
Using a Database Query Language to Specify and Generate

Spreadsheets

Jean-François Boulicaut(1) Patrick Marcel(2)

Christophe Rigotti(1)

(1) Laboratoire d’Ingénierie des Systèmes d’Information

INSA Lyon, Bâtiment 501, F-69621, Villeurbanne, France

{jfboulic,crigotti}@lisi.insa-lyon.fr

(2) Université François Rabelais

3 place Jean Jaurès, F-41000 Blois, France

{marcel}@univ-tours.fr

Abstract

Experimental studies have pointed out that operational spreadsheets contain a lot of errors,

mostly due to the lack of abstraction offered by existing spreadsheet programs. In this paper, we

consider the specification of a spreadsheet using a database query language and the generation

of the corresponding running spreadsheet. We present a technique to perform this generation

automatically, allowing to suppress the risk of human encoding errors. This technique has been

implemented in a prototype that generates operational spreadsheets.

keywords: Query Languages, Spreadsheets, Specification, Automatic Generation

1 Introduction

Spreadsheet programs and their user-friendly interface have become a very popular tool for data

presentation and analysis. They are used in a wide range of applications, from quick formulation

of simple computation to sophisticated data manipulation in business decision support systems like

On-Line Analytical Processing (OLAP) [6]. Unfortunately, experimental studies have pointed out a

high rate of errors in operational spreadsheets and its increasing economical impact [4, 7, 15]. Using

database terminology, it has been advocated [11, 10] that most errors come from the confusion of the

spreadsheet physical level (i.e., the grid) with its logical level (i.e., the table definitions).

Important methodological elements have been proposed to design spreadsheets at a logical level

[11, 10] and powerful dedicated environments have been built to support the execution of such abstract

descriptions (e.g., [17]). In this paper, we show that simple spreadsheets can be specified at a logical

1



level using a database query language, and that the corresponding spreadsheets can be generated

automatically and executed with a standard spreadsheet program (Excel [14] in our case). From a

practical point of view, the main benefits are the following: (1) the developer of the spreadsheets

can use a high level database query language, (2) the automatic generation avoids human encoding

errors, and (3) the user of the spreadsheet can operate with it’s favorite spreadsheet program and can

perform ad-hoc customizations of the spreadsheet (e.g., changing the presentation, adding data and

formulae).

The key idea presented in this paper is that a spreadsheet is simply a database query that has not

been fully evaluated because some data are not yet available. The part of the query that has not been

processed is encoded in the spreadsheet as formulae and the missing data will be entered later in the

spreadsheet by the user.

As in the case of other non-standard query processing (e.g., [18]), we present the generation

technique on queries written in an extension of Datalog [16] because it keeps the presentation more

clear and concise. This is done without loss of generality, since various links have been exhibited

between database query languages [1]. It allows to adapt processing of Datalog-like languages to any

relational database query language that handles basic relational operators (i.e., selection , projection,

join, union) and view definition (e.g., in particular SQL [12]).

A preliminary version of this work has been presented in [2]. In this short paper, we assume that

the reader is familiar with basic Datalog syntax and semantics (see among others [16, 1]). The next

section introduces informally the query language we use to specify the spreadsheets at a logical level.

Section 3 presents on an example the spreadsheet generation technique, and we conclude in section 4.

2 Query Language Overview

In this section, we give a brief and informal presentation of the query language we use to specify the

spreadsheets. This language is an extension of Datalog dedicated to multidimensional databases. A

formal presentation of the language and its application to multidimensional databases can be found

in [8, 9]. Furthermore, a survey of querying paradigms for multidimensional databases is [13].

2.1 Data Model

We use a very simple data model in which data are organized in cells. Cells can be seen as a logical

abstraction of the physical squares of the grid of the spreadsheet. A cell is identified by a cell reference,

and is associated with a unique cell content. A cell reference is of the form T (R, C), where T,R and

C are constants, respectively the name of the table, of the row and of the column. The associations of

cell contents with cell references are represented by ground atoms (i.e., facts) of the form T (R,C):N ,

where N (the cell contents) is a constant.

A table is a set of ground atoms having a common table name, in which the same reference does

not appear more than once to ensure cell monovaluation.

Example 2.1 A table named school describing the results of students in mathematics and physics,

together with their group membership can be represented by the following set of cells.

