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ABSTRACT
Storing sets and querying them (e.g., subset queries that
provide all supersets of a given set) is known to be difficult
within relational databases. We consider that being able to
query efficiently both transactional data and materialized
collections of sets by means of standard query language is
an important step towards practical inductive databases. In-
deed, data mining query languages like MINE RULE extract
collections of association rules whose components are sets
into relational tables. Post-processing phases often use ex-
tensively subset queries and cannot be efficiently processed
by SQL servers. In this paper, we propose a new way to
handle sets from relational databases. It is based on a data
structure that partially encodes the inclusion relationship
between sets. It is an extension of the hash group bitmap
key proposed by Morzy et al. [8]. Our experiments show an
interesting improvement for these useful subset queries.
Keywords: inductive databases, itemset post-processing.

1. INTRODUCTION
One of the most popular data mining task concerns the

constraint-based discovery of itemsets and association rules
from transactional data [1, 3, 9, 14]. In the so-called induc-

tive database approach [6], a database integrates raw data
with knowledge extracted from raw data, materialized un-
der the form of patterns into an unified framework [4]. A
knowledge discovery process is then considered as a querying
process. Among the various proposals of a query language
for association rule mining [2], the MINE RULE proposal [7]
is typical: it allows to query databases using SQL but also
to query association rules from the selected data. The eval-
uation of a MINE RULE query leads to the computation of
a collection of rules whose components, i.e., itemsets, are
stored in relational tables. However, most of the available
query languages poorly support the needed post-processing
steps for real-life association rule mining processes [2] and
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users often have to use standard query languages to search
for relevant patterns. In gene expression data analysis, for
instance, once the frequent sets of co-regulated genes are
available, it can take months to biologists before finding
relevant patterns among them. Indeed, huge amounts of
patterns can be extracted, even from small data sets [12].

In this paper, we assume that the a priori interesting item-
sets have been computed and stored in a relational database.
Transactions (data) is also stored in the database and is
also a set of itemsets. In practice, the patterns are associ-
ated to some properties like frequency or closeness. Most
of the post-processing techniques need to access both data
and patterns, and often involve a lot of set manipulations,
typically subset querying. Crossing-over queries returning
transactions satisfying some association rules are of this
kind: transactions are itemsets that have to be supersets
of some extracted itemsets. Another application where in-
clusion tests are used is the regeneration of the frequent
itemsets from their so-called condensed representations [3].
Other examples of post-processing are given in [13].

In the field of relational databases, set-related operations
are difficult tasks. We focus here on subset queries, i.e. in
finding in which sets a given itemset is included. Subset
queries can be expressed by means of the relational division
operator. However, SQL does not implement it and queries
involving multiple joins are needed. Results of Section 4
confirm that these multiple-joins queries lack of efficiency
for subset querying. Notice that we do not address here
the use of SQL for mining the frequent itemsets [11, 10]
that also needs for subset query evaluation. Figure 1 shows
an example of a SQL query retrieving the supersets of the
itemset {5, 8}.

Itemset table

set id item id
1 2
1 5
1 8
2 10
2 8
2 7
3 4

SELECT a.itemset id

FROM Itemset a, Itemset b

WHERE a.set id = b.set id

AND a.item id = 5

AND b.item id = 8

SQL result

itemset id
1

Figure 1: Retrieving supersets in SQL

Morzy [8] has proposed an efficient method for storing
and manipulating itemset patterns in relational databases.
It relies on the use of bitmap keys that summarize in a string
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the content of an itemset. We propose here a new method to
store and index itemsets and bitmap keys so as to speed up
subset queries. It is based on a data structure that partially
encodes the inclusion relationship between itemsets. Our
experiments on synthetic and real data show an interesting
improvement for subset queries. We present the hash group
bitmap keys method of [8] in Section 2, and our technique
in Section 3. Experiments are described in Section 4.

