ���
��� ������ 	� ����
��� � �	�� ��������	�� ��������
	��
��� ���
�� ��������	�� ����� �	���	���	�� ����� ��� ��
��� �� �������� 	��
����
�� 	������� ���
��	������

�� 	�
��
���	���� ����	��� ��� �����	��
 ���� 	� ���� �� ��� �������� ������
���� 	� ���
�	� 	����
��� ��� ��
�����	���� ��
����	�� �� ��� �������� ��
'
�����	�� �����	��
 	� ����	��� �� ��� ����	
	���� �����	
����� ��� ������ ���
�������� ������ ���� ����
��� ���� ���� �� ��� ��
�����	�� �	
� 	� ��� ������
����������
� ����������� ���� �� ��� ��������
�	��
�� �������� �� ��� ������
���� �����	��
� �� ����� �� �������� ��� ������� �����	��
� 	� ��� �����	
����

� ����	�� ��� �(���� �� 	���� �)�* ��� ��
��� �� ��������	��� ��� ��� ��
���
�� ����
�� 	� ��� 	����� +� ���� ������ ��� �(���� �� ��� ��������� ����������
�	��� 	� 	� ���
��� ����	�� ����
���� ��������	�� ��� ������� �� ��� �����	��
�

$��� ����'�	�� ���� ��
��� ���� 	��������	�	�� ����
��� 	� �	,���� �� ��
����
��� �������
	�� �	(����� ���� �� ����� ���������� 	�
�� ��������� ��
��	�� ���
	���� ���� ��
�
���� +� ������� ��� ������	�� �� 	���� ���� �� ���	��	�� ���
����
��� �� ���� ���� �����	�� -. ����� ����� ��� ����	�� ���	�	�� �� � ���
���
�������
��� �� ��� ���	�	�� �� ������ ���	�� 	� ��� ���
���� �� ��� �	
� �� ���

������ ��� ����
� ������� ��� ���� 	� -. ���� ��	��� �����
� �������� ���� ��
�	(����� �)��� +� ����� ����� �)� �������	�� 	� ��� ����
� ��� �� ��� �	������*
/0/01/-00� 23�00012.�000 ��� .-�0001!-�000 ��������	���� 4����
� ����	�� ���	�
����	��	��� �������	�� ���
���
��	��� ����	��� �� ���
 �� �����	�� ��� ��
�
�� ��� ����
�� 	� ����� �� �
���� ��� ������ ��
��� �� ����
��� +���
�
������� ��� ��
��� �� ����
���
� ���� ��
���� ��� ��������	�� ��
���� ����
��� �	
� ����� �� ���� ��� ��	�� ��	���
�� �	���	����� ��� ���� ��	�������	���
����
� �����
�� ����� ��� ������
� ������� ���� ���� �����	�� ���� ���
�	���	���	��� �� ������� �	��5� �������

+� �	� ��� �����	
����
	�� �	����� ������ ��
�	���	���� +� ��
�	��� �	�'
������
	�	
�
 ������� ���������� ��� �
����� �� ����
�� ��� ���� ��� ��
'
��� �� ��������	��� ���
��� 23�00012.�000� ��� �	(����� �
����� �� ����
�� ���
��������	��� ��� ���� ���
	�	
�
 ������� ��������� ��������� +�
��� ���
���� ��� ���� ������ ��
�	���	�� 	� ����� �� ������ ��� 	�6����� �� � ����	�����
	���� �� ���
������
��� �������� ����� ����� �����
� �������� ���������� � ���
�� ��� ���� ����� ���� �����	�	�� -0 ����
�� ���
��� ���� /00�000 ��������	���
�����

�� ��� ��� ����� 	� �
��
�� ����
�� ��������	�� �	�� � ��� ��� ����	��
��� ��	
� ��� �� �� ����� � ! "� �� ���
 �
���� ��# ����	�$ %	��&' �� #	#�(�
��� 	� 	� ��� �	�$)� ���� ��#�� *�� �	�	�	��# �)) ��� �����)��# �� 	� #��	�$ ���
�&
��	�����'

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

4 6 8 10 12

E
xe

cu
tio

n
tim

e
(s

)

Number of columns

Mining on different minimum supports with acminer

Threshold 1%
Threshold 5%

Threshold 10%

0

2

4

6

8

10

12

4 6 8 10 12

E
xe

cu
tio

n
tim

e
(s

)

Number of columns

Mining different sized logs with acminer

95% confidence intervals
Small

Medium
Large

�������� ��������	 ��
�� �� �������
���
����
 ����� �	��� �	 ������	�
�	�
�

������� ���������� ������ �	�
���
�	�
�
 ������� ��������� �� ���� �	 ������	�
�	��� ������

�� +��� �	�� ���� ����� �� �����# ��� 	�
��� �� #	,����� �	�	��� ��

���
�������)#� ��# ���*��� �� ��)����' �� ���# ����� �������)# -�)���. ����� ����

��# ����� �� ��� ���*�� �� ��������	���� ��# ��� ���*�� �� ��)���� ��� �� �

��# ��' /�� �	�� ����$�� ��� ��� ��#	�� �)��� 01�����213���� ��������	���4'
���� ��� ���*�� �� ��)���� 	� #��� ��� 	�������# ��� �&����	�� �	��� ��

������� $��� 	�)	���� ����	��� �� ��� *� ���� ���� 5	$��� 6' �� ��� $��
�
�� ���)��� �� ��-�
)����# ��� ����� �� ��� �&����	�� �	��� �� ��� �)$��	���'
7� ��� *� ���� ���� ���+#����)	�	�� ��� ����)�� �	��	� � ���� ��� #�-	��� ��
���� ���� ��� 	�
��� �� 	������	�$ ��� �	�	��� ��

��� �������)# 	� ��� �)���'
/�	�)���� ��	��
���	�	�$ �	�� ���
��� �� ��� �*)	� �� $�	� ����
������)
���
����	�� �	��)���� �������� �������)#�'

�� ��� ��&� �	& ���� ����� �� ���#	�# ��� 	�8����� �� ��� 	�
�� �	��' �� ���#
���)) ��#)��$� �	��# 	�
�� �	�� �� � ��# �� ��)����' /�� �	�	��� ��

���
�������)# ��� ��������) ����' �� ��� $��
� �� ��� �	$�� 	� 5	$��� 6� �� ��-�

)����# ��� �&����	�� �	��� �� ��� �)$��	��� �� #	,����� 	�
�� �	���' /�� ���*��

�� ������� �		��
� ��
	
	�� ��	�� �����
 ��
�	 	�	��
���
��	 ��
�	 ���
	
�	�����	 ��� �����	��	 ��
	�
��� �� ��
 ����� 	��� �
�	�� ��	 ���	 ��
�	 ����

�		��
� ����	��	
�	 	�	��
���
��	 �� � ����
��

���	
��
 �� ����	��	� ��

�	 ����	� �� ��������

2500
3000
3500
4000
4500
5000
5500
6000
6500
7000
7500

600000 700000 800000 900000 1e+06 1.1e+06

E
xe

cu
tio

n
tim

e
(s

)

Number of transactions

Mining very large logs with acminer

�������� ��������	 ��
�� �� ������� �	
��� ����� �	�����

�� �����	 ��
�	 	�	��
���
��	� ��
�	 ������
�� ��	 ���

	� �� � ����
���
��
�	 ����	� ��
������
����� 	 ��
	 ��	�
�	
	�� ����	 ���� �� ����
� 	
��
	 ���� ���!� � �	��	����� ���	
��
 ����	�
�
��

�	 ���	 �� ����
 �	���� ���
� ���	�� ����	��	
�
�	 	�	��
���
��	� ��	 ������� ������

��	����� !��
�����
"	���	
�	 �����
�
����� �	�������
� ��
�	 ������	� ������
�� ���
�	� ��#

	�	�
��� �	�
��	 �� �
 ��
�	 ����	
	� �����	����� ��
	� �� 	�
���
	
��� !	 ��	�

�	 �	���� ���	
	�
 ��
� �	
 �� �
 !�� �	�����	� ���
	� ��	 �	���
� !	�	 	�#
���������� ��	 �
	���	 �����	����� ��
�� !�� ���� !�	�
�	 ��!	�
 ��
��
��

!�� ����	
	� !�� ��� ��� ����	�
 ���� ��	 ���
 ��
	�	�
��� ���	�
�
��� ���	
������
�	
	�
��� !��
��

�	 �����	����� ��
��
��
 !�� ����	
	� �� ��� ��#
��	�	�
�
��� �� ��
 ��
����� ���� �� �	����	 �
 �� ��
 ���	
� �����	 �����	�����
��

	���
��
 ��	 ���
����� �
	��������� ��	 ����	�	�
�
��� �	�	�
�
�	 ��	
��

��
�	 ���
 ��	����� ��� ��$	�
�	 �����	����� �� �� 	�
�� !�
� �
� ��	 ��
����
����
��� !���� �	
� ��	
�	 ����� �� ��� ���������	 �����	����� ��

	��� ��
�	
�����	����� �������� 	 !��� ���
���	
� �
���
��� ��
�	 �	�� ��
��	�

� �������	��

��
��� ���	�� !	 ������	�
�	 �	
��� ��� ��	�����	 �����	�� �����	����� �� ���
��
����	�� �
 ��	� ������� �� �
���
� ��� ����	� �	
�� !���� �
 ��	� �� � �����
��� �����	����� �	�������� 	
	�
	�
�	 ������
�� !�
� �	��#���	 ��	!��� ��
��
%�� ���� !��
� 	����	
�	 �����������
� ��� ���������
� ��
�	 ������	� &��
'����	����� �	
��� (�)	�
��� *+ !�
� ��,	�	�

��	� �� ��
� �	
�� �������
������
�� ���	���
� �	 �	�����	 ��� ��� ������	� !�	�
�	 	�	��
���
��	 ��

���������� �	 ���
� 	��� ����
�� ��	��
	 �� ���
��� �� ��
�� ���� ��
��� ��
���� ���
����
� 	
��� ��� �������
�� �����	�� ��
��� ��� ���������
 ��
�
�
��� ��������� ��
� 	�
	�

��������	
�����

���	 	
��� �	 � ���
 �� ����� ��	����� ��
��!	 ��
���
� ��
�� ���������	 ��
���

���
���� �����

�
 ���� ��
�����
 ��
��
� "����# ��� ����
� �
�	�	 ��� ���
���
��	����� ��� ��
����	� ��� ���� ���$��
 �	 ������
�
�� %�
��� ��� &���'��'
��������'��	 ��� ��
�� ��� (��'����� " ��
��
 ��� ����)***�)+�+,#�

-� ���

�
���� �����		�� .����%���/��	 0�������
� 1�� 2�
�� 0����	���
��� ��	
�
�
 ��
����� ��	 �������	 2����3�4�	 �� 5��� ���
�� ��������
�
���
��
�� ������	 ��'���
���

���������

�� ������ 	
����
� ������ �����
�� ������������ �������� ����� ��������� ���
	� ������ �������� ���� ��������� � ����������� ��
��� �� !���� �� �������
"��
��� #��������$���%���� #������� ������ ��� �������� !���������� ��������
�������� 	�
���
���� �	������� ��� ���� �	�	��� %�
�� &'() &*+� 			� #�����
���
� #���� ,	� �--.�

*� �������� /�0�� ����� "��� �
����� ��� ��1��� �����
�� �%�����2 	 ����
$0����
�������� ���%������� ������ �� ������� ���� ��0
��� �� �������	��� �� ����
������ ����� ����� /��0���� ,�
� ������ ��� *''�� 	,��

&� 3���$����4��� /��
����� ��� 	���� /�������� ���5���� �
������ �� � ������� ��%$
����������� �� 0����� ���� �����
� �� �������	��� ��
������ ��
��� �+'6 �
 !��� %�
�� .*)(&� 7����� 3#� 	%��
 *'''� �%���
��$���
�
�

8� 3���$����4��� /��
������ 	���� /�������� ��� ,������%�� ��
����� 	%%��9�������
� ��5����� 5������ 0� ���� � ���$����� �� �������	��� �
������ ��
��� �-�'
� !��� %�
�� (6)+6� :���� �� ��%���0�� *'''� �%���
��$���
�
�

6� 3���$����4��� /��
������ 	���� /�������� ��� ,������%�� ��
����� ����$����2 � ���$
������ ��%����������� � 0��
��� ���� �� ��� �%%��9������� � ��5����� 5�������
���� �	�	�� ���
���
���� �	������� "�#���
� (;�<26)**� *''&�

.� 3���$����4��� /��
����� ��� /�%����� 3����� �����
 ���$���� ����� ������������
�� �������	��� ��$������ %�
�� &**)&*-� "����0
�� �� 3�
� *''�� �=== ,��%����
��������

(� 7���� �>�?���� 3��� ����4��� /��
������ ���� 7
���������� ������ ������$
���� ��� ,���

� ������� ,��%���������
�
 ���%������� ���� ��5���� %��������
�� �������	��� �� ���� %���&�#�	�� ���
���
���� �	������� � ��%�
 ���'
(��%�
��')� #��
��� ,@��� ��%�0
��� ��%� *''&� �%���
��$���
�
�

+� ������� :�� �� ��� A�� ������ B��

2 �� �C����� ���%������ �� B�: �����
�� �������	��� �� ���������� ����� %�
�� �6&)�.8� A�

��� ��9��� 3��� *'''�
	,��

-� D���
�� #��5����� E��� /������� ��F� �����
� ��� :��F :����
� =C����� �����
 �
����������� ��
�� ����
 �
���� �������
�������� �����*��	�� �����*�� *8;�<2*6)8.�
3������ �---�

�'� 3� G�� ��� 	� :��%�
� 	 ��������
 �

������ �� ��5�����
 ���� ���%�������� �$$$
+�������	��� �� �����*��	�� +&����� **;�<2&&()&8&� �-((�

An Algebra for Inductive Query Evaluation

Sau Dan Lee and Luc De Raedt

Institut für Informatik
Albert-Ludwigs-Universität Freiburg
Georges-Köhler-Allee, Gebäude 079

D-79110 Freiburg
Germany

{danlee,deraedt}@informatik.uni-freiburg.de

Abstract. Inductive queries are queries that generate pattern sets. This
paper studies properties of boolean inductive queries, i.e. queries that
are boolean expressions over monotonic and anti-monotonic constraints.
More specifically, we introduce and study algebraic operations on the an-
swer sets of such queries and show how these can be used for constructing
and optimizing query plans. Special attention is devoted to the dimen-
sion of the queries, i.e. the minimum number of version spaces (or convex
sets) needed to represent the answer sets. The theoretical framework has
been implemented for the pattern domain of strings.

1 Introduction

Many data mining problems address the problem of finding a set of patterns that
satisfy a constraint. Formally, this can be described as the task of finding the
set of patterns Th(Q,D,L) = {ϕ ∈ L | Q(ϕ,D)}, i.e. those patterns ϕ satisfying
query Q on database D. Here L is the language in which the patterns or rules are
described and Q is a predicate or constraint that determines whether a pattern ϕ
is a solution to the data mining task or not [1]. This framework allows us to view
the predicate or the constraint Q as an inductive query to an inductive database
system [2]. It is then the task of the inductive database management system
to efficiently generate the answers to the query. This view of data mining as a
declarative querying process is also appealing as the basis for a theory of data
mining. Such a theory would be analogous to traditional database theory in the
sense that one could study properties of different pattern languages L, different
types of queries (and query languages), as well as different types of databases.
Such a theory could also serve as a sound basis for developing algorithms that
solve and optimize inductive queries.

When developing a theory about inductive databases, the relational algebra
may provide a useful source of inspiration. The relational algebra has proven to
be useful for database theory because of a variety of reasons. First, there is the so-
called closure property, which states that the result of a query is a relation. This
allows the result of one query to be used in the next query. Secondly, relational
algebra allows one to reason about query execution and optimization. Indeed,

before executing a query, the database management system constructs and pos-
sibly optimizes a so-called query plan. Thirdly, the relational algebra relies on a
simple yet powerful set of mathematical primitives. Because inductive databases
aim at putting data mining on the same methodological grounds as databases,
it should be useful to develop an algebra for manipulating pattern sets. Pattern
sets are the solutions to inductive queries Th(Q,D,L). Following the analogy
outlined above, they are the equivalent of a relation in a relational database.
This paper contributes an algebraic framework for manipulating pattern sets
and inductive queries. It extends the theoretical framework for inductive query-
ing by De Raedt et al. [3], who have contributed a theory centered around the
class of boolean inductive queries. Boolean inductive queries are queries that are
boolean expressions over monotonic and anti-monotonic predicates. This class
is—to the best of the authors’ knowledge—the most expressive class of queries
considered so far. The present paper is an extension as we consider algebraic set
operations on pattern sets and study their properties. The operations that we
study include intersection, union, difference and complements. They directly cor-
respond to conjunction, disjunction, negated implication and negation. A central
concept in this theory is the notion of version space [4]. A version space is a con-
vex set, which can be represented by its border sets (of maximally general and
maximally specific elements). The solution space corresponding to a conjunctive
query is a version space. Furthermore, effective algorithms exist for computing
these solution sets [5, 6, 3, 7, 8]. In this context, De Raedt et al. have studied the
dimension of pattern sets (and boolean queries), i.e. the minimum number of
version spaces needed to represent the pattern set. This in turn is related to the
number of calls to a conjunctive query answering algorithm needed to answer
an inductive query. In the present paper, these results are extended in the light
of the algebraic operations and we also show how these results can be employed
when reasoning about query execution and optimization.

Version spaces have been introduced in the context of concept-learning by
Tom Mitchell [4] and have been rather popular ever since. Hirsh [9] has in-
vestigated various set operations (such as intersection and union) on version
spaces and employed these in the context of concept-learning and explanation
based learning [10]. On the theoretical side, he has shown that version spaces
are closed under intersection but not under union. From this perspective, our
present results extend those by Hirsh in that we show that generalized version
spaces (i.e. finite unions of version spaces) are closed under set operations and
that we also deduce bounds on the dimensions of the resulting sets.

Finally, as an illustration of our general framework, we apply it to the pattern
domain of strings. For this domain, we have designed a data structure, called
the generalized version space tree, that is useful for computing and memorizing
the solution space w.r.t. inductive queries. The pattern domain of strings is of
interest because of the rapid generation of biological string databases, e.g. about
DNA, genes or proteins.