2



{school(kate, math):15, school(kate, phys):12, school(kate, group):gr1, school(mike,math):14,

school(mike, phys):12, school(mike, group):gr2, school(john, math):10, school(john, group):gr1,

school(alan, math):15, school(alan, phys):16, school(alan, group):gr2, school(suzy, math):12,

school(suzy, phys):11, school(suzy, group):gr1}
A graphical representation of this table is given as figure 1.

school math phys group

kate 15 12 gr1

mike 14 12 gr2

john 10 gr1

alan 15 16 gr2

suzy 12 11 gr1

Figure 1: The table school

2.2 A Rule-based Language

Rules à la Datalog are used to define new cell references and their associated contents from existing

cells. We only provide here their intuitive meaning. We adopt the following conventions: symbols

beginning with an upper-case letter denote variables, and symbols beginning with a lower-case letter

or a digit denote constants. Consider the rule p(X, Z) ←− q(X, Y ), r(Z, Y ). The standard (Datalog)

informal meaning of this rule is: if q(X,Y) holds and r(Z,Y) holds, then p(X,Z) holds. The basic

intuition of our extension is to read such a rule in the following way: if there are two cells of references

q(X,Y) and r(Z,Y), then there is a cell of reference p(X,Z). We add also the handling of cell contents,

and then a typical rule will be: p(X,Z):W ←− q(X, Y ):W, r(Z, Y ):X. This rule means that if it exists

a cell of reference q(X,Y) containing W, and it exists a cell of reference r(Z,Y) containing X, then it

exists a cell of reference p(X,Z) containing W.

The language is also extended to specify difference and basic arithmetic computations by means

of built-in predicates (is, 6=, +, /, . . .) having their standard meaning.

The next example shows how these rules can be used to specify table consolidation.

Example 2.2 Definition of a column in table school giving the average for each student:

school(N, avg):Z ←− school(N,math):X, school(N, phys):Y, Z is (X + Y )/2.

A representation of the corresponding table is given in Figure 2.

The rules can also be used to define various changes of the structure of the tables. A higher-order

syntax stemming from Hilog [5], allows variables to range over every constant used in cell references

(i.e., table name, row name and column name) or cell contents. The following example illustrates this

kind of data manipulation.

Example 2.3 Splitting the table school into two tables according to the student groups:

G(N, M):X ←− school(N,M):X, school(N, group):G,M 6= group.

A representation of the corresponding tables is given as Figure 3.

3



school math phys avg group

kate 15 12 13.5 gr1

mike 14 12 13 gr2

john 10 gr1

alan 15 16 15.5 gr2

suzy 12 11 11.5 gr1

Figure 2: Computing averages

gr1 math phys avg

kate 15 12 13.5

john 10

suzy 12 11 11.5

gr2 math phys avg

mike 14 12 13

alan 15 16 15.5

Figure 3: A table for each group

3 Spreadsheet generation

In this section, we present how to generate a spreadsheet starting from its specification written in the

query language introduced in section 2. This technique has been implemented in SWI-Prolog [19] to

produce Excel [14] spreadsheets.

3.1 Principle

During the development phase, the spreadsheet is first logically modeled with the query language.

Then the data available at this stage (called initial input) are used to generate the physical grid of the

spreadsheet. When the spreadsheet has been generated, it can be opened with a spreadsheet program,

and then operates on additional user-supplied data (called deferred input).

At the physical level in the current spreadsheet programs, a spreadsheet is simply a grid of squares

that can be filled with constants or formulae making references to other squares. We do not take into

account macro-command abilities, as this possibility is too much software-dependent. Starting from

the logical specification of a spreadsheet, the generation process consists in three steps. Firstly, the

logical specification is used to compute the set of useful cell references (i.e., to find the references of

cells that will contain an initial input, a formula or a deferred input). Secondly, the logical specification

is instantiated with these cell references in order to obtain the formulae defining the cell contents.

And finally, the spreadsheet is implemented using these formulae, and a binding schema that maps

cell references to physical squares in the grid.

3.2 Generation technique

The whole generation process is presented on the following example. Let the table school of example

2.1 be given and described by a set of ground atoms. We want to implement a spreadsheet to handle

the marks of the students in group gr2. Suppose we must take into account that these students will

4



take one more course in computer science (cs for short), and that they can also take an optional course

in chemistry. We want to produce the spreadsheet depicted in figure 4, to compute the final average

of the students when the user will provide their marks in cs and chemistry.

gr2 math phys cs chemistry finalAvg

mike 14 12

alan 15 16

Figure 4: A view of the final spreadsheet

The final average finalAvg is computed by applying a weight of 2 to the math and phys marks,

and a weight of 1 to both cs and chemistry. If a student does not take the chemistry course, then

the string nc (for not chosen) will be input instead of a mark, and his final average is computed by

applying the weight of 2 to the math, phys and cs marks. This spreadsheet is now defined with the

query language. The construction of table gr2 using the table school of example 2.1 is specified by a

single rule:

(R1) gr2(N, M):X ←− school(N,M):X, school(N, group):gr2,M 6= group.