2. HASH GROUP BITMAP KEYS
To optimize subset queries, [8] has introduced the idea of

a bitmap key associated to each itemset of the database and
which summarizes the content of the itemset. We first recall
the notion of group bitmap key and then the principles of
the hash group bitmap key. In this section, we suppose that
we have N possible items in the different itemsets.

The group bitmap index for a given itemset S is a binary
number of length N in which a bit at position k has the
value ’1’ if and only if k ∈ S. All the different group bitmap
keys are then stored in an index table together with an iden-
tifier of the set they encode. For instance, the bitmap keys
associated to itemsets {0, 3, 5, 9}, {2, 5}, {1, 4, 6} are respec-
tively 1000101001, 100100, 1010010. When a subset query
is performed, a bitmap key B is computed for the searched
itemset, then the subset containment is checked by means of
a bitwise AND operation between B and the set of keys in
the database. So, for each bitmap key in the database, we
just have to check if there is a 1 at each position where there
is a 1 in B. For instance, if we search for supersets of {4, 6}
in the itemsets of the previous example, we will first com-
pute the bitmap key associated to {4, 6}, i.e. 1010000, and
then compare it by an AND operation with each itemset.
We thus find that {1, 4, 6} is a superset of {4, 6}.

This definition of bitmap keys has mainly a theoretical
interest. Indeed, as soon as N becomes quite large (and this
is the case when considering data mining processes), storing
all the bitmap keys becomes space-consuming, because each
key is N -bit long. Moreover, this technique is not suited for
a dynamic context, when new items can be added through
different experiments. Indeed, let us suppose that a new
item is inserted, then we have to update the length of all
the binary keys in the same way. Thus, the maintenance of
these kind of index will be costly and difficult. That is why,
in [8] Morzy and Zakrzewicz have proposed the hash group
bitmap index. The idea is to consider binary keys of a fixed
length n where n << N . The hash group bitmap key of an
itemset is created with all the hash keys of the items that it
contains. The hash key of an item X is an n-bit binary string
computed as follows: hash key(X) = 2X mod n Figure 2
illustrates this hash group bitmap key computation for the
itemset set {{2, 5, 8}, {7, 8, 10}, {3}} with n = 5.

For a searched itemset X, a subset query is then evaluated
in two steps: (1) First, we compute the hash group bitmap
key of X and compare it with the hash group bitmap index
of each itemset in the database, by means of a bitwise AND
operation, and we return the identifiers of the itemsets sat-
isfying this test, (2) then, we have to check if the identifiers
returned in the first step really correspond to supersets of
X. Indeed, as an hash key can encode different itemsets (be-
cause of the hashing technique), it is possible to have some
false positive. Therefore, we must verify this point, and this
is done by using a traditional inclusion test. Figure 3 shows
the evaluation of a subset query for the itemset {5, 8}.

Itemset table
itemset id item id bitmap key

1 2 → 00100
00001
01000

9

=

;

→1 5 → 01101
1 8 →
2 7 → 00100

01000
00001

9

=

;

→2 8 → 01101
2 10 →
3 4 → 01000

¯

→ 01000

Figure 2: Example of computation for n = 5.

subset
5

ff

01001
8

AND

itemset id bitmap key
1 01101
2 01101
3 01000

Eligible itemsets True sets

itemset id bitmap key
1 01101
2 01101

Checking
=⇒

itemset id
1

Figure 3: Search with Hash Group Bitmap Keys

The idea of a signature of an itemset under the form of
a bitmap key is useful, but one of main drawbacks of this
method is that the search of supersets is done in a ”blind”
way. Indeed, each time we are looking for supersets of
a given itemset, we have to check all the bitmap keys to
find them. It lacks of an indexing method on itemsets and
bitmap keys that can partially encode an inclusion relation-
ship between itemsets.

3. A NEW STORAGE STRUCTURE
We propose a new method to store itemsets in relational

databases. It encodes the inclusion relationship between
itemsets by storing an itemset tree [5] in a relational ta-
ble. To improve the comparison between itemsets, associ-
ated bitmap keys are also stored in the relational table.