This paper is organized as follows. Sect. 2 introduces the problem of boolean
inductive queries, closely following [3]. Sect. 3 then studies the algebraic opera-

tions, which enables us to construct many equivalent query execution plans for
a given query (Sect. 4) and seek the optimal one. We implemented our frame-
work on the domain of string patterns with the help of our novel data structure,
the generalized version space tree (Sect. 5), and performed some preliminary
experiments on two data sets (Sect. 6). Finally, we conclude in Sect. 7.

2 Boolean Inductive Queries

Let us first define boolean inductive queries. We closely follow De Raedt et al.
[3].

A pattern language L is a formal language for specifying patterns. Each
pattern ϕ ∈ L matches (or covers) a set of examples ϕe, which is a subset of the
universe U of possible examples.

Example 1. Let Σ be a finite alphabet and UΣ = Σ∗ the universe of all strings
over Σ. We will denote the empty string with ε. The traditional pattern language
in this domain is LΣ = UΣ . A pattern ϕ ∈ LΣ covers the set ϕe = {ψ ∈ Σ∗ |
ϕ � ψ}, where ϕ � ψ denotes that ϕ is a substring of ψ. An alternative, more
expressive, language is the language of all regular expressions over Σ.

One pattern ϕ is more general than a pattern ψ, written ϕ � ψ, if and only
if ϕe ⊇ ψe.

A pattern predicate defines a primitive property of a pattern, usually relative
to some data set D (a set of examples), and sometimes other parameters. For
any given pattern, it evaluates to either true or false.

We now introduce a number of pattern predicates that will be used for il-
lustrative purposes throughout this paper. Most of these predicates are inspired
by MolFea [6]. Our first pattern predicates are very general in that they can be
used for arbitrary pattern languages:

– min freq(ϕ,D, n) evaluates to true iff ϕ is a pattern that occurs in database
D with frequency at least n. The frequency freq(ϕ,D) of a pattern ϕ in
a database D is the (absolute) number of data items in D covered by ϕ.
Analogously, the predicate max freq(ϕ,D, n) is defined.

– is more general(ϕ,ψ) is a predicate that evaluates to true iff pattern ϕ � ψ.
Dual to the is more general predicate one defines the is more specific predi-
cate.

The following predicate is an example predicate tailored towards the specific
domain of string-patterns over LΣ .

– length at most(ϕ, n) evaluates to true for ϕ ∈ LΣ iff ϕ has length at most n.
Analogously the length at least(ϕ, n) predicate is defined.

In all the preceding examples the predicates on the patterns have the form
predicate(ϕ, params) or predicate(ϕ,D, params), where params is a tuple of pa-
rameter values, D is a data set and ϕ is a pattern variable. We also speak a bit

loosely of predicatealone as a pattern predicate, and mean by that the collection
of all pattern predicates obtained for different parameter values params. We say
that m is a monotonic predicate, if for all possible parameter values params and
all data sets D:

∀ϕ,ψ ∈ L such that ϕ � ψ : m(ϕ,D, params) → m(ψ,D, params)

The class of anti-monotonic predicates is defined dually. Thus, min freq, is more
general, and length at most are monotonic, their duals are anti-monotonic.

A pattern predicate predicate(ϕ,D, params) that can be applied to the pat-
terns from a language L defines relative to D the solution set Th(predicate(ϕ,D,
params),L) = {φ ∈ L | predicate(ϕ,D, params) = true}. Furthermore, for mono-
tonic predicates m these sets will be monotone, i.e. for all φ � ψ ∈ L : ψ ∈
Th(m,L) → φ ∈ Th(m,L).

Example 2. Consider the string data set D= {abc, abd, cd, d, cd}. Here we have
pattern frequencies freq(abc,D) = 1, freq(cd,D) = 2, freq(c,D) = 3, freq(abcd,
D) = 0. And trivially, freq(ε,D) = |D| = 5. Thus, the following predicates
evaluate to true: min freq(c, D, 2), min freq(cd, D, 2), max freq(abc, D, 2), max
freq(cd, D, 2).

The pattern predicate m := min freq(ϕ,D, 2) defines Th(m,LΣ) = {ε, a, b, c,
d, ab, cd}, and the pattern predicate a := max freq(ϕ,D, 2) defines the infinite
set Th(a,LΣ) = LΣ \ {ε, c, d}.
Definition 3. The definition of Th(predicate(ϕ,D,params),L) is extended in
the natural way to a definition of the solution set Th(Q,L) for boolean combi-
nations Q of pattern predicates over a unique pattern variable: Th(¬Q,L) :=
L \ Th(Q,L); Th(Q1 ∨ Q2,L) := Th(Q1,L) ∪ Th(Q2,L); Th(Q1 ∧ Q2,L) :=
Th(Q1,L) ∩ Th(Q2,L). The predicates that appear in Q may reference one or
more data sets D1, . . . ,Dn.

We are interested in computing solution sets Th(Q,D,L) for boolean queries
Q that are constructed from monotonic and anti-monotonic pattern predicates.
We can thus formally define the boolean inductive query evaluation problem ad-
dressed in this paper.

Given
– a language L of patterns,
– a set of monotonic predicates M = {m1(p,D1, params1), . . . ,mn(p,Dj ,

paramsj)} and a set of anti-monotonic predicates A = {a1(p,D1,
params1), . . . , ak(p,Dk, paramsk)}

– a query Q that is a boolean expression over the predicates in M and A.
Find the set of patterns Th(Q,D,L), i.e. the solution set of the query Q in the

language L with respect to the data subsets D1, . . . , Dn ⊆ D.

De Raedt et al. have proposed a strategy for evaluating inductive queries and
also a first step in the direction of query optimization. Their strategy consists of

decomposing a boolean query Q into k sub-queries Qi such that Q is equivalent
to Q1 ∨ . . . ∨Qk, k is minimal and each of the Qi is the conjunction of a mono-
tonic and an anti-monotonic subquery Qm,i ∧ Qa,i. Notice that Qm,i and Qa,i

may be boolean expressions themselves. Indeed, [11] show that Qm,i may be a
DNF formula in which all the literals are monotonic, and similarly for Qa,i. A
DNF formula of the form M1∨ . . .∨Mn where each of the Mi is a conjunction of
monotonic predicates is monotonic. The reason is that the conjunction of mono-
tonic predicates is monotonic (hence all of the Mi are), and also the disjunction
of monotonic predicates is monotonic as well (and hence Qm,i is). The query
evaluation strategy proposed by [3] first decomposes the query and then com-
putes Th(Q,D,L) as ∪iTh(Qi,D,L). Because each of the sub-queries Qi will be
such that Th(Qi,D,L) is a version space (also called a convex space), it can be
efficiently computed for a wide class of pattern languages L, and queries Qi, cf.
[6, 7, 12]. Furthermore, the number of calls to such an algorithm is minimized be-
cause in the decomposition process, one minimizes the number k of subqueries.
This is the so-called dimension of a query, which [3] introduced as follows:

Definition 4. Let L be a pattern language, and X ⊆ L. Then X is a version
space of dimension 1, if ∀ϕ,ϕ′, ψ ∈ L : ϕ � ψ � ϕ′ and ϕ,ϕ′ ∈ X =⇒ ψ ∈ X.
The set of all version spaces of dimension 1 for L is denoted VS1(L).

Definition 5. The subset of patterns in L that satisfy the predicate Q, composed
of monotonic or anti-monotonic predicates using a combination of the 3 logical
operators conjunction (∧), negation (¬) and disjunction (∨), is a generalized
version space, denoted by Th(Q,D,L). The set of all generalized version spaces
for L is denoted by VSZ(L). Note that VS1(L) ⊆ VSZ(L).

Definition 6. The set X ∈ VSZ(L) has dimension k if it is the union of k sets
in VS1, but not the union of k − 1 sets in VS1.

A query Q has dimension k (with respect to the pattern language L) if k is the
maximal dimension of any solution set Th(Q,D,L) of Q (where the maximum
is taken w.r.t. all possible data sets D and w.r.t. the fixed language L).

If Q has dimension 1 w.r.t. L, then Th(Q,D,L) is a version space [4] or a
convex space [10]. Version spaces are particularly useful when they can be repre-
sented by boundary sets, i.e. by the sets G(Q,D,L) of their maximally general
elements, and S(Q,D,L) of their minimally general elements. For the theoretical
framework of the present section we need not assume boundary representability
for convex sets. However, concrete instantiations of the general method we here
develop, like the one described in sections 5 and 6, usually will assume pattern
languages in which convexity implies boundary representability.

Example 7. Reconsider the string domain. Let

Q1 = is more general(ϕ, abcde) ∧ length at least(ϕ, 3)
Q2 = is more specific(ϕ, ab) ∧ is more specific(ϕ, uw)

∧(length at least(ϕ, 6) ∨ min freq(ϕ,D, 3))

The query Q1 does not reference any dataset, and Th(Q1,LΣ) = { abcde,
abcd, bcde, abc, bcd, cde }. This set of solutions is completely characterized
by S(Q1,LΣ) = {abcde} and G(Q1,LΣ) = { abc, bcd, cde }. Th(Q2,D,LΣ)
cannot in general be represented using a single version space. However, as our
general method will show, the dimension of Th(Q2,D,LΣ) is at most two, so
that it can be represented as the union of two version spaces.

With the following definition and lemma, De Raedt et al. [3] provided an
alternative characterization of dimension k sets.

Lemma 8. Let X ⊆ L. Call a chain ϕ1 � ρ1 � ϕ2 � ρ2 � · · · � ϕk−1 �
ρk−1 � ϕk an alternating chain (of length k) for X if ϕi ∈ X (i = 1, . . . , k) and
ρj �∈ X (j = 1, . . . , k − 1). Then the dimension of X is equal to the maximal
k for which there exists in L an alternating chain of length k (or a k-chain for
short) for X.

Example 9. Consider the following queries:

Q3=is more general(ϕ, abc) ∧ is more specific(ϕ, a)
Q4=is more general(ϕ, c)
Q5=Q3 ∨ Q4

Then c, bc, abc is an alternating chain of length 2 for Th(Q5,LΣ).

The dimension of an inductive query is an important concept because it
corresponds to the minimum number of calls one has to make to an algorithm
for computing a convex solution space.

3 Operations on Solution Spaces

Consider two generalized version spaces V,W ∈ VSZ, We would like to know
how we can combine them using the usual set operations. This is of interest
because the solution set to an inductive query is, by Definition 3, obtained as
the result of applying set operations on solution set of simpler queries. At the
same time, these operations promise to be useful when constructing query plans
and in interactive querying sessions (cf. Sect. 4 for a detailed discussion).

We will analyze the operations: intersection (∩), union (∪), and complement
(′) w.r.t. L. Set difference can be treated as V \W ≡ V ∩W ′ whereas symmetric
difference can be interpreted as (V \ W) ∪ (W \ V).

When dim(V) = dim(W) are both 1, we reduce to traditional version spaces
VS1. We know from the previous discussion that V ∩W is in VS1. We have also
shown above by a counter-example that the dimension of the union can be 2,
although it may also be 1 (e.g. when V ⊆ W). So, traditional version spaces, i.e.
VS1, are not closed under union (as shown by [9]).

Nevertheless, our extension VSZ is closed under the usual set operations. The
following theorems thus generalize Hirsh’s results to the case where solution sets
are represented by a finite number of version spaces.

Theorem 10. VSZ(L) is closed under the following set operations: intersection,
union, complement, difference and symmetric difference.

It suffices to analyze the first 3 of them, as the latter can be defined out of
the first 3 operations. The proofs will be given below together with bounds for
resulting dimensions.

Theorem 11. Let V,W ∈ VSZ(L). Then, U = V ∩ W ∈ VSZ(L). Moreover,
0 ≤ dim(U) ≤ dim(V) + dim(W) − 1.

Proof. Let v = dim(V) and w = dim(W). By Definition 6, we can write V =⋃v
i=1 Xi and W =

⋃w
k=1 Yk for some Xi, Yk ∈ VS1(L). Then, we have U =

(
⋃v

i=1 Xi)
⋂

(
⋃w

k=1 Yk) =
⋃

i=1,...v
k=1,...w

Zi,k where Zi,k = Xi ∩ Yk. Since every Zi,k ∈
VS1(L), we have U ∈ VSZ(L).

For the bounds on the dimension, in case V and W are disjoint, we will have
an empty U , giving dim(U) = 0, which is a lower bound. For the upper bound,
we prove by contradiction. Assume that U = V ∪ W has dimension at least
u = v + w. Then, by Lemma 8, U has a u-chain (or longer), i.e.

∃ϕi ∈ U(i = 1, . . . , u) ∃ρj ∈ L \ U(j = 1, . . . , u − 1)
ϕ1 � ρ1 � ϕ2 � ρ2 � · · · � ρu−1 � ϕu

Denote the sequence {ρj}u−1
j=1 by R. How many members of R are not a member

of V ? At most v − 1: if not, then there will be (at least) v members of R not
belonging to V . Let these be ρjk

(k = 1, . . . , v), where jk ∈ {1, . . . , u − 1} and
{jk} is an increasing sequence. Then, ϕj1 � ρj1 � ϕj2 � ρj2 � . . . � ϕjv

� ρjv
�

ϕjv+1 will be a (v + 1)-chain for V , and hence by Lemma 8, dim(V) ≥ v + 1,
which contradicts with our definition of v. Therefore at most v − 1 members of
R do not belong to V . This means that at least (u − 1) − (v − 1) = w members
of R must belong to V . They form a subsequence RV = {ρpr

}p
r=1 of R, where

{pr}p
r=1 is an increasing sequence on {0, . . . , u − 1}. RV is thus a sequence of

length p ≥ w.
By a similar argument, at least v members of R must belong to W . They

form a subsequence RW = {ρqs
}q

s=1 of R ({qs}q
s=1 is an increasing sequence on

{0, . . . , u−1}), with length of q ≥ v. Now, the sequences RV and RW together has
at least v + w = u members, all coming from R. But R has only u− 1 members.
By the pigeon hole principle, at least one member of R is common to both RW

and RV . With our notations, this means there are r′ and s′ in {1, . . . , u − 1}
such that pr′ = qs′ . Let ρ′ = ρpr′ = ρqs′ . This is then a common member of RV

and RW . According to the definition of RW and RV , ρ′ ∈ V ∩W = U . But this
contradicts with the fact that ρj ∈ L \ U for all j = 1, . . . , u − 1. ��

Theorem 12. Let V,W ∈ VSZ(L). Then, U = V ∪ W ∈ VSZ(L). Moreover,
0 ≤ dim(U) ≤ dim(V) + dim(W).

Proof. Let v = dim(V) and w = dim(W). By Definition 6, we can write V =⋃v
i=1 Xi and W =

⋃w
k=1 Yk for some Xi, Yk ∈ VS1(L) Then, we have U =

(
⋃v

i=1 Xi) ∪ (
⋃w

k=1 Yk) =
⋃v+w

l=1 Zk where Zl = Xl for l = 1, . . . , v and Zl−v =
Yl−v for l = v + 1, . . . , v + w. Since each Zk ∈ VS1(L), we have U ∈ VSZ(L).
Moreover, dim(U) ≤ w+v by Definition 6. We cannot give a tighter lower bound
other than 0, because of the following special cases. First, consider the case where
V ∪ W = L, e.g. when V = W ′. Then, we have U = L = Th(true,D,L). Since
“true” is a monotonic1, dim(U) = 1. The other special case is when both V
and W are empty. This gives an empty U , and hence dim(U) = 0. Therefore,
0 ≤ max(dim(U),dim(V)) ≤ dim(U) ≤ dim(V) + dim(W). ��

Lemma 13. Let V ∈ VSZ(L). Then, U = L \ V ∈ VSZ(L) and dim(U) ≥
dim(V) − 1

Proof. Let v = dim(V). By Lemma 8, V has a v-chain. i.e.

∃ϕi ∈ V (i = 1, . . . , v) ∃ρj ∈ L \ V (j = 1, . . . , v − 1)
ϕ1 � ρ1 � ϕ2 � ρ2 � · · · � ϕv−1 � ρv−1 � ϕv

Then, ρ1 � ϕ2 � ρ2 � · · · � ϕv−1 � ρv−1 constitutes a (v−1)-chain of U = L\V .
Thus, with Lemma 8, we conclude that dim(U) ≥ v − 1. ��

Theorem 14. Let V ∈ VSZ(L) and v = dim(V). Then, U = L \ V ∈ VSZ(L)
and u = dim(U) = v − 1, v or v + 1.

Proof. There is a special case: V = ∅. In this case dim(V) = 0, and L \ V = L,
which has dimension 1. So, the theorem holds.

For the general case, Lemma 13 tells us that u ≥ v − 1, i.e. v − 1 ≤ u. Since
V = L \ U , we can apply the same lemma to obtain dim(V) ≥ dim(U) − 1, i.e.
v ≥ u − 1, or equivalently, u ≤ v + 1 Combining these results gives v − 1 ≤
u ≤ v + 1. Since u must be integer, it must take the value of one of v − 1, v or
v + 1. ��

Thus, we have completed the proof that VSZ(L) is closed under the 5 usual
set operations stated above.

4 Query Plans and Algebraic Operations

By the definition (Definition 3) of boolean inductive queries, the solution set
Th(Q,D,L) of a query Q is obtained by applying algebraic operations on the
solution sets w.r.t. the underlying queries. This can be formalized using the
notion of a query plan.

Definition 15. A query plan is a boolean formula with some of its subqueries
marked using ︸︷︷︸. Furthermore, all marked subqueries are the conjunction of a
monotonic and an anti-monotonic subquery.