Itemset trees have been proposed by A. Hafez et al. to
incrementally store itemsets when computing frequent and
valid association rules [5]. Let I = {i1, i2, . . . , in} be an or-
dered set of items. Each node s of the tree T represents
either an encountered itemset, or a subset of it, both or-
dered according the definite order on I. Let us consider two
itemsets si = {a1, . . . , ak} and sj = {b1, . . . , bl}. We denote
si ≤o sj , iff ∀p ∈ {1, . . . , min{k, l}}, ap ≤ bp. si is an or-
dered subset of sj , denoted by si ⊂o sj , iff si = {a1, . . . ak},
sj = {a1, . . . , ak, bk+1, · · · , bl} and k < l. Inserting an item-
set s in T proceeds incrementally and recursively. The root
node r represents the empty set {}. An itemset is inserted
by examining the children of the root node r, ordered by the
≤o relation. The recursive insertion procedure considers the
five following cases:
1 - If none of the children sj of r have the same leading
element than s, then s is inserted as a son of r and the in-
sertion procedure ends.
2 - If there is a son sj of r s.t. sj = s, then the procedure
ends.
3 - If there is a son sj of r s.t. s ⊂o sj , then s is inserted as
a son of r and as a parent of sj . Then the procedure ends.
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4 - If there is a son sj of r s.t. sj ⊂o s, then the insertion
procedure is recursively called with sj as the tree root.
5 - If there is a son sj of r s.t. s and sj are sharing some
of their leading elements (s ∩o sj 6= ∅1), then two nodes are
inserted: a node si = s ∩o sj as a son of r and a parent of
sj and a node s as a son of si. Then the procedure ends.

Figure 4 shows an example of the construction of an item-
set tree for set of itemsets {{1, 2}, {4, 6}, {1, 3, 5}}.

{1,2}
{1}

{1,2} {1,3,5}

{4,6}

After inserting {1,3,5}

{1,2} {4,6}

After inserting {4,6}After inserting {1,2}

Figure 4: Exemple of itemset tree

We want to store the itemsets such that the ordered sub-
set relationships that exist among them are preserved. We
also store in the itemset tree the hash group bitmap key as-
sociated to each itemset because of the efficiency of the key
scanning during subset querying. It leads to the following re-
lational schema: (IS Id int, Nb Items int, HBitmap Key

string, Ancestor int, F irst Child int, F irst Sibling int,

Pattern bool). Each row stands for an itemset or a subset
of an itemset. In the first case, the Pattern field takes
the value “yes”, “no” otherwise. Each row is identified
by a unique number IS Id which is used as an identifier
in the field ancestor which points to the parent node, in
the field first child which points to the first son of the
current node, and in the field first sibling which points
to the first neighbor of the current node. The field nb

items contains the number of items of the itemset. The
hash group bitmap key of the itemset is stored in the field
HBitmap Key and the itemset is encoded in a separate ta-
ble. We also store complete itemsets in a classical table of
schema (IS Id int, item int). Figure 5 gives the encoding of
the itemset tree for the set of itemsets {{1, 2}, {4, 6}, {1, 3, 5}}.

1
2
3
4
5

0
2
2
1
3

00000
00110
10010
00010
01011

NULL
4
1
1
4

4
NULL
NULL

2
NULL

NULL
5

NULL
3

NULL

No
Yes
Yes
No
No

IS_Id HBitmap_Key Ancestor First_Child First_Sibling PatternNb_Items

Figure 5: Encoding an itemset tree in a table

We use the itemset tree structure to solve subset queries
without scanning all the rows of the itemset table. Algo-
rithm 1 presents the principle of the resolution of the subset
query: node is a node of the itemset tree and corresponds to
a record of the table encoding itemset tree, the field itemset

denotes the associated itemset. The function is recursive:
for one node, it scans all its siblings. When a sibling is
found as being a superset of a part of the subset, a recur-
sive call is done on the first child of this sibling. The use of
bitmap keys to check if a set is a superset of the subset can

1si ∩o sj = {a1, · · · , ak} iff si = {a1, · · · , ak, ak+1, · · · , ap}
and sj = {a1, · · · , ak, bk+1, · · · , bq} with ak+1 6= bk+1

be used there. The depth search is stopped when we find in
the subset an item not occuring in the candidate superset,
whereas a bigger item is found. The fact that items are or-
dered is useful there to simplify this checking. When we find
a node in which the subset is included, we automatically add
to the result set all the children of the node that are marked
as itemset. It is done by the function Itemsets in Subtree.

Algorithm 1: Search Tree

Data : Subset is an itemset, node is a node of the tree

// Subset is a subset of the searched supersets
current = node; // e.g. node={1,3,5}
repeat

brother = current.first sibling;
if Subset ⊆ current.itemset and cur-

rent.is itemset=yes then

// we can add all the itemsets of the subtree
results = results ∪
Itemsets in Subtree(current);

else

if ∀a ∈ Subset s.t. a 6∈ current.itemset, 6 ∃ b ∈
current.itemset, a < b then

//Recursive call;
results=results∪Search Tree(current.first child);

end

end

current = brother;

until current 6= null ;
return results

4. EXPERIMENTS
We performed experiments on both synthetic and real

data sets. Our experiments have been done on top of the
MySQL DBMS. We used three different methods to search
for supersets of given itemsets in the database: (1) the item-
set tree method (cf. Section 3), (2) the Hash Group Bitmap
Key index method [8], (3) a classical SQL query. We used
the IBM Quest generator2 to produce synthetic data with
the following parameters: n trans (the number of itemsets)
was set to 20000, n items (the number of different items)
to 1000, n pats (the number of patterns) to 10000, patlen

(the average length of maximal patterns) to 4 and corr (the
correlation between patterns) to 0.25.

First, we have looked at the behavior of the three methods
w.r.t. the size of the searched set. We used a synthetic
dataset with tlen (the average number of items per itemset)
set to 15. Then we have searched 5 itemsets of differents
sizes with the three methods (hash group bitmap key size
was 29). Notice that searched itemsets were present in the
database, so that the hash group bitmap key method is not
disadvantaged, as it always need to scan all the stored keys,
whereas the two others methods would quickly stop with sets
not occuring in the data. The size of the table encoding the
itemset tree was 3.5 Mb and the size of the table encoding
the bitmap keys was about 1Mb. This overhead cost remains
quite far from the combinatorial space explosion needed for
a complete tree. Figure 6 shows the results.

2http://www.almaden.ibm.com/cs/quest/index.html
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Figure 6: Experiments with synthetic datasets

A first remark is that SQL is quite fast when searching
small itemsets, because of SQL server optimizations that
“push” constraints on the presence of some items, thus prun-
ing many irrelevant joins. The hash group bitmap key tech-
nique is efficient for small itemsets, because in these cases,
the bitmap keys are discriminant enough to filter out many
itemsets. However, with bigger searched sets, different items
are likely to match the same bits of the key, thus leading
to more false positive. Our itemset tree-based method ap-
pears as being efficient. The execution times are generally
better than the ones of the two other methods and its ex-
ecution time continues to drop with the increasing size of
the searched set. On the contrary, the execution time of the
hash group bitmap key method remains stable after some
threshold, because this method involves a lower bound on
the needed number of scans. Thus, if we store N itemsets,
we will always scan at least N bitmap keys. With the item-
set tree-based method, if the itemset tree is encoded using
M tuples, we will scan at most M tuples (M ≥ N) and, in
the best case, just one tuple (the tree root). The execution
time also drop because the larger the searched set is, the
less numerous are the itemsets in which it can be included.
Figure 6 also shows the number of selected tuples for the
different methods and it confirms the theoretical intuition:
the amount of tuples analyzed by our method drops with the
increasing size of the searched set, whereas the Bitmap Key
method reaches a threshold under which it cannot drop.