1 It is also anti-monotonic.

Example 16. Consider the query Q = (a1 ∧ m1) ∨ (a1 ∧ m2) ∨ (a2 ∧ m1) ∨ (a2 ∧
m2) where the ai and mi are anti-monotonic (resp. monotonic) predicates. The
solution set of this query can be obtained by first computing the solution sets to
the queries (a1 ∧m1), (a1 ∧m2), (a2 ∧m1) and (a2 ∧m2) and then taking their
union. This way of computing Th(Q,D,L) corresponds to the plan

(a1 ∧ m1)︸ ︷︷ ︸∨ (a1 ∧ m2)︸ ︷︷ ︸∨ (a2 ∧ m1)︸ ︷︷ ︸∨ (a2 ∧ m2)︸ ︷︷ ︸
Alternatively, one could rewrite the query Q into (a1 ∨ a2) ∧ (m1 ∨ m2)︸ ︷︷ ︸ and

obtain the result as indicated in using one call to a conjunctive query solver (i.e.
an algorithm or system that computes the set of all solutions to a conjunctive
query). Intermediate forms are also possible.

For any inductive query Q, one can now construct a variety of different query
plans by annotating queries that are logically equivalent to Q. The question
then arises as to which query plan is optimal, in the sense that the resources
(i.e. memory and cpu-time) needed for computing its solution set are as small
as possible. A general approach to this problem would involve the use of cost
estimates that for each call to a conjunctive solver and operation. One example
of a cost function for a call to a conjunctive solver could be Expected Number of
Scans of Data × Size of Data Set. Another one could be the Expected Number of
Covers Tests. De Raedt et al. have studied (and solved) the query optimization
problem under the assumption that each call to a conjunctive solver has unit
cost and that the only set operation allowed is union. Under this assumption,
decomposing a query Q into k subqueries of the form Qa,i∧Qm,i with (Qa,i anti-
monotonic and Qm,i monotonic) and dim(Q) = k is an optimal strategy. In this
paper, we will leave open the challenging question as to which cost-estimates to
use in practice. However, what should be clear is that given such cost-estimates,
one could optimize inductive queries by constructing all possible query plans
and then selecting the best one. This is effectively an optimization problem, not
unlike the query optimization problem in relational databases.

4.1 Answering Interactive Queries using Incremental Update
Techniques

The optimization problem becomes even more interesting in the light of interac-
tive querying sessions [13], which should be quite common when working with
inductive databases. In such sessions, one typically submits a rough query to get
some insight in the domain, and when the results of this query are available,
the user studies the results and refines the query. This often goes through a few
iterations until the desired results are obtained.

These interactive sessions are again similar in spirit to those in traditional
databases, where the results of intermediate queries are often cached for optimiz-
ing later queries. Indeed, consider that for the above example, we would already
have the result of the query (a1∨a2)∧m1. In this case, one could actually employ

the following query plan:

((a1 ∨ a2) ∧ m1) ∨ ((a1 ∨ a2) ∧ m2)︸ ︷︷ ︸
where · · · denotes a query for which the solution is readily available. This query
plan employs a union and could save a lot of time when m1 is a minimum
frequency query in a large database.

Even when the refined query Q1 is not related the original one Q0 via Boolean
algebra, there is still a possibility for reusing the cached results VS(Q0) to ob-
tain the new solution VS(Q1) efficiently.2 One such situation occurs with the
minimum frequency constraints. For example, Q0 = min freq(ϕ,D, θ1) and Q1 =
min freq(ϕ,D, θ2)∧ length at least(ϕ, 3). When θ2 ≥ θ1, then VS(Q1) ⊆ VS(Q0).
So, we can find out the answer VS(Q1) by simply performing a filtering oper-
ation on VS(Q0). If the frequencies of all patterns in VS(Q0) were stored with
the results, we can even do this filtering without scanning the database! On the
other hand, when θ2 ≤ θ1, a simple filtering does not work. In this case, we
can make use of an incremental update algorithm [14, 15], with adaptations, to
efficiently compute VS(Q1) by using the cached results of VS(Q0).

The problem boils down to recognizing the parts of queries Q0 and Q1 which
are related this way. For simple queries, such recognition is simple. However, for
more complicated queries, it becomes challenging to recognize such related parts
of the queries. Our algebraic framework allows one to break down a complicated
query into a disjunctive normal form, making it easier to recognize such related
parts for optimization. Moreover, under this algebraic framework, it is possible
to rewrite the queries Q0 and Q1 into many equivalent forms, and we can then
devise algorithms to recognize the related parts in these forms. This opens up
another dimension of opportunities for optimizations in data mining.

5 Generalized Version Space Trees

We have extended our previous data structure “Version Space Trees” [3] for
mining VS1 of strings to handle the general case of VSZ. The extended data
structure is called Generalized Version Space Trees (GVS Tree).

The GVS Tree maintains a set of strings which are patterns we are discovering
from the database. Each such string is represented by a node in the tree. For any
given node n, we denote the string pattern it represents by s(n). The organization
of the tree is based on suffix tries. A suffix trie is a trie with the following
properties:

– For each node n in the trie, and for each suffix t of s(n), there is also a node
n′ in the trie representing t, i.e. t = s(n′).

– Each node n has as a suffix link, suffix (n) = n′, such that s(n′) is obtained
from s(n) by dropping the first character. The root node is special because
it represents ε, which has no suffixes. We define suffix (root) = Ω, where Ω
denotes a unique fake node.

2 For brevity, we write VS(Q) for Th(Q,D,L).

Unlike the common approach in the literature on suffix trees [16, 17], we
use suffix tries in two very different ways from the main stream. The first one
is that instead of building a suffix tree on all the suffixes of a single string, we
are indexing all the suffixes of a set of strings patterns for a string database D.
This means multiple strings are stored in the tree. Moreover, in parts of our
algorithms, we even keep a count of occurrences of each such substring in the
corresponding node.

A labelled trie Tf is a suffix trie where each node is labelled with either a
“⊕” or a “�”. We will use the ⊕ label to indicate nodes representing elements
in Th(Q,D, Σ∗) ∈ VSZ(Σ∗) and � for those that are not. In our previous pub-
lication [3], the VS Tree had a restriction that there can be at most one sign
change the root to any leave. This is because VS Tree was designed to model
sets in VS1 only. As a generalization in this current work, we have removed this
restriction, allowing complete freedom on the assignment of the labels “⊕” or a
“�” to any node. As a result, a GVS Tree can represent sets of string patterns
in VSZ. The usual set operations can be performed by manipulating the labels
on the nodes of GVS Trees, which we will come to in Sect. 5.1.

GVS Tree T is a labelled trie that represents a generalized version space V ∈
VSZ(Σ∗). In other words, V = {ϕ | ∃ node n ∈ T : ϕ = s(n) ∧ n is labelled ⊕}.
We have observed that if dim(V) = n, then there exists a path (exploiting both
child and suffix links, and ignoring the link directions) in T with alternating
signs so that the number of sign changes from � to ⊕ is n (Lemma 8).

Fig. 1 shows a labelled GVS Tree for the set Th(Q,D, Σ∗) where Σ =
{a, b, c, d} and Q(ϕ,D) = (bc � ϕ � abcd)∨(a � ϕ � acd). The dashed, curved
arrows show the suffix links. The suffix links of the nodes immediate below the
root node all points back to the root node, and are omitted for clarity. The ⊕
nodes represent the seven members of the GVS, namely a, abc, abcd, ac, acd,
bc and bcd. Note that Q above is already in a minimal disjunctive normal form.
So, the GVS has a dimension of 2, and the path through the nodes representing
ε, a, ab, abc with exactly 2 sign changes.

c

b

a
b

d

d

cc

c

d

d d

+

+

−

− −

+

−

−

+ +

+ + −

Fig. 1. An example of GVS Tree

An important property of the GVS Tree is that checking for membership is
very efficient. Given any string ϕ ∈ Σ∗, we just need to follow the symbols on
ϕ and descend through the tree accordingly. We will then end up at a node n
so that s(n) = ϕ. This node has an ⊕ mark if and only if ϕ is in the GVS. The
time complexity is O(|ϕ|). The space complexity of a GVS Tree and the time
required to build it is the same of that of suffix tries—quadratic in the size of
the input strings.

5.1 Algorithm TreeMerge

The TreeMerge algorithm is basically an algorithm for merging two ordinary
trees. However, we have to combine the flags (� or ⊕) from both trees, too.
The combining algorithm is presented in the pseudocode in Algorithm 1 as an
abstract Boolean operation �. When the operation is “and”, the flags are com-
bined using conjunction during the merging (� is interpreted as “false” while ⊕
is treated as “true”), and hence the TreeMerge algorithm will compute the in-
tersection of the represented GVSes. When � = ∨, we get the union operation.
When x � y ≡ ¬(x → y), we get the set difference operation.

In the algorithm, the function root or negative(T) returns the root node of a
tree T if T is non-empty, or a node with label � and no children if T is empty.
Function child(n, σ) returns the child node of n on the child link labelled σ, where
σ ∈ Σ. If there is no such child, NULL is returned. The function tree with root(n)
returns a GVS Tree whose root node is n, or Tempty if n is NULL. Tempty denotes
an empty GVS Tree.

Algorithm 1 TreeMerge
Require:

/* Input: T1, T2: two GVS Trees �: a binary, boolean operator */
/* Output: T ′ = The resulting of merging T1 and T2, so that the flag on each node
in T ′ is the result of applying � to the corresponding nodes on T1 and T2. */

if T1 = Tempty ∧ T2 = Tempty then
return Tempty

r1 ← root or negative(T1); r2 ← root or negative(T2)
Create new tree T ′ with root node r′.
label(r′) ← label(r1) � label(r2)
for all σ ∈ Σ do

c1 ← child(r1, σ); c2 ← child(r2, σ)
if c1 �= NULL ∨ c2 �= NULL then

Tc1 ← tree with root(c1); Tc2 ← tree with root(c2)
c′ ← root or negative(TreeMerge(Tc1 , Tc2 ,�)) /* Recursively */
add c′ to r′ as a child node along link σ

return T ′

It should be emphasized that Algorithm 1 is just a pseudo code. In practice,
much optimization can be introduced by specializing the code for each particular

Boolean operation. For instance, when � = ∧ and a certain branch in T1 is
empty, there is no need to look at a corresponding branch in T2.

6 Preliminary Experiments

We have implemented the algorithm VST [3] that computes the results of con-
junctive queries (with dimension 1) and TreeMerge (see Sect. 5.1) in C and
performed some experiments on a PC computer with a Pentium-4 2.8GMHz pro-
cessor, 2GB main memory, and running Linux operating system (kernel 2.4.19,
glibc 2.2.5). The former is used as our conjunctive query solver (see Sect. 4)
while the latter is for performing set operations on pattern sets. Our implemen-
tation supports as primitives the two predicates min freq and max freq as given
in Sect. 2.

6.1 The Databases

Two databases were used in the experiments. The first one is a command history
collected from 168 Unix users over a period of time. [18] The users are divided
into four groups: computer scientists, experienced programmers, novice program-
mers and non-programmers. The corresponding data subsets are denoted “sci”,
“exp”, “nov” and “non”, respectively. Each group has a number of users. When
a user accesses the Unix system, he first logs in, then types in a sequence of
commands, and finally logs out. Each command is taken as a symbol in the
database, The sequence of commands from log in to log out constitutes a login
session, which is mapped to a string in our experiment. The alphabet is the
set of available commands. Each user contributes to many login sessions in the
database. Table 1(a) gives some summary data on the database.

Table 1. Summary statistics of the databases

(a) Unix command database (b) Yeast database

Subset no. of number of
users sequences

nov 55 5164
exp 36 3859
non 25 1906
sci 52 7751

Subset number of
sequences

cat30 209
cat40 2256
cat2 252

The second database is a collection of ORFs (open reading frames) of yeast,
cf. [19]. The alphabet is the set of 20 amino acids. Out of these 20 symbols, every
ORF (encoding for a protein) can be represented. Our database contains 6354
such sequences. Each sequence has a length between 8 and 4910. In addition, each
sequence is associated with one or more functional categories (cat30: “Control
of cellular organization”, cat40: “Subcellular localisation”, cat2: “Energy”, etc.).

As preprocessing, we have separated the sequences into groups according to their
functional categories. When a sequence has more than one category, it appears
in multiple groups. However, within each group, a sequence appears at most
once. Three of these groups were used in the experiments. They are given in
Table 1(b).

6.2 The Queries

For both databases, we used a query of the following form and ran our programs
to mine the patterns satisfying the constraints.

Q = (Q1 ∨ Q2) ∧ QA

where
Q1 = min freq(ϕ,D1, |D1| × θ1) ∧ length at least(ϕ, 3)
Q2 = min freq(ϕ,D2, |D2| × θ2) ∧ length at least(ϕ, 2)

and QA is an anti-monotonic constraint. Here, D1 and D2 are subsets of the
database being used, θ1 and θ2 are the corresponding minimum frequency thresh-
olds, also set to 10% of the number of sequences in the subsets, and QA is an
anti-monotonic constraint.

Note that Q is neither monotonic nor anti-monotonic. So, the solution set
is in VSZ. However, Q1 and Q2 are each a conjunction of an anti-monotonic
constraint (minimum frequency) and a monotonic one (minimum length). So,
dim(Q1) = dim(Q2) = dim(QA) = 1. Thus, one (straight-forward) strategy of
find the set of patterns satisfying Q is to use the query plan(

Q1︸︷︷︸∨ Q2︸︷︷︸
)
∧ QA︸︷︷︸

This involves 3 invocations of our frequent pattern VST.
However, the VST algorithm (or any other frequent pattern discovery algo-

rithm such as Apriori [20]) is the most time-consuming part of the whole pro-
cesses. We would like to minimize this cost. This is possible now with our algebra
on generalized version spaces and theorems on the dimension. By Theorem 12,
we know that dim(Q1 ∨ Q2) ≤ dim(Q1) + dim(Q2) = 1 + 1 = 2. Now, applying
Theorem 11, we have dim(Q) ≤ dim(Q1 ∨ Q2) + dim(QA) − 1 ≤ 2 + 1 − 1 = 2.
Thus, Q has a dimension of at most 2. This means it is possible to express Q as
the union of two version spaces.

Indeed, we can obtain a different query plan for Q, which we denote by Q′:

Q′ = Q′
1︸︷︷︸∨ Q′

2︸︷︷︸
where

Q′
1 = Q1 ∧ QA

Q′
2 = Q2 ∧ QA

This query plan involves only 2 invocations of algorithm VST. It is thus expected
to be faster. Moreover, having pushed the anti-monotonic constraint QA deeper

into the query evaluation, we expect the levelwise algorithm VST to prune more
effectively.

To verify this, we have run experiments on the two databases with the values
for D1, D2 and QA as shown in Table 2. On the unix command database, this
query translates to “What sequences of unix commands are used often by expe-
rienced programmers with a length of at least 3 or by computer scientists with
a length of at least 2, and are also frequently used by the other two groups of
users?”. With our algebraic framework, it is possible to perform data mining with
such complicated constraints. The query for the protein database translates to
“What amino acid sequences occur frequently in function category ‘cat30’ with
a length of at least 3 or in function category ‘cat40’ with a length of at least 2,
and is at the same time frequent among the function category ‘cat2’?”.

Table 2. Details of queries used for the experiments

Unix command database Yeast database

D1 experienced programmers cat30
D2 computer scientists cat40
θ1 10% 20%
θ2 10% 20%
QA min freq(ϕ, non, |non| × 10%) min freq(ϕ, cat2, |cat2| × 20%)

∧min freq(ϕ, nov, |nov| × 10%)

6.3 Results

Performance The queries Q and Q′ are evaluated as described above using
our implementation of the VST and TreeMerge algorithms. For each database
the resulting patterns for both queries are compared and found to be identical.
This verifies the correctness of our theory and implementation.

The time taken are noted and given in Table 3. With the unix command
database, it took 2.15 seconds to evaluate the query as Q and only 1.60 seconds
to evaluate as Q′. With the yeast database, it took 4.03 and 3.65 seconds, re-
spectively. It is thus 9–26% faster to use strategy Q′ than Q to find out the set of
patterns. The table also shows a breakdown of the time taken for evaluating the
queries Q1, Q2, QA, Q′

1 and Q′
2. The pattern sets for these are all in VS1, and

are computed by the VST algorithm. It should be noted that the time taken for
the TreeMerge algorithm is negligible (less than 1 ms). This confirms our claim
that invocations of algorithm VST is the most time-consuming part of the whole
process.

Another important observation in Table 3 is the number of patterns found
for each query strategy and subqueries. In query strategy Q′, the constraint QA

is pushed down to the subqueries Q′
1 and Q′

2, effectively pruning the number

Table 3. Experimental Results

Query No. of patterns Time (sec.) Heap memory (bytes)
Strategy Unix Yeast Unix Yeast Unix Yeast

Q (total) 41 404 2.15 4.03 128619 119988
Q1 110 638 0.74 0.42
Q2 212 122 1.18 3.34
QA 67 434 0.23 0.27

Q′ (total) 41 404 1.60 3.65 66740 106476
Q′

1 16 403 0.65 0.55
Q′

2 40 38 0.95 3.10

of patterns that needs to be processed by the programs. This accounts for the
improved speed and memory usage.

Memory Footprint Not only is time saved, but also is memory more efficiently
used when we use strategy Q′ instead of Q to find out the set of patterns in
question. The amount of heap memory used by our programs were recorded.
The maximum amount of heap memory usage is shown in Table 3. Using query
evaluation strategy Q′, we save 11–48% of memory. Thus, it saves both time and
memory to evaluate the query using Q′.

7 Conclusions

We have generalized the notion of convex sets or version spaces to represent sets
of higher dimensions. These generalized version spaces are useful for representing
the solution sets to boolean inductive queries. Furthermore, we have studied
the effect of algebraic operations on such generalized version spaces and shown
that these generalized version spaces are closed under the set operations. This
generalizes Hirsh’s results on traditional version spaces (sets of dimension 1).

We have also shown how the resulting algebraic framework can be employed
for query planning and optimization. The framework has been implemented for
the pattern domain of strings and experimental results that illustrate the use of
the framework have been presented.

Nevertheless, there are many remaining opportunities for further research.
Most important is the development of effective and realistic cost functions for
inductive query evaluation and their use in query optimization.

References

1. Mannila, H., Toivonen, H.: Levelwise search and borders of theories in knowledge
discovery. Data Mining and Knowledge Discovery 1 (1997) 241–258

2. De Raedt, L.: A perspective on inductive databases. SIGKDD Explorations:
Newsletter of the Special Interest Group on Knowledge Discovery and Data Mining,
ACM 4 (2003) 69–77

3. De Raedt, L., Jaeger, M., Lee, S.D., Mannila, H.: A theory of inductive query
answering (extended abstract). In: Proc. The 2002 IEEE International Conference
on Data Mining (ICDM’02), Maebashi, Japan (2002) 123–130

4. Mitchell, T.M.: Generalization as search. Artificial Intelligence 18 (1982) 203–226
5. De Raedt, L., Kramer, S.: The levelwise version space algorithm and its applica-

tion to molecular fragment finding. In: IJCAI01: Seventeenth International Joint
Conference on Artificial Intelligence. (2001)

6. Kramer, S., De Raedt, L., Helma, C.: Molecular feature mining in hiv data. In:
KDD-2001: The Seventh ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, Association for Computing Machinery (2001) ISBN:
158113391X.

7. Bucila, C., Gehrke, J., Kifer, D., White, W.: DualMiner: A dual-pruning algo-
rithm for itemsets with constraints. In: Proceedings of The Eight ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, Edmonton,
Alberta, Canada (2002)

8. Boulicaut, J.F.: (Habilitation thesis, 2001)
9. Hirsh, H.: Generalizing version spaces. Machine Learning 17 (1994) 5–46

10. Hirsh, H.: Theoretical underpinnings of version spaces. In: Proceedings of the
Twelfth International Joint Conference on Artificial Intelligence (IJCAI91), Mor-
gan Kaufmann Publishers (1991) 665–670

11. De Raedt, L., Jaeger, M., Lee, S.D., Mannila, H.: A theory of inductive query
answering. (2003) (planned for submission to a journal).

12. Fischer, J., De Raedt, L.: Towards optimizing conjunctive inductive queries.
In: Proceedings of The Third IEEE International Conference on Data Mining
(ICDM’03), Melbourne, Florida, USA (2003) Submission, under review.

13. Baralis, E., Psaila, G.: Incremental refinement of mining queries. In Mohania,
M.K., Tjoa, A.M., eds.: Proceedings of the First International Conference on
Data Warehousing and Knowledge Discovery (DaWaK’99). Volume 1676 of Lecture
Notes in Computer Science., Florence, Italy, Springer (1999) 173–182

14. Cheung, D.W.L., Lee, S.D., Kao, B.: A general incremental technique for main-
taining discovered association rules. In: Proceedings of the Fifth International
Conference on Database Systems for Advanced Applications, Melbourne, Australia
(1997) 185–194

15. Lee, S.D., Cheung, D.: 8. In: Maintenance of Discovered Association Rules. Volume
600 of The Kluwer International Series in Engineering and Computer Science.
Kluwer Academic Publishers, Boston (2000) ISBN-0-7923-7243-3.

16. Ukkonen, E.: On-line construction of suffix trees. Algorithmica 14 (1995) 249–260
17. Weiner, P.: Linear pattern matching algorithm. In: Proc. 14 IEEE Symposium on

Switching and Automata Theory. (1973) 1–11
18. Greenberg, S.: Using unix: Collected traces of 168 users. Research Report

88/333/45, Department of Computer Science, University of Calgary, Calgary,
Canada. (1988)

19. Clare, A., King, R.D.: Machine learning of functional class from phenotype data.
Bioinformatics 18 (2002) 160–166

20. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In Bocca,
J.B., Jarke, M., Zaniolo, C., eds.: Proc. 20th Int. Conf. Very Large Data Bases,
VLDB, Morgan Kaufmann (1994) 487–499

Finding All Occurring Sets of Interest

Taneli Mielikäinen

HIIT Basic Research Unit
Department of Computer Science
University of Helsinki, Finland

Taneli.Mielikainen@cs.helsinki.fi

Abstract. In this paper we examine the problem of mining all occur-
ring sets of interest. We define what they are, sketch some applications,
describe streaming algorithms for the problem and analyze their com-
putational complexity. We also study alternative representations for the
occurring sets of interest and evaluate some of them experimentally.

1 Introduction

Finding all sets that occur frequently in a given data set has been a very pop-
ular research topic in data mining for years [1,2,3,4,5]. This frequent set mining
problem can be stated as follows: given a finite set R of attributes, a sequence
d = d1, . . . , dn of its subsets di ∈ 2R, 1 ≤ i ≤ n, and a threshold value σ ∈ [0, 1],
find all σ-frequent sets in d, i.e., find all subsets X of R such that the frequency

fr (X) = fr (X, d) =
|{i : X ⊆ di, 1 ≤ i ≤ n}|

n

of X is at least σ. The collection of σ-frequent sets in d is denoted by

Fσ,d = {X ⊆ R : fr (X, d) ≥ σ} .

The set of different sets in d is denoted by D = {di : 1 ≤ i ≤ n} and the number
of (exact) occurrences of set X in d is denoted by occ (X, d) = |{i : X = di}|.
The sequence d is sometimes called a database. Then the elements di of d are
called transactions or rows.

One practical reason why the frequencies of only the σ-frequent sets are
computed instead of the frequencies of the whole set collection 2R, is that 2R

contains 2|R| subsets which is too large to be practical already for very small
numbers of attributes. Also, the frequent sets are presumed to contain the most
relevant sets in 2R. However, it is not always easy to find a good minimum
frequency threshold σ such that Fσ,d would contain most of the relevant sets and
only few irrelevant ones. It might be even possible that such threshold does not
exist at all. This is the case, for example, when some combinations of attributes
are are not relevant no matter of their frequencies.

These observations suggest to study a task complementary to the frequent
set mining, namely mining all sets occurring in d that are contained in some of

the given subsets of attributes. The problem can be formulated more precisely
as follows: given a finite set R of attributes, a sequence d = d1, . . . , dn of its
subsets, and collection S of subsets of R, find all occurring sets of interest in d,
i.e., find all subsets of R that are contained in at least one set in S. Analogously
to the set of frequent sets, the set of occurring sets of interest is denoted by

IS,d = {X ⊆ Y ∩ Z : Y ∈ S, Z ∈ D} .

The set IS,d can be computed by first generating all subsets of the sets in S
and then counting their frequencies in d. As the collection Fσ,d, also the collec-
tion IS,d can be very redundant. The redundancy of frequent sets has motivated
several studies of condensed (or concise) representations of set collections, i.e.,
subsets of the set collection (and their frequencies) from which all the other
sets (and their frequencies) in the collection can be inferred. Some of the con-
densed representations, e.g. closed sets [6,7,8,9], disjunction-free sets [10] and
their generalizations [11,12,13,14], represent both the frequent sets and their
exact frequencies while some other allow approximate representations of fre-
quencies [15,16,17,18,19,20,21] or determine just the collection of frequent sets
without the actual frequencies [22,23,24,25]. These representations are usually
based on the frequencies of the frequent sets and they can be significantly smaller
than the collection of all frequent sets. The condensed representations for fre-
quent sets can be adapted to the occurring sets of interest.

In this paper we shall use two condensed representations called maximal sets
and closed sets. The maximal sets suffice to determine uniquely the collection of
frequent sets.

Definition 1. A set X ∈ C is maximal in a set collection C iff the collection
does not contain any of its supersets, i.e., iff Y ⊃ X ⇒ Y /∈ C. The set of
maximal sets in a collection C is denoted by max (C).

If we are interested also in the actual frequencies of the frequent sets, we can
determine maximal sets using each frequency in {fr (X, d) : X ∈ Fσ,d} as the
minimum frequency threshold. These sets together form the collection of closed
sets in Fσ,d.

Definition 2. A set X ∈ C is closed in a set collection C (w.r.t. d) iff it has
no supersets in S with the same frequency, i.e., iff X ⊂ Y ∈ C ⇒ fr (X, d) >
fr (Y, d).

From the above mentioned condensed representations one can derive another
application of the occurring sets of interest, in addition of being an alternative
to minimum frequency thresholds for the set collections: the occurring sets of in-
terest can be used to refine already computed coarse condensed representations.
For example, the closed frequent sets can be computed from the maximal fre-
quent sets and the data set. This kind of resource-aware mining with additional
information might be useful e.g. in ubiquitous computing.

We have developed some streaming algorithms for mining all occurring sets
of interest, i.e., algorithms that find all occurring sets of interest without storing

the sequence d. (For a short introduction to data streams, see e.g. [26].) Thus
the collection of the occurring sets of interest can be used also as a summary
of a data stream by choosing the set S to be a collection of few small random
subsets of R and maintaining the occurring sets of interest for the set S. This
approach does not require any data set dependent parameters as the minimum
frequency threshold in frequent set mining.

The rest of the paper is organized as follows. In Section 2 we consider the
computational problem of finding all occurring closed sets of interest. In Sec-
tion 3 we examine alternative representations for the occurring sets of interest.
Section 4 concludes the paper.

2 Mining Closed Occurring Sets of Interest

In this section we consider the problem of computing all closed (occurring) sets
of interest. We describe several algorithms and analyze their computational com-
plexity. Also, we propose a new data structure that might have some interest of
its own. Let us first show a useful lemma about closed sets:

Lemma 1. The set X ⊆ R is closed in 2R = {Y ⊆ R} iff X =
⋂

i∈I di for some
I ⊆ [n] = {1, . . . , n}.
Proof. By Definition 2, X ⊆ R is closed in 2R iff fr (X, d) > fr (Y, d) for all
Y ⊃ X, Y ⊆ R. If X =

⋂
i∈I di for some I ⊆ [n] then for all of its supersets

Y ⊆ R there is di, i ∈ I, such that Y 	⊆ di, i.e., fr (X, d) > fr (Y, d). On the
other hand, if X 	= ⋂

i∈I di for any I ⊆ [n], then X ⊂ ⋂
i∈I di = Y for some

I ⊆ [n] and thus there is Y ⊃ X, Y ⊆ R, such that fr (X, d) = fr (Y, d).
�
Applying Lemma 1 we describe an algorithm that computes all the closed

sets exhaustively and intersects them by the sets in S:
Intersect-Exhaustive(S, d)

1 I ← ∅
2 for each I ⊆ {1, . . . , n}
3 do X ← ⋂

i∈I di

4 for each Y in S
5 do Z ← X ∩ Y
6 if Z /∈ I
7 then I ← I ∪ Z
8 supp [Z] ← 0
9 if supp [Z] < |I|

10 then supp [Z] ← |I|
11 for each X in I
12 do fr (X) ← supp [X] /n
13 return (I, fr (I))

Let m denote min {max1≤i≤n |di|, maxY ∈S |Y |}. Then we can show that the
algorithm Intersect-Exhaustive has the following time complexity:

Theorem 1. Algorithm Intersect-Exhaustive finds all closed sets of inter-
est and their frequencies in time O (m2n |S|).

Proof. By Lemma 1, the algorithm computes all closed sets in 2R and projects
them by S. Thus the set I the algorithm produces is equal to IS,d.

The algorithm computes 2n |S| intersections, the number of terms in the
intersection is n + 1 in the worst case and the number of comparisons needed to
intersect two sets is |R| in the worst case. Thus all intersections can be computed
in time O (|R|n2n |S|).

However, by computing all intersections of k sets before the intersections of
k + 1 sets and memorizing the intersections of k sets, each intersection can be
computed in time |R|. Furthermore, the intersection between sets X and Y can
be computed in time O (min {|X|, |Y |}) by testing which elements of the smaller
set are contained in the larger one.
�

Unfortunately, the algorithm Intersect-Exhaustive is too slow. Moreover,
it has to memorize the whole sequence d as the intersections of subsets have to
be computed. (In fact, already computing all pairwise intersections di ∩ dj , 1 ≤
i < j ≤ n, would require this.) Note that because the sets in S should reduce
the huge set of all subsets of R to a smaller collection of the occurring sets of
interest, storing the sequence d itself should not be necessary.

It turns out that the computation of the intersections can reorganized to be
more efficient. This can be done by noticing that all possible combinations of
intersections producing some closed set X do not have to be computed: it is
enough to produce each closed set once and to be able to compute its frequency.
This observation can be formulated as an incremental streaming output-efficient
algorithm as follows:
Intersect-Incremental(d,S)

1 I ← S
2 for each Y in I
3 do lastV isited [Y] ← 0
4 for i ← 1 to n
5 do for each Y in I
6 do Z ← di ∩ Y
7 if Z /∈ I
8 then I ← I ∪ Z
9 supp [Z] ← 1

10 lastV isited [Y] ← i
11 if lastV isited [Y] < i
12 then supp [Z] ← supp [Z] + 1
13 for each X in I
14 do if supp [X] = 0
15 then I ← I \ {X}
16 else fr (X) ← supp [X] /n
17 return (I, fr (I))

Theorem 2. The algorithm Intersect-Incremental finds all closed sets of
interest and their frequencies in time O (nm (|IS,d| + |S|)).
Proof. Let I0, I1, . . . , In = I denote the solutions found by the algorithm Intersect-
Incremental for prefixes of d of lengths 0, 1, . . . n, respectively. Clearly, I0 ⊆
I1 ⊆ . . . ⊆ In. We first show that I = IS,d ∪ S by induction on the length of
the sequence:

1. If |d| = 0, then there are no occurring sets in d and I0 = S.
2. Assume that for some k < n, Ii = IS,d1...di ∪S holds for all 0 ≤ i ≤ k. Then

Ik+1 = Ik ∪ {dk+1 ∩ X : X ∈ Ik} ∪ {dk+1 ∩ Y : Y ∈ S}

=

{⋂
i∈I

di ∩ Y : Y ∈ S, I ⊆ [k]

}
∪

{
di+1 ∩

⋂
i∈I

di ∩ Y : Y ∈ S, I ⊆ [k]

}

=

{
Y ∩

⋂
i∈I

di : Y ∈ S, I ⊆ [k + 1]

}
= IS,d1...dk+1 ∪ S.

Thus Ii = IS,d1...di ∪ S holds for all 0 ≤ i ≤ n. In particular, I = In =
IS,d ∪ S as claimed.

The counts of the sets in S \ IS,d remain zero and they can be removed from
the collection IS,d in time O (|I|). The frequencies of the closed occurring sets
of interest are correct because each di, 1 ≤ i ≤ n, increases the count of each
X ∈ IS,d contained in di exactly once.

As each set di, 1 ≤ i ≤ n, can intersect at most |I| sets in IS,d ∪ S and
one intersection can be computed in time O (m), the set I \ S = IS,d and
the frequencies of the sets X ∈ IS,d can be computed in time O (nm |I|) =
O (nm (|IS,d| + |S|)).
�

One problem with the algorithm Intersect-Incremental is that it can
compute the empty intersection several times for each set di. We attempt to
avoid this problem by introducing a data structure called skewers that allows
efficient computation of non-empty intersections.

Definition 3 (Skewers). A skewers data structure V represents a collection of
sets. Each set X in the skewers consists a set of attributes VX

X , a counter VX
supp

and the time of last visit VX
time.

The sets in V are in ascending order in their cardinality. In addition there
is a skewer VA for each attribute A ∈ R consisting the sets containing A in the
order conforming the global order of sets.

The skewers V supports operations insertion, deletion and location of a set
X in time O (|X| log |V|). Next and previous set in each skewer VA can be found
in constant time.

The intersection algorithm for skewers incrementally intersect the sets in the
skewers data structure by scanning over the skewers. The scan over the sets is
implemented by a priority queue.

Intersect-Skewers(d,S)
1 I ← ∅
2 V ← ∅
3 for each Y ∈ S
4 do Insert-Skewers (Y)
5 for i ← 1 to n
6 do Q ← ∅
7 for each A in di

8 do Insert-Queue
(Q,VA

head

)
9 while Q 	= ∅

10 do X ← Extract-Queue (Q)
11 Y ← X ∩ di

12 if VY = nil
13 then Insert-Skewers (Y)
14 I ← I ∪ {Y }
15 if VY

time < i
16 then VY

supp ← VY
supp + 1

17 VY
time ← i

18 for each A in X
19 do Insert-Queue

(Q,Next-Skewer
(VA

))
20 for each X in I
21 do fr (X) ← VX

supp/n
22 return (I, fr (I))

Theorem 3. The algorithm Intersect-Skewers finds all closed sets of inter-
est and their frequencies in time

O
(

n∑
i=1

(|di| + log |V |)
∑
A∈di

∣∣VA
∣∣) .

Proof. All closed sets of interest and their frequencies are found as the algorithm
Intersect-Skewers incrementally constructs the collection of all closed sets
of interest similarly to the algorithm Intersect-Incremental.

The number of sets intersected by di is bounded by
∑

A∈di

∣∣VA
∣∣. Each in-

tersection can be computed in time |di| and the set corresponding to the in-
tersection can be found in time log |V |. Thus, the combined time complexity is
O (∑n

i=1 (|di| + log |V |)∑
A∈di

∣∣VA
∣∣) as claimed.
�

The time bound is quite pessimistic as the bound does not take into account
e.g. that the same set is not added into the priority queue more than once per
scan. Furthermore, if all data d can be stored, then the computation can be
made more efficient by replacing the sequence d by the set D with number of
occurrences occ (X, d) for each X ∈ D.

The algorithms can be adapted to mine the closed frequent sets instead of
the closed sets of interest by maintaining upper bounds of frequencies for the
closed sets and removing a closed set when it is clear that the set is infrequent.

3 Simplified Databases

It is not clear whether the closed sets of interest should be mined explicitly. For
example, the closed sets are not very good as an index structure for frequency
queries by subsets of R.

It is easy to see that the number of the closed sets in 2R is at least as large
as |D| due to the fact that each set in D is a closed set. Usually the number
of closed sets is even higher because also all intersections

⋂
X∈C X, C ⊆ D, are

closed sets. However, if we are considering the closed sets of interest instead of
all closed sets in 2R, then the number of different rows in the database d is not
necessarily smaller: The set collection S can be chosen to be the collection of
the maximal frequent sets. Then the set of the closed occurring sets of interest
is the collection of the closed frequent sets. The collection of the closed frequent
sets can be much smaller than the original database d or even smaller than the
number |D| of different rows in d.

However, also the database d can be condensed. The simplest approach is to
replace the database by the set D and the number of occurrences occ (X, d) for
each X ∈ D. The number of sets in D can be further reduced by removing all
attributes that are not present in S. If the number of sets in S is very small,
it can be worthwhile to store the projection of the database D onto Y for each
Y ∈ S separately.