In a second experiment, we have analyzed how the execu-
tion time evolves w.r.t. the average size of stored itemsets.
We generated different datasets with the same parameters
than in the first experiment, except for tlen which was vary-
ing between 5 and 30. The size of the hash group bitmap
key was 97. We searched a set of 90 itemsets of size 12. The
results are given in Figure 7 (the curve of the SQL method
is not depicted because of high execution times). It shows
that our method is scalable with the increasing size of the

sets in which the search is done, an important point for real
iterative KDD processes, where it is difficult to know a pri-

ori the size of the itemsets. Concerning the size of the table
encoding the itemset tree, the value were ranging from 2.23
Mb (for an average itemset size of 2) to 3.4 Mb (for an aver-
age itemset size of 30) with a regular increase. For the table
encoding bitmap keys, it was ranging from 1.5 Mb to 2.3 Mb.
It show that our method is also scalable in size w.r.t. the
average size of stored itemsets. The cost of the Hash Group
Bitmap Key method becomes prohibitive with big itemset
sizes, because the size of the bitmap key is fixed whereas the
number of items to encode grows. Thus, in these cases, two
different items are more likely to match the same bit of the
key, leading to more useless checks on the real sets.
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Figure 7: Execution time vs. average itemset size

Then, we have performed an experiment on the Census
dataset of the UCI web site3. To show the relevancy of
our approach in a KDD process, we have extracted all fre-
quent closed sets (with a threshold of 30 %) and we obtained
about 17000 itemsets of a maximal size of 13. We chosed a
bitmap key size of 57 (one tenth of the number of possible
items). We stored them in a database using the two meth-
ods described in Sections 2 and 3. The size of the the table
encoding itemset tree was 1.9 Mb and the one of the table
encoding bitmap keys was 1.3 Mb. We searched 10 itemsets
of variable sizes, all of them were present in the dataset.
The results are depicted on Figure 8. We can notice that
the performance of the hash group bitmap key method was
worst than the SQL method. Like already noticed on syn-
thetic datasets, the basic SQL method is efficient with small
searched subsets. However, when the size of the searched
itemset grows, the itemset tree method is more efficient.

Finally, we have realized the same experiments on dis-
cretized microarray data. We have stored in the relational
database all closed set in this data (10098 itemsets). The
size of the table encoding bitmap keys was 486 Kb and
the one of the table encoding the itemset tree was 696 Kb.
Again, we applied the three methods on 5 itemsets of differ-
ent sizes. There was 162 possible items and the average size
of the itemsets was 5.25. The bitmap key size was set to 29
to keep the same proportion than in [8]. We have looked at
the execution times and the numbers of selected tuples (cf.
Figure 9). It confirms the previously obtained results. The
Hash Group Bitmap Key method reaches a threshold under
which it cannot go, whereas the itemset tree-based method
is getting faster as the size of the searched sets grows.

3http://www.ics.uci.edu/ mlearn/MLSummary.html
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Figure 8: Results with the Census dataset

5. CONCLUSION AND PERSPECTIVES
We have considered the concept of inductive databases

where raw data and patterns are stored in a common database
framework. We know that set-related operations, and more
particularly, subset querying is a critical aspect of pattern
manipulation. That is why we have proposed a new method
for storing and indexing itemsets to speed up subset queries.
Our experiments on synthetic and real datasets have shown
the relevancy of our approach w.r.t. to the hash group
bitmap key technique and SQL. However, we can see that
sometimes, and especially when looking for small itemsets,
the SQL query is better than more complex methods. That
is why an inductive database system should consider the
different parameters of a subset query before executing it,
so as to choose the best method. Notice that our method
would be faster if it was implemented directly within the
database instead of being working on top of a DBMS. We
are now proceeding with several applications related to the
field of bioinformatics. For instance, we have extracted a
huge collection of a priori interesting sets of genes and we
now collaborate with biologists to post-process them.
Acknowledgements. The authors thank Sophie Rome,
Hubert Vidal and Jérémy Besson for the microarray data,
the discretized matrix and the extracted closed itemsets.
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