We tested with few data sets how the sizes of different representations of the
set collection and the database relate to each other. The experiments were done
using IPUMS Census data set from UCI KDD Repository1 and Ilmo data set
from the course enrollment system of Department of Computer Science, Univer-
sity of Helsinki. IPUMS Census consists of 88443 rows (88211 different rows)
and 39954 attributes. Ilmo consists of 3505 rows (1903 different rows) and 97
attributes. We simulated different set collections S by computing the maximal
σ-frequent sets for several minimum frequency thresholds σ. Thus in our exper-
iments the sets in S correspond to the maximal σ-frequent sets.

The results are shown in Table 1 and Table 2. The column “pruned rows”
corresponds to the number of different rows in d after removing the attributes
that do not occur in S. The column “projections” corresponds to the combined
number of different rows in each projection of D onto Y ∈ S. It can be seen from
the tables that all of the representations have their good sides. The represen-
tation of database based on separate projections to all sets in S do nicely with
high minimum frequency thresholds but eventually, as the minimum frequency
threshold decreases, the collection of pruned database rows succeeds to be the
smallest one.

In general, the small representations of the databases and occurring sets of
interest seem to have some nontrivial computational problems:

1. Given a data set d and a collection S of subsets of R, find the smallest data
set d′ that agrees with d when projected onto any Y ∈ S.

1 http://kdd.ics.uci.edu

σ S := max (Fσ,d) cl (IS,d) = cl (Fσ,d) IS,d = Fσ,d pruned rows projections

0.40 41 1517 1517 11934 595
0.38 56 2111 2111 13490 847
0.36 66 2795 2795 15424 1154
0.34 82 3975 3975 15993 1636
0.32 107 5361 5361 17777 2400
0.30 126 8205 8205 22626 3083
0.28 152 11443 11443 22763 4179
0.26 198 17503 17503 22763 5774
0.24 272 23903 23903 27429 8450
0.22 387 53203 53203 31488 12935
0.20 578 86879 86879 39730 22616
0.18 789 250441 250441 40128 37435
0.16 1082 524683 524683 44534 63784

Table 1. IPUMS Census data set

σ S := max (Fσ,d) cl (IS,d) = cl (Fσ,d) IS,d = Fσ,d pruned rows projections

0.040 102 286 286 1546 978
0.038 113 355 355 1546 1328
0.036 132 430 430 1546 1878
0.034 123 512 512 1581 1713
0.032 123 594 594 1620 1958
0.030 157 691 691 1651 2645
0.028 190 847 847 1651 3519
0.026 226 1090 1095 1693 4814
0.024 260 1363 1378 1693 6192
0.022 292 1741 1771 1693 8380
0.020 359 2264 2348 1699 11605
0.018 436 3017 3226 1714 15109
0.016 565 4078 4519 1723 22044

Table 2. Ilmo data set

2. Given a data set d and a collection S of subsets of R, find a collection of data
sets d1, . . . , dk with the smallest combined number of different rows and a
mapping f : S → [k] such that df(Y) agrees with d when projected onto any
Y ∈ S.

The second problem can be attempted to solve by the following heuristic:

1. Compute projections dY of the database d onto each Y ∈ S.
2. Find the pair of projections dY and dZ such that ∆ =

∣∣dY
∣∣ +

∣∣dZ
∣∣− ∣∣dY ∪Z

∣∣
is largest.

3. If ∆ > 0, then replace dY and dZ by dY ∪Z and go to step 2.

The algorithm can be implemented in time O
(
|R| |D| |S|2

)
where R =⋃

Y ∈S Y . The solution found by the heuristic is at least as good as projecting
the database the separately onto each set in S.

4 Conclusions

In this paper we have studied the problem of finding sets X contained in a set di

of a data set d such that X ⊆ Y for some Y ∈ S. We have proposed streaming
algorithms for the problem and discussed about other possible representations
for the occurring sets of interest. There are some interesting open problems:

– How the closed sets of interest with S as a collection of random projections
could be used as a useful summary for a data stream?

– Can the algorithms used to speed up the frequent set mining in conjunction
with some efficient implementation of a maximal set mining algorithm?

– Where the skewers data structure could be applied?
– Is there some clear relationship between the overlap of sets in S, the size of

the collection IS,d and the size of d?
– How a database can be transformed into a smallest form that can be used

to answer to certain queries efficiently and (approximately) correctly?

References

1. Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., Verkamo, A.I.: Fast discovery
of association rules. In Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P., Uthu-
rusamy, R., eds.: Advances in Knowledge Discovery and Data Mining. AAAI/MIT
Press (1996) 307–328

2. Goethals, B.: Survey on frequent pattern mining. Manuscript (2003)

3. Hand, D.J.: Pattern detection and discovery. In Hand, D., Adams, N., Bolton,
R., eds.: Pattern Detection and Discovery. Volume 2447 of LNAI., Springer-Verlag
(2002) 1–12

4. Hipp, J., Güntzer, U., Nakhaeizadeh, G.: Algorithms for association rule mining
– a general survey and comparison. SIGKDD Explorations 1 (2000) 58–64

5. Mannila, H.: Local and global methods in data mining: Basic techniques and open
problems. In Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S.,
Conejo, R., eds.: Automata, Languages and Programming. Volume 2380 of LNCS.,
Springer-Verlag (2002) 57–68

6. Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L.: Discovering frequent closed item-
sets for association rules. In Beeri, C., Buneman, P., eds.: Database Theory -
ICDT’99. Volume 1540 of LNCS., Springer-Verlag (1999) 398–416

7. Pei, J., Han, J., Mao, T.: CLOSET: An efficient algorithm for mining frequent
closed itemsets. In Gunopulos, D., Rastogi, R., eds.: ACM SIGMOD Workshop on
Research Issues in Data Mining and Knowledge Discovery. (2000) 21–30

8. Stumme, G., Taouil, R., Bastide, Y., Pasquier, N., Lakhal, L.: Computing iceberg
concept lattices with Titanic. Data & Knowledge Engineering 42 (2002) 189–222

9. Zaki, M.J., Hsiao, C.J.: CHARM: An efficient algorithms for closed itemset mining.
In Grossman, R., Han, J., Kumar, V., Mannila, H., Motwani, R., eds.: Proceedings
of the Second SIAM International Conference on Data Mining, SIAM (2002)

10. Bykowski, A., Rigotti, C.: A condensed representation to find frequent patterns.
In: Proceedings of the Twenteenth ACM SIGACT-SIGMOD-SIGART Symposium
on Principles of Database Systems, ACM (2001)

11. Calders, T., Goethals, B.: Mining all non-derivable frequent itemsets. In Elomaa,
T., Mannila, H., Toivonen, H., eds.: Principles of Data Mining and Knowledge
Discovery. Volume 2431 of LNAI., Springer-Verlag (2002) 74–865

12. Calders, T., Goethals, B.: Minimal k-free representations of frequent sets. In
Lavrac, N., Gamberger, D., Todorovski, L., Blockeel, H., eds.: Principles of Knowl-
edge Discovery and Data Mining. LNAI, Springer-Verlag (2003)

13. Kryszkiewicz, M.: Concise representation of frequent patterns based on disjunction-
free generators. In Cercone, N., Lin, T.Y., Wu, X., eds.: Proceedings of the 2001
IEEE International Conference on Data Mining, IEEE Computer Society (2001)
305–312

14. Kryszkiewicz, M., Gajek, M.: Concise representation of frequent patterns based on
generalized disjunction-free generators. In Chen, M.S., Yu, P., Liu, B., eds.: Ad-
vances in Knowledge Discovery and Data Mining. Volume 2336 of LNAI., Springer-
Verlag (2002) 159 – 171

15. Bouliçaut, J.F., Bykowski, A.: Frequent closures as a concise representation for bi-
nary data mining. In Terano, T., Liu, H., Chen, A.L.P., eds.: Knowledge Discovery
and Data Mining. Volume 1805 of LNAI., Springer-Verlag (2000) 62–73

16. Bouliçaut, J.F., Bykowski, A., Rigotti, C.: Free-sets: a condensed representation
of Boolean data for the approximation of frequency queries. Data Mining and
Knowledge Discovery 7 (2003) 5–22

17. Geerts, F., Goethals, B., Mielikäinen, T.: What you store is what you get (extended
abstract). In: 2nd International Workshop on Knowledge Discovery in Inductive
Databases. (2003)

18. Mielikäinen, T.: Frequency-based views to pattern collections. In: IFIP/SIAM
Workshop on Discrete Mathematics and Data Mining. (2003)

19. Mielikäinen, T., Mannila, H.: The pattern ordering problem. In Lavrac, N., Gam-
berger, D., Todorovski, L., Blockeel, H., eds.: Principles of Knowledge Discovery
and Data Mining. LNAI, Springer-Verlag (2003)

20. Pavlov, D., Mannila, H., Smyth, P.: Beyond independence: probabilistic methods
for query approximation on binary transaction data. IEEE Transactions on Data
and Knowledge Engineering (2003) To appear.

21. Pei, J., Dong, G., Zou, W., Han, J.: On computing condensed pattern bases. In:
Proceedings of the 2002 IEEE International Conference on Data Mining (ICDM
2002), 9-12 December 2002, Maebashi City, Japan, IEEE Computer Society (2002)
378–385

22. Bayardo Jr., R.J.: Efficiently mining long patterns from databases. In Laura
M. Haas, A.T., ed.: SIGMOD 1998, Proceedings ACM SIGMOD International
Conference on Management of Data, ACM (1998) 85–93

23. Boros, E., Gurvich, V., Khachiyan, L., Makino, K.: On the complexity of generating
maximal frequent and minimal infrequent sets. In Alt, H., Ferreira, A., eds.: STACS
2002. Volume 2285 of LNCS., Springer-Verlag (2002) 133–141

24. Gouda, K., Zaki, M.J.: Efficiently mining maximal frequent itemsets. In Cercone,
N., Lin, T.Y., Wu, X., eds.: Proceedings of the 2001 IEEE International Conference
on Data Mining. IEEE Computer Society (2001) 163–170

25. Gunopulos, D., Khardon, R., Mannila, H., Saluja, S., Toivonen, H., Sharma, R.S.:
Discovering all most specific sentences. ACM Transactions on Database Systems
28 (2003) 140–174

26. Babcock, B., Babu, S., Datar, M., Motwani, R., Widom, J.: Models and issues
in data stream systems. In Popa, L., ed.: Proceedings of the Twenty-first ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, ACM
(2002) 1–16

Mining concepts from large SAGE gene
expression matrices

François Rioult1, Céline Robardet2,3, Sylvain Blachon2, Bruno Crémilleux1,
Olivier Gandrillon2, and Jean-François Boulicaut3

1 GREYC CNRS UMR 6072, F-14032 Caen, France
Francois.Rioult@info.univ-caen.fr

2 CGMC CNRS UMR 5534, F-69622 Villeurbanne cedex, France
gandrillon@cgmc.univ-lyon1.fr

3 LIRIS CNRS FRE 2672, F-69621 Villeurbanne cedex, France
Jean-Francois.Boulicaut@insa-lyon.fr

Abstract. One of the crucial needs in post-genomic research is to an-
alyze expression matrices (e.g., SAGE and microarray data) to identify
a priori interesting sets of genes, e.g., sets of genes that are frequently
co-regulated. Such matrices provide expression values for given biological
situations (the lines) and given genes (columns). The inductive database
framework enables to support knowledge discovery processes by means
of sequences of queries that concerns both data processing and pattern
querying (extraction, post-processing). We provide a simple formaliza-
tion of a relevant pattern domain (language of patterns, evaluation func-
tions and primitive constraints) that has been proved useful for specify-
ing various analysis tasks. Recent algorithmic results w.r.t. the efficient
evaluation (constraint-based mining) of the so-called inductive queries
are emphasized and illustrated on a 90 × 12 636 human SAGE expres-
sion matrix.

1 Introduction

We are now entering the post-genome era and it seems obvious that,
in a near future, the critical need will not be to generate data, but to
derive knowledge from huge data sets generated at very high through-
put. This has been a challenge for quite some time in genomic research,
and is now extending to the domain of transcriptome research, i.e., the
analysis of gene expression data. Different techniques (including microar-
ray [12] and SAGE [23]) allow to study the simultaneous expression of
(tens of) thousands of genes in various biological situations. The data
generated by those experiments can then be seen as expression matri-
ces in which the expression level of genes (the columns) are recorded
in various biological situations (the lines). What is presently required is
to try to find out groups of co-regulated genes, also known as synex-
pression groups [19], which, based on the guilt by association approach,
are assumed to participate in a common function, or module, within the
cell. Indeed, biologist often use clustering techniques to identify sets of

genes that have similar expression profiles (see, e.g., [13]). Recently, as-
sociation rule mining has been studied as a complementarity approach
for the identification of a priori interesting set of gene [2]. An added-
value is to provide a symbolic description that quantify the “associa-
tion” between sets of genes w.r.t. to boolean expression properties (e.g.,
over-expression, under-expression, strong variation). Mining large gene
expression matrices gives rise to new problems w.r.t. the standard ap-
plication of association rule mining (e.g., for basket analysis). However,
thanks to the properties of the so-called condensed representations and
Galois connections, [22] shows that it is possible to mine concepts [24]
in microarray data. Concept post-processing enables to perform various
tasks like conceptual clustering or frequent association rule mining (over
genes and/or biological situations).
The contribution of this paper is threefold. First, it describes gene expres-
sion data analysis within an inductive database approach [14, 6, 10]. For
that purpose, we provide a formalization of the pattern domain RNA and
discuss few evaluation functions and primitive constraints that have been
proved useful. Next, recent algorithmic results w.r.t. the efficient evalua-
tion of the so-called inductive queries are introduced. Finally, we discuss
an original research on human SAGE data that leads to a 90 × 27 679
expression matrix analysis, i.e., a quite large expression matrix w.r.t.
previous work. Even though this paper does not present new biological
results, the overall approach in biological terms has been already vali-
dated on a reduced set of genes [2]. We are pretty confident that given
the breakthrough into extraction feasibility, biological meaning will now
be extracted almost at will.
In Section 2, we define the RNA pattern domain and thus an inductive
database approach on gene expression data analysis. In Section 3, we
consider inductive query optimization issues. In Section 4 we describe
the experimental validation of our approach on two matrices built from
public human SAGE data. Section 5 concludes.

2 The RNA pattern domain

Mannila and Toivonen have formalized useful data mining tasks as fol-
lows [16]. Given, a language of patterns or models L to be considered, a
database r and a selection predicate q, the aim is then to find the theory
Th(L, q, r) = {φ ∈ L | q(φ, r) is true}. Furthermore, it is clear that, in
many situations, users are interested in extended theories, i.e., not only
elements from L but also the results of some evaluation functions for
these a priori interesting patterns or models (e.g., frequency, accuracy).
Computing theories can be embedded into the general framework of in-
ductive databases as it has been formalized in [6].
The schema of an inductive database is a pair (R, (QR, E)), where R
is a database schema, QR is a collection of patterns or models, E is a
collection of evaluation functions that define pattern or model proper-
ties in the data. An instance of the schema, an inductive database (r, s)
consists of a database r over the schema R and a subset s ⊆ QR. A typ-
ical KDD process operates on both of the components of an inductive

database. The user can select data from r and s remains the same. The
user can also select subsets s, and r is not modified. Let us just con-
sider simple typical queries, i.e., selections1. A data selection example is
σC(r0, s0) = (r1, s1) where r1 = σC(r0) and s1 = s0. For instance, we
will use this kind of query to remove some biological situations that do
not verify criterion C. Any data manipulation can be performed there.
A pattern selection example is τC′(r0, s0) = (r2, s2) where r2 = r0 and
s2 contains only the patterns or models that satisfy criterion C′. For
instance, this kind of query can be used to select sets of genes that have
some desired properties, e.g., co-regulation in at least p biological situa-
tions. Queries on inductive databases satisfy a closure property: queries
that return data, queries that return patterns or models (data mining
and post-processing queries) and queries that cross over the data and the
patterns or models (post-processing queries) are all queries on inductive
databases and return an inductive database. For instance, we can com-
pute τC′(σC(r0, s0)) = (r3, s3). Any query that has to compute patterns
or models is called an inductive query. Notice that when the user needs
the evaluation functions (e.g., frequencies), their values are computed
from the current data part of the inductive database instance.
This approach is studied in depth in the cInQ consortium2 and has lead
to interesting results for local pattern discovery (item sets, association
rules, linear graphs, sequences, strings, see [4, 10] for survey papers and
an introduction to the terminology). In this paper, we consider a pattern
domain related to item sets since biologists consider that useful knowl-
edge about the transcriptome can be expressed as sets of genes and/or
sets of biological situations that have some properties. As a methodolog-
ical guideline, specifying a pattern domain leads to the definition of pat-
tern languages, evaluation functions and primitive constraints. A query
language must enable to define standard queries on the data component
but also inductive queries. As a first approximation, we can consider
that inductive queries (i.e., selection predicates) are built from boolean
combinations of primitive constraints.

Let us now consider the languages we have for the RNA pattern domain.
Let S denote a set of biological situations and A denote a set of genes. An
expression matrix (ED) associates each couple of S × A a real number,
i.e., an expression value. It is out of the scope of this paper to discuss its
semantics (exact number of sequenced tags3 - or absolute frequency- in
the case of SAGE data [23], variation between two studied experimental
conditions in the case of microarray data [12]).
Raw expression data can be stored in, e.g., relational databases, and be
queried by any standard query language (selection of situations, projec-
tion on sets of genes). Also, aggregates can be used to derive summariza-
tion of raw data, e.g., the expression mean value or the standard variation
for each gene. It makes sense to abstract a raw expression matrix into a

1 Selection of data and patterns are respectively denoted by σ and τ . As it is clear
from the context, the operation can also be applied on inductive database instances.

2 European Contract IST-2000-26469, consortium on discovering knowledge using
Inductive Queries.

3 For SAGE, tags correspond to genes and the biological situations are called libraries.

boolean matrix r that records expression properties. In the example from
Figure 1, S = {s1, . . . s5} and A = {a1, a2, . . . a10}. Each attribute aj de-
notes a property about the expression of gene j. The expression data is
thus represented by the matrix r of the binary relation R ⊂ S×A defined
for each situation and each attribute. (si, aj) ∈ r denotes that situation
i has the property j, e.g., that gene j is over-expressed (under-expressed,
has a strong variation) in situation i. In the following, we assume that
expression properties encode over-expressions.

The boolean data to be mined is thus a 3-tuple r = (S,A, R).

The RNA pattern language is the collection of couples from LA×LS where
LA = 2A (sets of genes) and LS = 2S (sets of situations). For instance,
a typically interesting pattern for a biologist can be (X, T) where X is a
set of genes that include at least one transcription factor and which are
consistently up-regulated in all the normal lung tissues, i.e., set T .

Attributes

Situations a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

s1 1 1 1 1 0 1 1 0 0 0
s2 1 1 1 1 0 0 0 0 1 1
s3 1 1 1 1 0 0 0 0 1 1
s4 0 0 0 0 1 1 1 1 1 1
s5 1 0 1 0 1 1 1 1 0 0

Fig. 1. Example of a boolean matrix r1

To obtain boolean matrices from a raw expression matrix ED, we use
one discretization operator. Typically, such an operator assigns the true
value when the expression value is above some threshold value. Let us
denote by β1 and β2 two operators, β1(ED) = r1 and β2(ED) = r2 are
two boolean matrices that are generally different. Important properties
like containment can be proved or studied (see Section 4 for examples).

Among the simple boolean data transformations, transposition can be
used. If r = (S,A, R) is a boolean expression matrix, the transposed
matrix is tr = (A,S, tR) where (a, s) ∈ tR ⇐⇒ (s, a) ∈ R.

Let us now consider evaluation functions for the RNA pattern domain. We
do not claim that this is an exhaustive list of useful primitives on situa-
tions × genes expression matrices. We mainly consider Galois operators
(see, e.g., [24]) that have been proved extremely useful.

Definition 1 (Galois connection [24]). If T ⊆ S and X ⊆ A, as-
sume f(T, r) = {a ∈ A | ∀s ∈ T, (s, a) ∈ R} and g(X, r) = {s ∈ S | ∀a ∈
X, (s, a) ∈ R}. f provides the set of over-expressed genes that are com-
mon to a set of situations and g provides the set of situations that share a
given set of attributes (expression properties). (f, g) is the so-called Ga-
lois connection between S and A. We use the classical notations h = f ◦g
and h′ = g ◦ f to denote the Galois closure operators.

Definition 2 (Frequency). The frequency of a set of genes X ⊆ A
denoted F(X, r) is the size of g(X, r). The frequency of a set of situations
T ⊆ S is the size of f(T, r).

Given Figure 1 (parameter r1 is omitted), let us consider the pattern
(X, T) where X = {a1, a3} and Y = {s1, s2, s3, s5}. We have F(X) = 4
and T = g(X).

Let us now introduce some primitive constraints for the RNA pattern
domain. Our primitive constraints are defined on sets of genes and sets
of situations.

Definition 3 (Constraints on frequencies). Given a set of genes
X ⊆ A and an absolute frequency threshold γ, Cminfreq(X, r) ≡ F(X, r) ≥
γ. Sets that satisfy Cminfreq are said γ-frequent in r. The maximal fre-
quency is defined as Cmaxfreq(X, r) ≡ F(X, r) ≤ γ. These constraints can
be defined on sets of situations as well.

Definition 4 (Closed set and CClose constraint). A set of genes
X ⊆ A is closed (it satisfies the CClose constraint in r) iff h(X, r) = X.
A set of situations T ⊆ S is closed iff h′(T, r) = T .

Given Figure 1, assume the RNA pattern ({a1, a2}, {s1, s2, s3}). if γ = 3,
{a1, a2} satisfies Cminfreq in r1. Furthermore, {s1, s2, s3} = g({a1, a2}).
{s1, s2, s3} is a closed set of situations (i.e., h′({s1, s2, s3}) = {s1, s2, s3})
but {a1, a2} is not a closed set on genes: h({a1, a2}) = f(g({a1, a2})) =
{a1, a2, a3, a4}.
The closure of a set of genes X, h(X, r), is the maximal (w.r.t. set in-
clusion) superset of X which has the same frequency than X in r. A
closed set of genes is thus a maximal set of genes whose expression prop-
erties (true values) are shared by a set of situations. For instance, the
closed set {a1, a3} in r1 (see Figure 1) is the largest set of genes that are
over-expressed simultaneously in situations s1, s2, s3 and s5. The Galois
connection gives rise to concepts [24] that associate closed sets of genes
with closed sets of situations.

Definition 5 (Concept). If X ∈ LA and T ∈ LS , we say that (X, T)
is a concept in r when T = g(X, r) and X = f(T, r). By construction,
concepts are built on closed sets and each closed set of genes (resp. situ-
ations) is linked to a closed set of situations (resp. genes) [24].

Seven RNA patterns are concepts in r1 (see Figure 1). Examples of con-
cepts are ({a1, a3}, {s1, s2, s3, s5}) and ({a1, a2, a3, a4, a9, a10}, {s2, s3}).
({a1, a2}, {s1, s2, s3}) is not a concept.
Concept are interesting for the biologist: they can suggest the so-called
transcription modules.

An important kind of primitive constraint concerns the syntactical re-
strictions that can be checked without any access to the data. [17] con-
tains a systematic study of syntactical constraints for sets.

Definition 6 (Syntactic constraints). A syntactic constraint enforces
that a set Y ∈ LC , where LC ⊆ LA or LC ⊆ LS . Various means can be
used to specify LC , e.g., regular expressions.

Some other interesting constraints can use additional information about
the genes or the situations. For instance, given a set of genes X, it is
possible to use biological knowledge about gene functions and enforce
constraints on gene functions for the genes in X.

Many data mining processes on gene expression matrices can be formal-
ized as the computation of RNA patterns whose set components satisfy
combinations of primitive constraints.

Mining the frequent sets of genes is specified as the computation of {X ∈
LA | Cminfreq(X, r) satisfied}. We can then provide each RNA pattern of
the form (X, g(X, r)) where X is frequent. This collection can suggest
synexpression groups. Adding syntactical constraints (e.g., enforcing the
presence or the absence of some genes) is also often used by biologists.
Frequent sets of situations can be desired as well.

Mining the closed sets of genes is specified as the computation of {X ∈
LA | CClose(X, r) satisfied}. These sets provide a valuable information
to biologists thanks to closeness property, e.g., closed sets of genes are
maximal sets of genes that are co-regulated in a set of situations. In that
context, each RNA pattern of the form (X, g(X, r)) is a concept. Dually,
it is possible to compute closed sets on situations T and associate the
closed set of genes f(T, r). A typically useful task is to look for every
concept (X, T) such that X is frequent. Syntactical restrictions can be
used as well.
Many other examples could be given, e.g., feature construction by looking
for sets of genes that satisfy Cminfreq in one data set and Cmaxfreq in
another one [11]. As a typical interesting finding for a biologist, one
might look for each RNA pattern (X, T) such that X is a set of genes that
are frequently up-regulated in all the medulloblastomas (T = g(X)) and
that are infrequently found up-regulated in corresponding normal regions
of the brain.
Post-processing queries can be understood as queries on materialized
collections of sets: the user selects the sets that fulfill some new criteria.
Notice however that, from the specification point of view, they are not
different from data mining queries even though the evaluation does not
need an extraction phase.

3 Inductive query evaluation

In this section, our goal is to emphasize that the current algorithmic
know-how can tackle the evaluation of the kind of inductive query we
need thanks to a clever use of the Galois connection. We chose to em-
phasize constraint-based extraction of sets of genes for which it is then
possible to associate sets of situations (using the g operator).
Mining frequent sets has been extensively studied the last 10 years.
One major recent progress comes from the various algorithms that com-
pute efficiently the sets that satisfy a conjunction of anti-monotonic and
monotonic constraints, e.g., [17, 11, 15, 7]. Indeed, most of the primi-
tive constraints we have considered are monotonic or anti-monotonic.
Some of them, the succinct ones [17], are in fact syntactical constraints

that can be put transformed into a conjunction of monotonic and anti-
monotonic constraints. We assume the reader knows well the background
in constraint-based mining and the efficient use of monotonicity.
Expression matrices have generally a few tens of lines (biological sit-
uations) and thousands or even tens of thousands of columns (genes).
Thus, the computation of sets of genes that satisfy a given constraint C
is extremely hard. Indeed, as soon as we have more than a few tens of
columns, only a quite small subset of the search space can be explored.
Then, the size of the solution, i.e., the collection of the sets that sat-
isfy C can be so huge that no algorithm can compute them all. When a
constraint like Cminfreq is used, it is possible to take a greater frequency
threshold to decrease a priori the size of the solution. The used thresh-
old can however be disappointing for the biologist: extracted patterns
are so frequent that they are already known (e.g., they are the so-called
house-keeping genes). Furthermore, in the expression matrices we have
to analyze, the number of the frequent sets can be huge, whatever is
the frequency threshold. It comes from the rather low number of lines
and thus the small number of possible frequencies. Clearly, Apriori-like
algorithms that have to compute the frequency of at least every frequent
set can not be used here. Any Apriori-based strategy for pushing the
other constraints might fail too.
When the minimal frequency constraint is used, one of the key idea for
inductive query optimization in RNA can come from the condensed rep-
resentation of the frequent sets. They contain a much smaller number
of sets with their frequencies even though it is straightforward and ef-
ficient to regenerate all the frequent sets and their frequencies. Various
condensed representations have been studied, see, e.g., [8, 9]. Indeed, it
is easy to derive the whole collection of the frequent sets of genes from
{X ∈ LA | Cminfreq(X, r) ∧ CClose(X, r) satisfied}. This compact repre-
sentation can be computed efficiently, see, e.g., [20, 5, 21, 25, 1].
The algorithm we use is based on free set extraction [5]. Freeness char-
acterizes the closed set generators (i.e., the closures of the free sets are
the closed sets).

Definition 7 (Freeness and Cfree constraint). A set of genes X ⊆ A
is free iff the frequency of X in r is strictly lower than the frequency of
every strict subset of X. We say that X satisfies constraint Cfree in r.
Interestingly, freeness is an anti-monotonic property while closeness is
not an anti-monotonic one.

Given Figure 1, {a1, a6} satisfies Cfree in r1 but {a1, a2, a3} does not.

In other terms, we compute the collection of the closed sets of genes as
{h(X, r) ∈ LA | Cfree(X, r) satisfied}. Minimal frequency constraint can
be added as well.
Even though these approaches have given excellent results on large ma-
trices for transactional data (e.g., highly correlated and rather dense data
in WWW usage mining applications), they often fail on expression ma-
trices because of the their “pathological” dimensions. Furthermore, we
want to enable the use of various discretization operators and thus the
analysis of more or less dense matrices. It appeared crucial to us that we
can achieve a breakthrough w.r.t. extraction feasibility.

We have studied the extraction from the transposed matrices using the
Galois connection to infer the results that would have been extracted
from the initial matrices. [22] provides a general framework for trans-
posed extractions given a constraint Cminfreq with the frequency threshold
greater than 1. In a context where the number of columns is quite large
w.r.t. the number of lines, i.e., the case for gene expression matrices, it
is possible to compute every concept (absolute frequency threshold set
to 1) based on the following observation:
– The direct extraction computes the closed sets of genes and for each

closed set X (h(X, r) = X), computing g(X, r) = T enables to
provide the concept (X, T). This computation can be intractable
due to the number of genes.

– The transposed extraction computes the closed sets of situations and
for each closed set T (h(T, tr) = h′(T, r) = T), computing g(T, tr) =
f(T, r) = X enables to provide the concept (X, T).

– Computing g(X, r) during the direct extraction or g(T, tr) during the
transposed extraction can be performed at almost no cost during the
computations of the associated free sets and their closures.

Thus, it is possible to obtain the same collection of concepts when ex-
tracting them from a matrix or its transposed. The choice between one
or the other method can be guided by the dimension of the matrix: for
expression matrices, our experience is that transposition is often needed.
It is important to know that when concepts are obtained, it is straightfor-
ward to provide frequent sets (for genes and situations) and more gener-
ally, many constraint-based extractions of RNA patterns can be performed
by filtering techniques and, eventually, partial regeneration phases.

4 Applications to SAGE data

We are working with the publicly available SAGE data produced from
human cells4 and it leads to difficult data mining contexts.
Analyzing human SAGE data is relevant since this data source has been
largely under-exploited today. The only available on line approach con-
sists in comparing the existing libraries 2 by 2 to extract differential
information. To the best of our knowledge, [18] is the unique study on
the complete human SAGE data mining. One obvious reason for such a
poor exploitation lies in the structure of the data, including a high error
rate for low frequency tags (and especially tags appearing only once in
a library). The use of discretization operators provides a solution to the
problem of low frequency tags. It is our conviction that some essential
biological information might be derived from the mass of the SAGE data.
We designed a relational database for storing the data available on the
NCBI site. From such a database, we have built two gene expression
matrices, the so-called 74 × 822 and 90 × 12636 matrices.
The construction of the 74×822 matrix is described in [2]. It records the
expression level, as of June 2001, for 822 genes belonging to the minimal
transcriptome set [23]. After having extracted biologically relevant infor-
mation from the 74× 822 matrix for which the direct extraction worked

4 www.ncbi.nlm.nih.gov/SAGE/index.cgi

quite well, we decided to build the most exhaustive SAGE expression ma-
trix,i.e., to the best of our knowledge, an original contribution to human
SAGE data analysis. From the human libraries available in December
2002. We selected those with more than 20 000 tag sequences and we
eliminated the tag sequences for which the identification was ambiguous,
based on the SAGE map file 5. Numerous tags are present only once in a
library. Nowadays, it is difficult to evaluate whether these tags represent
some real genes or correspond to sequencing errors. We therefore only
kept the tags appearing at least twice in at least one library. It as pro-
vided a matrix of 90 libraries and 27 679 tags. Using simple statistics (see
[3]), we have been able to remove 15 043 tags. In the end, we produced
a matrix recording the expression level of 90 libraries and 12 636 tags.

We have chosen to extract the information concerning the over expression
of genes: the true value (1) for one given library and one given gene
indicates the over expression of this gene in this library. On the contrary,
a false value (0) indicates that this gene is not over expressed in this
library. We have studied four discretization techniques:

– “ENE” for “Expressed or not”. We assign the value 1 when the tag
is present (whatever is its value) in the library, 0 otherwise.

– “Mid-Ranged”. The highest and lowest expression values in the li-
brary are identified for each tag and the mid-range value is defined as
being equidistant from these two numbers (arithmetic mean). Then,
for a given tag, all expression values that are strictly above the mid-
range value give rise to value 1, 0 otherwise.

– “Max - X% Max”. The cut off is fixed w.r.t. the maximal expression
value observed for each tag. From this value, we deduce a percentage
X of this value, 25% in our experiments to decide for over expression.

– “X% Max”. For each tag, we consider libraries in which its level of
expression is in X% of the highest values (5% in our experiments).
These tags are assigned to value 1, 0 for the others.

These different discretization procedures give rise to boolean matrices
with varying densities (number of true values on the number of values,
see Columns 2 in Table 1). It estimates the difficulty of the extractions.
From a qualitative point of view, there is no good discretization method.
The impact of the discretization on the validity/interestingness of the ex-
tracted regularities must be studied in each particular context. A typical
mining task is then to look at τC(βi(ED)) ∩ τC(βj(ED)), i.e., looking
at the similar sets of genes that have been found by two different dis-
cretization operators. Indeed, many useful tasks will also involve other
set operations between the pattern collections.

We have used the mv-miner prototype developed by F. Rioult with an
absolute frequency threshold of 1. In that context, it provides each free
set on the columns, its frequency, its closure (i.e., a closed set on the
columns) and its associated closed sets w.r.t. the lines (Pentium 800MHz
with RAM 4GB and 3GB for swap, linux operating system). We have
compared the extraction performances not only between the large and
the smaller matrices but also across the different discretizations. The

5 ftp://ftp.ncbi.nih.gov/pub/sage/map/Hs/NlaIII/

Discretization Density Nb free sets Nb closed sets

M1 ENE 82.8 intractable intractable
tM1 ENE 82.8 intractable intractable

M1 Mid-Ranged 12.2 13 580 544 80 068
tM1 Mid-Ranged 12.2 209 829 80 068

M1 Max - 25% Max 3.8 35 934 1 386
tM1 Max - 25% Max 3.8 3 211 1 386

M1 5% Max 4.8 72 630 1 808
tM1 5% Max 4.8 3 362 1 808

Discretization Density Nb free sets Nb closed sets

M2 ENE 34.5 intractable intractable
tM2 ENE 34.5 intractable intractable

M2 Mid-Ranged 4.8 intractable intractable
tM2 Mid-Ranged 4.8 324 565 196 130

M2 Max - 25% Max 2.2 intractable intractable
tM2 Max - 25% Max 2.2 21 603 9 150

M2 5% Max 4.7 intractable intractable
tM2 5% Max 4.7 54 762 31 766

Table 1. Results for M1 = 74 × 822 and M2 = 90 × 12 636

results on the boolean matrices derived from 74×822 (resp. 90×12 636)
are in Table 1.
In these contexts, one database scan does not cost too much and ex-
traction time is clearly related to the number of generated candidates.
Only the numbers of free sets (with frequency
= 0) and closed sets in
both a boolean matrix and its transposed matrix are given here. Results
are very interesting. Intractability in very high density matrices is un-
derstandable. In every case for the larger matrices, extraction becomes
feasible by working on the transposed matrix. For instance, using the
Mid-Ranged discretization on the large 90 × 12 636 matrix, the process
has failed after more than 17 hours of computations while it has taken
less than 1 minute on its transposed version. Others preliminary exper-
iments on microarray data [22] have confirmed the added-value of the
approach.

5 Conclusion

We are studying an inductive database approach to gene expression data
analysis. Among others, it enforces us to think in terms of primitive
constraints and efficient constraint-based mining techniques. Efficiency
is needed not only for tractability but also for supporting the dynamic
aspects of knowledge discovery (interactivity with the biologists).
We have identified a small set of primitives that are quite useful for real
gene expression data analysis. Expressing analysis process by means of
a sequence of queries is also important for optimizing the computations

when, e.g., new expression data is available (a new evaluation of a po-
tentially complex process from a new initial expression matrix).
Surprisingly, the pathological dimensions of the expression matrices that
were for us a bottleneck a few months ago, enable now to extract every
concept in real data. It comes from the combination of an efficient algo-
rithm for computing the closed sets from the free sets and the use of the
Galois connection properties.
We are currently carrying the experimentation on the large SAGE matrix
to extract biologically meaningful groups of co-regulated genes and their
associated sets of biological situations. This should result in more biolog-
ically interesting findings than in [2] since the large matrix records the
expression level of far more genes, and therefore of far more particular
genes of special interest to a given biologist.

Acknowledgements. This work has been partially funded by the EU
contract cInQ IST-2000-26469 (FET arm of the IST programme) and
a French inter-EPST Bioinformatic program (2002-2003) through which
Céline Robardet is supported. François Rioult is supported by the IRM
department of the Caen CHU, the comité de la Manche de la Ligue
contre le Cancer and the Conseil Régional de Basse-Normandie. Sylvain
Blachon is supported by the comité de Saône et Loire de la Ligue contre
le Cancer.

References

1. Y. Bastide, R. Taouil, N. Pasquier, G. Stumme, and L. Lakhal.
Mining frequent patterns with counting inference. SIGKDD Explo-
rations, 2(2):66 – 75, Dec. 2000.

2. C. Becquet, S. Blachon, B. Jeudy, J.-F. Boulicaut, and O. Gan-
drillon. Strong association rule mining for large gene expression
data analysis: a case study on human SAGE data. Genome Biology,
12, 2002.

3. S. Blachon, C. Robardet, J-F. Boulicaut, and O. Gandrillon. Extrac-
tion de régularités dans des données d’expression SAGE humaines.
In Proceedings Informatique et analyse du transcriptome JPGD’03,
Lyon, F, May 2003. In French.

4. J.-F. Boulicaut. Inductive databases and multiple uses of frequent
itemsets: the cInQ approach. In Database Support for Data Mining
Application, Rosa Meo et al. Eds. Springer-Verlag LNCS 2682, In
Press. To appear.

5. J.-F. Boulicaut, A. Bykowski, and C. Rigotti. Approximation of
frequency queries by mean of free-sets. In Proceedings PKDD’00,
volume 1910 of LNAI, pages 75–85, Lyon, F, Sept. 2000. Springer-
Verlag.

6. J.-F. Boulicaut, M. Klemettinen, and H. Mannila. Modeling KDD
processes within the inductive database framework. In Proceedings
DaWaK’99, volume 1676 of LNCS, pages 293–302, Florence, I, Sept.
1999. Springer-Verlag.

7. C. Bucila, J. Gehrke, D. Kifer, and W. White. DualMiner: A dual
pruning algorithm for itemsets with constraints. Data Mining and
Knowledge Discovery 7(3):241–272, 2003.

8. A. Bykowski. Condensed representations of frequent sets: application
to descriptive pattern discovery. PhD thesis, INSA Lyon, F-69621
Villeurbanne cedex, France, Oct. 2002.

9. T. Calders and B. Goethals. Mining all non derivable frequent item-
sets. In Proceedings PKDD’02, volume 2431 of LNAI, pages 74–83,
Helsinki, FIN, Aug. 2002. Springer-Verlag.

10. L. De Raedt. A perspective on inductive databases. SIGKDD Ex-
plorations, 4(2):69–77, January 2003.

11. L. De Raedt and S. Kramer. The levelwise version space algorithm
and its application to molecular fragment finding. In Proceedings
IJCAI’01, pages 853 – 862, Seattle, USA, Aug. 2001. Morgan Kauf-
mann.

12. J. L. DeRisi, V. R. Iyer, and P. O. Brown. Exploring the metabolic
and genetic control of gene expression on a genomic scale. Science,
278, 1997.

13. M. Eisen, P. Spellman, P. Brown, and D. Botstein. Cluster anal-
ysis and display of genome-wide expression patterns. Proceedings
National Academy of Science USA, 95:14863–14868, 1998.

14. T. Imielinski and H. Mannila. A database perspective on knowledge
discovery. CACM, 39(11):58–64, Nov. 1996.

15. B. Jeudy and J.-F. Boulicaut. Optimization of association rule min-
ing queries. Intelligent Data Analysis, 6(4):341 – 357, 2002.

16. H. Mannila and H. Toivonen. Levelwise search and borders of theo-
ries in knowledge discovery. Data Mining and Knowledge Discovery
journal, 1(3):241–258, 1997.

17. R. Ng, L. V. Lakshmanan, J. Han, and A. Pang. Exploratory min-
ing and pruning optimizations of constrained associations rules. In
Proceedings of ACM SIGMOD’98, pages 13–24, Seattle, USA, May
1998. ACM Press.

18. R. Ng, J. Sander, and M. Sleumer. Hierarchical cluster analysis of
sage data for cancer profiling. In Proceedings BIOKDD’01 co-located
with ACM SIGKDD’01, San Francisco, USA, Aug. 2001.

19. C. Niehrs and N. Pollet. Synexpression groups in eukaryotes. Nature,
402:483–487, 1999.

20. N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Efficient mining of
association rules using closed itemset lattices. Information Systems,
24(1):25–46, Jan. 1999.

21. J. Pei, J. Han, and R. Mao. CLOSET an efficient algorithm for
mining frequent closed itemsets. In Proceedings SIGMOD Workshop
DMKD’00, Dallas, USA, May 2000.

22. F. Rioult, J.-F. Boulicaut, B. Crémilleux, and J. Besson. Using trans-
position for pattern discovery from microarray data. In Proceedings
SIGMOD Workshop DMKD’03, pages 73–79, San Diego, USA, June
2003.

23. V. Velculescu, L. Zhang, B. Vogelstein, and K. Kinzler. Serial anal-
ysis of gene expression. Science, 270:484–487, 1995.

24. R. Wille. Restructuring lattice theory: an approach based on hier-
archies of concepts. In Ordered sets, pages 445–470. Reidel, 1982.

25. M. J. Zaki. Generating non-redundant association rules. In Pro-
ceedings SIGKDD’00, pages 34 – 43, Boston, USA, Aug. 2000. ACM
Press.

Generalized Version Space Trees

Ulrich Rückert and Stefan Kramer

Technische Universität München
Institut für Informatik/I12

Boltzmannstr. 3
D-85748 Garching b. München, Germany {rueckert, kramer}@in.tum.de

Abstract. We introduce generalized version space trees, a novel data structure
that serves as a condensed representation in inductive databases for graph mining.
Generalized version space trees allow for a comfortable representation of version
spaces and a natural way to efficiently process inductive queries and operations on
version spaces. In particular, we focus on using generalized version space trees in
the field of mining free (i.e. unrooted) trees in graph databases. Experiments with
two data sets from the National Cancer Institute’s Developmental Therapeutics
Program (DTP) indicate that generalized version space trees can boost inductive
queries considerably while featuring moderately increased space requirements in
comparison to a version space representation based on boundary sets.

1 Introduction

In order to make inductive databases acceptable for a wider group of users, they should
be able to answer queries fast enough to enable interactive usage. In particular for min-
ing in rich (graph or logic-style) representations, we are currently far from this ideal.
This is partly due to the very high branching factor of the search space and the existence
of syntactic variants aggravating the problems. In graph mining, database scans are ex-
pensive, since they involve NP-hard subgraph isomorphism tests for general graphs,
and still costly subtree isomorphism tests for free (that is, unrooted) trees. To reduce
database scans, so-called condensed representations have been proposed by several
authors [BBR00,GLD02,RK01]. Condensed representations are “data structures that
make it possible to answer queries about the inductive database approximately cor-
rect and reasonably efficient” [Man97] – without database access. Dominique Laurent
[GLD02] defines condensed representations as subsets of the solution patterns that al-
low their complete reconstruction. A variety of condensed representations has been
proposed, e.g., free and closed sets (for itemsets) [BBR00], version spaces [RK01] or
combinations thereof [GLD02]. De Raedt et al. [RJLM02] introduced a data struc-
ture called version space trees, that is used for constructing and representing version
spaces of strings. Version space trees are, in essence, suffix tries adapted for a boundary
set representation of strings. In this paper, we present generalized version space trees
(GVSTs), that extend the original data structure to free trees and connected graphs. In
principle there is no restriction to extend this data structure even further, for instance to
unconnected graphs.

To keep the paper focused, we concentrate on mining free trees in general graphs.
In a companion paper [RK03], we have introduced free trees into graph mining, and

presented a canonical form that can be efficiently used in a gSpan-type [XY02] graph
mining algorithm. The intention was to overcome the representational limitations of lin-
ear path patterns [RK01], while avoiding the complexity issues with general subgraph
patterns [IWNM02]. In this paper, we investigate the use of free trees in constraint-
based mining: we consider conjunctive queries consisting of a minimum frequency and
a maximum frequency part. The setting can easily be extended to arbitrary conjunc-
tions of anti-monotonic and monotic constraints. Note that generalized version space
trees can in principle be used for many different purposes, but our focus here is their us-
age as a condensed representation to speed up typical frequent substructure data mining
queries. Our preferred view is that generalized version space trees are like index struc-
tures built in the background of database systems: if the queries meet the assumptions
made for the construction of the index structure, query answering can be fast, otherwise
it might take a long time.

Another facet of this work is the ubiquitous time/space trade-off: for answering
queries, we might just as well store all patterns along with supplementary informa-
tion in a hash table. Although access time would be fast, the solution would not be
space-efficient and collisions would have to be handled. The other extreme would be
to recompute everything anew, accessing the database every time. It is clear that this
would be memory-wise unproblematic, but computationally very expensive. The use of
condensed representations such as generalized version space trees is intended to enable
fast access to information about already encountered patterns in main memory, at the
cost of some memory overhead.

This paper is organized as follows: the next section introduces free trees and a
canonical form that can be used for mining frequent free trees in graph data. In section
3 we present the generalized version space tree data structure and in section 4 we report
some results on using GVSTs for frequent free tree mining. We conclude in section 5.

2 Frequent Free Tree Mining

First of all, let us introduce the free tree mining setting more formally. Given a set
of vertices V = {v1, v2, . . . , vn} and a set of edges E ⊆ V × V , G =def (V, E)
constitutes a graph. Given a set of vertex labels LV and a set of edge labels LE , a
labeled graph is a graph that has a vertex label associated with each node v, denoted by
label(v) ∈ LV and an edge label associated with each edge, denoted by label(e) ∈ LE .
For our purposes, the class of connected acyclic labeled graphs is of special interest.
Figure 1 (a) and (b) are examples of graphs in this class. Because of its acyclicity, each
connected acyclic labeled graph has at least one node which is connected to the rest of
the graph by only one edge, that is, a leaf. In such a graph one can label the leaves with
zero and the other nodes recursively with the maximal label of its neighbors plus one
(figure 1). This yields an unordered, unrooted tree-like structure, a so-called free tree.
It is a well-known fact that every free tree has at most two nodes which minimize the
maximal distance to all other nodes in the tree, the so-called centers. In figure 1 the
centers of the two free trees (a) and (b) are marked as empty nodes (©).

There are various ways to store a free tree on a computer. For efficient processing,
it is a good idea to use a representation that ensures that two equivalent free trees are

always encoded as the same pattern. Such a representation is called a canonical form.
There is a broad range of possible canonical forms that can be used for free trees. In
the following we will present a particular canonical form, whose properties allow for
an efficient use in the FreeTreeMiner algorithm [RK03]. The canonical form of a free
tree is derived in a two step algorithm. First, we identify the canonical center and use it
as a root, therefore building a rooted unordered tree from a free tree. In the second step
we order the nodes in the rooted tree to get an ordered rooted tree, that is, the canonical
form.

0 0

0001 1

122

3

(a)

0 0

0

001

1 1

1

2 2

33

(b)

Fig. 1. Illustration of center(s) of free trees. If the leaf nodes of a free tree (i.e. a connected
acyclic graph) are labeled with zero and the other nodes are labeled with the maximal label of its
neighbors plus one, the nodes with the largest labels are the centers of the graph. Every free tree
has either one (a) or two (b) centers.

An important building block is a suitable order �t on ordered rooted trees. In a
rooted tree, each edge connects a child node to its parent node. Thus, we can regard
each node and the corresponding edge to its parent as a unit. This assigns exactly one
label pair label(e, n) ∈ LE × LV to each node, except for the root node. For the sake
of simplicity, we introduce an “empty” label lε in LV and LE . This label is assigned
as an replacement for the non-existing parent edge of the root, so that each node n has
associated exactly one label label(e, n) ∈ LE ×LV . Now, assume we have an arbitrary
order �EV on LE × LV . In the following we use this order to design a lexicographic
order on rooted trees. First we have to introduce some concepts. The depth of a node in
a tree is the distance to the root node. The set of nodes with the same depth is a level.
If the tree is ordered, each level can be represented by a sequence of nodes, the level-
sequence. The levelwise traversal of a tree t enumerates the nodes in a tree from the top
level to the bottom level of the trees, processing each level-sequence from left to right.
If we have two nodes n1 and n2 in two ordered trees t1 and t2, the structural completion
of the node n1 with regard to n2 is the addition of empty-labeled children to n1 until

Algorithm 1 An algorithm calculating the levelwise traversal order on two ordered trees
t1 and t2.

procedure IsSmallerOrEqual(t1, t2)
Append the (root(t1), root(t2)) to queue
while queue not empty do

Remove (n1, n2) from the front of queue
if label(n1) �EV label(n2) then

return true
else if label(n2) �EV label(n1) then

return false
end if
for i = 1 to max(| children(n1) | , | children(n2) |) do

ci ←
{

ith child of n1 if i ≤ | children(n1) |
empty node otherwise

di ←
{

ith child of n2 if i ≤ | children(n2) |
empty node otherwise

Insert (ci, di) at the back of queue
end for

end while
return true

end procedure

n1 has the same number of children than n2. For example, if n2 has three children
and n1 has one child, the structural completion adds two children to n1, both labeled
(lε, lε). If n2 has less or equally many children than n1, the structural completion does
not change n1. The structural completion of the tree t1 with regard to t2 is the recursive
application of the structural completion for nodes on the nodes of t1. Intuitively, the
structural completion for trees adds empty nodes to t1 so that each node in t1 has its
unique counterpart in t2. Finally, the levelwise traversal order compares the structural
completion of t1 with regard to t2 with the structural completion of t2 with regard to
t1 using the levelwise traversal. Algorithm 1 sketches the idea. A nice property of this
order is, that the order of trees with the same size does not change, if we add new nodes
at the bottom level nodes. We make use of this property in the FreeTreeMiner algorithm
[RK03]. One can also use the levelwise traversal order to order the subtrees in a tree,
thus transforming an unordered tree in an ordered tree.

Using this order we can now describe the two steps to build the canonical form of a
free tree t. First of all, we identify the centers of t. If there is only one center, we have a
unique root. If there are two centers, we remove the edge between the two centers, thus
creating two subtrees of the same height. We order the two subtrees and compare them
according to the levelwise traversal order. The root of the smaller of the two subtrees
is used as the root of the whole tree. Now that we have a rooted tree, we can simply
order the nodes in the tree to get the unique canonical representation. Calculating this
canonical form can be done in polynomial time.

The canonical form is used in the FreeTreeMiner algorithm outlined in [RK03].
FreeTreeMiner is able to find free trees with a given minimum or maximum support

in graph databases. It builds on the observation that, when working on graph data and
using subgraphs as patterns, the canonization task and the subsumption and coverage
tests are computationally very expensive: subsumption and coverage tests boil down to
subgraph isomorphism, which is NP-complete, and canonization is equivalent to solv-
ing the graph isomorphism problem, for which no polynomial algorithm is known, but
which has not been proven to be NP-complete either. It is assumed to lie between P and
NP. Since FreeTreeMiner uses free trees, it is computationally in a better position: both,
subsumption and canonization, can be done in polynomial time.

3 Generalized Version Space Trees

A generalized version space tree stores information about a version space in a suffix trie
structure. A suffix trie is a tree data structure for efficient storage of large numbers of
similar strings: its main idea is to decompose each string into substrings and to store one
substring per node. The original string can then be reconstructed by following the path
from the root to a node and concatenating the substrings in the nodes on the path. De
Raedt et al. [RJLM02] show how such a suffix trie, the so called version space tree, can
be used to represent a version space of strings. In the following we present a suffix trie
for version spaces of more general structure, such as free trees and connected graphs.
Each node of such a generalized version space tree (GVST) represents the canonical
form of a free tree (or a connected graph). A free tree that is not in canonical form needs
to be transformed to a canonical form prior to storing it in the generalized version space
tree. In the following we start with the description of a generalized version space tree
for free trees and then show how this structure can be extended to store graphs. The
main differences between generalized version space trees and the version space tree
outlined in [RJLM02] are

– The version space tree stores only strings, while the generalized version space tree
can store more complex structures such as graphs and free trees.

– The version space tree was designed to be used as a data structure for the VST
algorithm. Consequently, its nodes contain only information relevant to the query
that VST processes. In contrast, the generalized version space tree is designed to
be a flexible data structure that can save any number of flags, frequency counts,
and utility information in its nodes. It is therefore suitable to support a broad range
of queries, including queries containing constraints that are neither anti-monotonic
nor monotonic.

– A node in the version space tree contains links to all parents on the previous level.
This is feasible for strings and necessary for the VST algorithm, but too costly
for complex structures such as free trees. Consequently, generalized version space
trees do not link to all parents. This is not a substantial deficit, because many typ-
ical operations on generalized version space trees can be processed using simple
tree traversal, so that parent links are not needed. Besides it is not required by our
gSpan-like algorithm for mining free trees [RK03].

Both, generalized version space trees and string version space trees, allow for efficient
implementation of typical operations on version spaces such as calculating the union or

a

b c
d

a

b d

a
b
c
d

a
b

c
d

d

a
b

c
d

d
c
d
d

b
c

b
c

a
c d
d

a
b

c
d

d
c
d
d

Fig. 2. This figure illustrates the stepwise creation of a generalized version space tree (bottom)
from four free trees (top). The black lines denote the parent-child relation, the grey arrows in the
generalized version space tree denote the upward “edge parent” link. This link specifies to which
parent a new child should be added when reconstructing a free tree from a v-node.

intersection of two version spaces or deciding whether a particular structure is contained
in a version space. Typically, those operations can be made by a simple tree traversal
and are therefore linear in the number of structures in the tree.

To allow for a clear and concise description, we will denote a node in the general
version space tree as a v-node and a node in a free tree (that may or may not be contained
in the general version space tree) as a t-node. Accordingly we will distinguish between
v-edges and t-edges. As explained below, each v-node of a general version space tree
contains a t-edge/t-node pair. Such as with suffix tries for strings, the canonical form of a
free tree is reconstructed from the general version space tree by following the path from
the root v-node to a particular v-node and putting together the t-edge/t-node pairs that
are encountered on that path. We denote the free tree that was generated by following
the path from the root to the v-node v by tv . We assume that there is an order � on
t-edge/t-node pairs (such as the one outlined in section 2). The children of a v-node are
always sorted according to this order. Each v-node contains the following information:

– The labels of a t-edge and a t-node.
– A reference to the parent of this v-node.
– A reference to the leftmost child of this v-node.
– A reference to the right sibling of this v-node.
– The “edge parent” reference to the v-node, that contains the t-node to which this

edge-node pair should be appended.
– any number of flags, frequency counts or any derived utility information for the

free tree represented by this v-node.

Thus, we store four references and two labels per v-node. The first reference indicates
the parent of a node. The next two references are used to link each parent with its
children. The first child (according to �) can be accessed using the “leftmost child”
reference, and all the other children can then be found by repeatedly following the “right
sibling” link. Of course, depending on space and performance consideration, one can
use any other one-to-many linking scheme to model the parent-children relation, such

Algorithm 2 An algorithm to reconstruct a free tree tv from a v-node v in a generalized
version space tree V .

procedure ReconstructTree(v, V)
path← path from the root of V to v.
for n← first node in path to last node in path do

if EdgeParent(n) = 0 then
tv ← a tree with one node labeled NodeLabel(n)

else
Add an edge labeled EdgeLabel(n) and a node labeled NodeLabel(n) to the node in
tv that was created during the EdgeParent(n)th iteration

end if
end for
return tv

end procedure

as double-linked lists or hash trees. The fourth reference is more complicated: to create
a free tree, one follows the path from the root to a v-node and puts together the t-edges
and t-nodes that are encountered on this path. The labels in each v-node specify exactly,
which edge and node should be added to the existing free tree, but it does not specify to
which t-node the new edge should be connected. This information is given in the fourth
reference. Figure 2 illustrates this idea: for the creation of a generalized version space
tree, we start with an emtpy generalized version space tree and add a first free tree with
four nodes. The t-nodes of the free tree are added to the GVST in levelwise traversal
order, i.e. from the top level to the bottom level, on each level from left to right. The
“edge parent” reference of a v-node v (denoted by a grey arrow in the figure) identifies
the t-parent of the t-node that is represented by v. For example, consider the second
generalized version space tree in the figure (i.e. after the insertion of the first free tree):
the edge parent of the node labeled b is the a node, because in the original free tree b is
a child of a. Similarly, the edge parent of d is b, because in the original free tree d is a
child of b. Thus, when traversing the generalized version space tree from top to bottom,
one can easily reconstruct the original free tree by adding a new child to the t-node that
corresponds to the v-node of the current v-node’s edge parent: the a node is created as
a root, b and c are added as children of a, and finally d is added as child of b. This
algorithm is outlined in more detail in algorithm 2. Ideally, the edge parent reference is
stored as an index into the array containing the v-nodes on the path from the root to the
end v-node v of the free tree tv . The second free tree in figure 2 differs from the first
one only on the third node according to the levelwise traversal order. Consequently, the
resulting generalized version space tree branches after the second node (labeled b). The
edge parent reference of a v-node that represents a t-root is set to zero. In our example
this is the case for the a v-node that represents the roots of the first three trees and the
b v-node that represents the root of the fourth free tree.

Finding a given free tree tv in a generalized version space tree V is a straightforward
operation: we just climb down the generalized version space tree from the root to the
target node v, selecting in each step that child, whose edge and node labels match with
the edge and node labels of the “next” edge in tv . Just as with the insertion operation

we need a way to specify which edge is the “next” edge of a canonical form. This
can be expressed by an order �t on the edges in the free tree. While in principle any
consistent order can be used, it makes sense to choose an order that guarantees that
the generalized version space tree contains only canonical forms. Such a canonically
inducing order ensures that for any generalized version space tree V all trees tw that are
constructed on the way from the root node to any node v in V are in canonical form.
The levelwise traversal order and the canonical form outlined in section 2 fulfill this
criterion only partially: in some seldom cases it might be necessary to include v-nodes
in V whose corresponding tree tv has the wrong canonical center as a root according
to the definition of the canonical form. It is quite easy to fix this problem by adding
the height of a subtree as another decision criterion to the levelwise traversal order, but
this would remove some of the nice properties of the order and hurt FreeTreeMiner’s
performance. We therefore chose to simply mark any non-canonical v-node in V with a
special label and to ignore those non-canonical trees during the find operation. It is easy
to see that a generalized version space tree can store any arbitrary rooted labeled tree. If
we store only canonical forms, we can therefore build a generalized version space tree
containing any arbitrary set of free trees, and in particular version spaces of free trees.

The generalized version space tree can be extended to store connected, labeled, and
potentially cyclic graphs as well. The first step to do so is to choose a suitable canonical
form and an order on the edges of a graph g. It turns out that Yan and Han’s approach
in [XY02] works well for our purpose. The main idea is to represent a connected graph
g using a Depth-First Search (DFS) Tree. Such a tree is generated by following the
forward edges (i.e. the edges whose end node have not been visited) of a graph in a
depth-first style and storing with each visited node a list of backward edges (i.e. edges
whose end node have already been visited). Of course, there are numerous ways to
traverse g in such a depth-first manner depending on the choice of the starting node and
the order of the edges for each node in g. Yan and Han combine three orders on forward
and backward edges to construct a linear order �E,T on the set of edges E and a linear
lexicographic order ≤ on DFS trees1. One can use this canonical form and the two
orders to construct a generalized version space tree V representing connected graphs:
again, each v-node v in V identifies the canonical form of exactly one graph g and again
one can construct g by following the path from V ’s root to v and adding iteratively edges
to an initially empty graph. The only conceptual difference2 to the generalized version
space tree for free trees is the fact that some of the edges are backward edges, i.e. edges
that connect the current node with an already generated node and thus build a cycle.
Yan and Han give a proof that the used orders are in fact canonically inducing, i.e. the
generalized version space tree contains only canonical forms. Even though Yan and
Han lay the groundwork for the design of generalized version space trees, their gSpan
algorithm never actually makes use of such a data structure.

1 In fact, Yan and Han define the order ≤ on DFS-codes, i.e. sequences that are generated by
traversing the graph in a depth-first order constrained by the order �E,T on edges. This is
however, just one particular useful way to represent and compare the corresponding DFS trees.

2 except for the use of different orders

4 Experimental Results

In this section, we present the application of generalized version space trees on two
datasets taken from the National Cancer Institute’s (NCI) Developmental Therapeutics
Program (DTP, http://dtp.nci.nih.gov/).

4.1 NCI DTP Anti-Cancer Screening Data

As a first experiment we examine the performance of generalized version space trees
used just like index structures in databases. To this purpose we are applying FreeTreeMiner
to the compounds studied in the DTP Human Tumor Cell Line Screen program.

We classified each of the 37,330 compounds in the data set as being “active” or “in-
active” depending on the log GI50 value for the NCI-H460 lung cancer line, which can
be seen as a measure of the cancer growth inhibition of a compound. This classification
separates the compounds in a set of 17,589 “active” compounds and a set of 17,239
“inactive” compounds. We created a list of 100 queries of the form freq(t, active) ≥
p1 ∧ freq(t, inactive) < p2. The values of p1 and p2 were chosen for each query
randomly from the interval [0.2; 0.5]. Note that these support levels are too high for
practical applications, but they serve the purpose of our argument here. Finally, we
used FreeTreeMiner to calculate the version spaces for all 100 queries. The compu-
tation took 24984 seconds, that is on average about 250 seconds per query. In the
next step, we use FreeTreeMiner only once to calculate the query freq(t, active) ≥
0.2 ∧ freq(t, inactive) < 0.5. The resulting version space is stored in a generalized
version space tree. We also save in each node of this tree the frequency counts of the
corresponding free tree on both sets. After this preprocessing step we can simply walk
through the tree and output all free trees that match a query. The calculation of the gen-
eralized version space tree took 399 seconds, that is less than twice the average time
needed for computing a query. After the generalized version space tree was computed,
all 100 queries were executed in just 0.2 seconds. That means the use of the generalized
version space tree as a cache structure reduced the overall processing time from 24984
seconds to 399 seconds, a time saving of over 98%. Clearly, generalized version space
trees are an efficient way to boost similar frequent substructure queries on databases.
Note that queries of the form freq(t, D1) ≥ p1∧freq(t, D2) < p2 are quite common,
because they allow to find patterns whose frequency varies significantly between two
given groups of instances.

4.2 NCI DTP Anti-HIV Screening Data

In the second experiment we examine the use of generalized version space trees as a
representation for version spaces. Most of the proposed algorithms in the literature sim-
ply output all elements in the determined version space. A better approach is to calculate
the G- and S-set borders as an efficient and small representation of the version space.
Such a representation can then be used during further processing. From a computational
point of view, generalized version space trees should be more efficient than borders, be-
cause the subsumption tests, that are necessary for the calculation and processing of the
borders, are much more time consuming than the lookup operations in a generalized

version space tree. It is, however, not clear, how the space requirements of generalized
version space trees interfere with its performance. If a generalized version space tree
needs too much space to be kept in main memory, it has to be stored on the much slower
external memory such as a hard disk. In such a case it might be more efficient to use
a computationally more demanding, but less space consuming representation such as
borders. In the following we will examine this question using the DTP HIV data.

The DTP AIDS Antiviral Screen program (http://dtp.nci.nih.gov) has checked tens
of thousands of compounds for evidence of anti-HIV activity. Available are screening
results and chemical structural data on compounds that are not covered by a confiden-
tiality agreement. The available database (October 1999 Release) contains the screening
results for 43,382 compounds. The screen utilizes a soluble formazan assay to measure
protection of human CEM cells from HIV-1 infection [WKF+89]. Compounds able
to provide at least 50 % protection to the CEM cells were retested. Compounds that
provided at least 50 % protection on retest were listed as moderately active (CM, con-
firmed moderately active). Compounds that reproducibly provided 100 % protection
were listed as confirmed active (CA). Compounds neither active nor moderately active
were listed as confirmed inactive (CI).

We performed two tests on this data set to gain some insights into the size of gen-
eralized version space trees in comparison to a representation using borders. First, we
used FreeTreeMiner to calculate the version space containing all free trees with a mini-
mum support of 39 in the CA data set and a maximum support of 10 in the CM data set.
The resulting version space includes 834 frequent free trees. The corresponding gener-
alized version space tree uses 15996 nodes. We also calculated the G-set and S-set for
this version space. The G-set contains 22 trees, the S-set 255 trees. Together, the trees in
both borders use 4162 nodes, or roughly a quarter of the number of nodes in the version
space tree. We repeated the experiment with a minimum support of 26 for the CA data
set and a maximum support of 10 for the CM data set. This time, the version space tree
needed 104749 nodes for a version space tree containing 37875 trees, while the 288
trees in the G-set and the 706 trees in the S-set together took 19011 nodes. Thus, even
though borders proved to be a very compact representation in these experiments, the
generalized version space tree uses only between four to five times more nodes than the
borders. It seems that the increased memory demand of generalized version space trees
is a problem only for very large version spaces. At least for the examined application,
the version space trees are small enough to be easily stored in the main memory of to-
day’s computers. In such a case one is gladly willing to accept a higher memory usage
in order to gain rapid access to the free trees and an easy handling of the represented
version space.

5 Conclusion

In this paper we have introduced generalized version space trees as a condensed rep-
resentation that can be used to store version spaces of structured data in an easy and
efficient way, and that can be utilized in a database to boost certain types of queries just
like an index structure. We show how such GVSTs can be built for free trees and con-
nected graphs and we give some first empirical evidence that hints at the applicability

of GVSTs for substructure pattern mining. Of course, there is a lot of further work that
can be done: we are planning to perform an elaborate study comparing GVSTs with
boundary set representations for free trees and graphs. Another interesting direction of
research deals with the type and handling of queries that can be supported by GVSTs.
For example, the nodes in a GVST could also contain flags or data that was generated by
evaluating a constraint that is neither monotonic nor anti-monotonic. Finally, one could
envisage incorporating GVSTs into inductive databases supported by query languages
such as MineRule [MPC96] or MSQL [IV99].

Acknowledgements

We would like to thank the anonymous reviewers for their helpful comments.

References

[BBR00] Jean-Francois Boulicaut, Artur Bykowski, and Christophe Rigotti. Approximation
of frequency queries by means of free-sets. In Proceedings of the Fourth Euro-
pean Conference on Principles and Practice of Knowledge Discovery in Databases
(PKDD-2000), pages 75–85, 2000.

[GLD02] Arnaud Giacometti, Dominique Laurent, and Cheikh Talibouya Diop. Condensed
representations for sets of mining queries. In Proceedings of the First International
Workshop on Knowledge Discovery in Inductive Databases (KDID-02), 2002.

[IV99] Tomasz Imelienski and Aashu Virmani. Msql: A query language for database mining.
Data Mining and Knowledge Discovery, 3(4):373–408, 1999.

[IWNM02] Akihiro Inokuchi, Takashi Washio, Yoshio Nishimura, and Hiroshi Motoda. General
framework for mining frequent patterns in structures. In Proceedings of the ICDM-
2002 workshop on Active Mining (AM-2002), pages 23–30, 2002.

[Man97] Heikki Mannila. Inductive databases and condensed representations for data mining.
In International Logic Programming Symposium, pages 21–30, 1997.

[MPC96] Rosa Meo, Giuseppe Psaila, and Stefano Ceri. A new SQL-like operator for mining
association rules. In T. M. Vijayaraman, Alejandro P. Buchmann, C. Mohan, and
Nandlal L. Sarda, editors, VLDB’96, Proceedings of 22th International Conference
on Very Large Data Bases, September 3-6, 1996, Mumbai (Bombay), India, pages
122–133. Morgan Kaufmann, 1996.

[RJLM02] Luc De Raedt, Manfred Jaeger, Sau Dan Lee, and Heikki Mannila. A theory of in-
ductive query answering. In Proceedings of the 2002 IEEE International Conference
on Data Mining (ICDM 2002), pages 123–130, 2002.

[RK01] Luc De Raedt and Stefan Kramer. The level-wise version space algorithm and its
application to molecular fragment finding. In Proceedings of the Seventeenth Inter-
national Joint Conference on Artificial Intelligence (IJCAI-01), pages 853–862, 2001.

[RK03] Ulrich Rückert and Stefan Kramer. Frequent free tree discovery in graph data, sub-
mitted. http://home.in.tum.de/∼rueckert/freetreeminer.pdf, 2003.

[WKF+89] O.S. Weislow, R. Kiser, D.L. Fine, J.P. Bader, R.H. Shoemaker, and M.R. Boyd.
New soluble formazan assay for HIV-1 cytopathic effects: application to high flux
screening of synthetic and natural products for AIDS antiviral activity. Journal of the
National Cancer Institute, 81:577–586, 1989.

[XY02] Jiawei Ha Xifeng Yan. gSpan: Graph-based substructure pattern mining. In Proceed-
ings of the 2002 IEEE International Conference on Data Mining (ICDM 2002), pages
721–724, 2002.

	page01: 1
	page11: 2
	page21: 3
	page31: 4
	page41: 5
	page51: 6
	page61: 7
	page71: 8
	page81: 9
	page91: 10
	page101: 11
	page111: 12
	page121: 13
	page131: 14
	page141: 15
	page151: 16
	page161: 17
	page171: 18
	page181: 19
	page191: 20
	page201: 21
	page211: 22
	page221: 23
	page231: 24
	page241: 25
	page251: 26
	page261: 27
	page271: 28
	page281: 29
	page291: 30
	page301: 31
	page311: 32
	page321: 33
	page331: 34
	page341: 35
	page351: 36
	page361: 37
	page371: 38
	page381: 39
	page391: 40
	page401: 41
	page411: 42
	page421: 43
	page431: 44
	page441: 45
	page451: 46
	page461: 47
	page471: 48
	page481: 49
	page491: 50
	page501: 51
	page511: 52
	page521: 53
	page531: 54
	page541: 55
	page551: 56
	page561: 57
	page571: 58
	page581: 59
	page591: 60
	page601: 61
	page611: 62
	page621: 63
	page631: 64
	page641: 65
	page651: 66
	page661: 67
	page671: 68
	page681: 69
	page691: 70
	page701: 71
	page711: 72
	page721: 73
	page731: 74
	page741: 75
	page751: 76
	page761: 77
	page771: 78
	page781: 79
	page791: 80
	page801: 81
	page811: 82
	page821: 83
	page831: 84
	page841: 85
	page851: 86
	page861: 87
	page871: 88
	page881: 89
	page891: 90
	page901: 91
	page911: 92
	page921: 93
	page931: 94
	page941: 95
	page951: 96
	page961: 97
	page971: 98
	page981: 99
	page991: 100
	page1001: 101
	page1011: 102
	page1021: 103
	page1031: 104
	page1041: 105
	page1051: 106
	page1061: 107
	page1071: 108
	page1081: 109
	page1091: 110
	page1101: 111
	page1111: 112
	page1121: 113
	page1131: 114
	page1141: 115
	page1151: 116
	page1161: 117
	page1171: 118
	page1181: 119
	page1191: 120
	page1201: 121
	page1211: 122
	page1221: 123
	page1231: 124
	page1241: 125
	page1251: 126
	page1261: 127
	page1271: 128
	page1281: 129