The two following rules define the computation of the final average1:

(R2) gr2(N, finalAvg):A ←− gr2(N,math):M1, gr2(N, phys):M2, gr2(N, cs):M3,

gr2(N, chemistry):M4, number(M4), A is (2×M1+2×M2+M3+M4)/6

(R3) gr2(N, finalAvg):A ←− gr2(N,math):M1, gr2(N, phys):M2, gr2(N, cs):M3,

gr2(N, chemistry):nc,A is (2×M1 + 2×M2 + 2×M3)/6

The set of rules {R1, R2, R3} is called the Spreadsheet Relation Specification and is noted SRS.

This specification is completed with the definition of the references of the cells that will contain a

deferred input. In our example, these cells are those containing the marks that will be entered by the

user of the spreadsheet (i.e., the marks in cs and chemistry in table gr2). This definition is made by

the following rules using a particular symbol noted @ to fill the cells that contain a differed input:

(RD1) gr2(N, cs):@ ←− school(N, group):gr2.

(RD2) gr2(N, chemistry):@ ←− school(N, group):gr2.

Informally, the rule RD1 (resp. RD2) says that if it exists a cell school(N, group) containing gr2,

then it exists a cell gr2(N, cs) (resp. gr2(N, chemistry)) whose contents will be supplied later by the

user of the spreadsheet. The set of rules {RD1, RD2} is called the Differed Input Specification and is

noted DIS.

We now illustrate the three steps of the spreadsheet generation using SRS and DIS.

Step 1 This first generation step computes the references of the cells that will contain an initial

input, a formula or a deferred input.

Starting from the set of facts corresponding to the initial input, the rules in SRS∪DIS are applied

iteratively as if they were production rules to generate new facts. The generation terminates when

no new fact can be obtained by any application of the rules. More precisely, this process is a naive
1In the first rule number(M4) succeeds if M4 is bound to a number.

5



bottom-up query evaluation procedure that is well known in the database domain[1]. This form of

evaluation for the kind of query language we use has been considered in [8]. This paper points out

that simple syntactic restrictions can guarantee the termination of the procedure.

During the evaluation, the symbol @ is a place holder for values that are not known at that time.

@ is handled as any other constant, except in the following cases:

1. If @ occurs in the right hand side of an is expression, then this right hand side is reduced to @.

For example, X is (2× 14 + 2× 12 + @ + @)/6 will be transformed into X is @. Intuitively this

expresses that if X depends on an unknown value then the value of X is also unknown.

2. If @ occurs in a test expression (e.g., @ + 1 > 4, or number(@)) then the test succeeds. This

optimistic strategy is needed in order to compute all cell references that can be used in the final

spreadsheet, whichever value will be given to @ when the user will execute the spreadsheet.

3. If the fact T (R, C):@ (where T,R and C are constants) is produced then for any new rule

application we consider that T (R,C):α holds (i.e., is true) for any value α. For example, if

gr2(mike, chemistry):@ is produced then we consider that gr2(mike, chemistry):nc also holds.

As in the previous case, this strategy is needed to produce all possible final cell references, even

though the value of @ is not yet known.

We illustrate the computation of the set of facts containing the references of the cells that will be

filled with an initial input, a formula or a deferred input. Let I be the initial input. In the example,

it corresponds to the table school given in figure 1 and we have:

I = {school(kate, math):15, school(kate, phys):12,school(kate, group):gr1, school(mike,math):14,

school(mike, phys):12, school(mike, group):gr2, school(john, math):10, school(john, group):gr1,

school(alan, math):15, school(alan, phys):16, school(alan, group):gr2, school(suzy, math):12,

school(suzy, phys):11, school(suzy, group):gr1}

A first application of all rules in SRS ∪DIS on I leads to the set of new facts I1 =

{gr2(mike, math):14, gr2(mike, phys):12, gr2(alan,math):15, gr2(alan, phys):16, gr2(mike, cs):@,

gr2(mike, chemistry):@, gr2(alan, cs):@, gr2(alan, chemistry):@}.

Then a second application of the rules now on I ∪ I1 produces a superset of I1, the set I2 =

{gr2(mike, math):14, gr2(mike, phys):12, gr2(alan,math):15, gr2(alan, phys):16, gr2(mike, cs):@,

gr2(mike, chemistry):@, gr2(alan, cs):@, gr2(alan, chemistry):@, gr2(mike, finalAvg):@,

gr2(alan, finalAvg):@}.
A third application of the rules on I ∪I1 ∪I2 produces no new fact. It means that the set of facts

A produced by the evaluation of the rules in SRS ∪DIS on I is A = I2.

It should be noticed that when the user operates on the final spreadsheet, the formulae produce

only new cell contents and no new cell reference. Thus every cell reference has to be determined

during the generation process. If the constant @ occurs within a cell reference (i.e., as the name of a

table, a row or a column) in the set A, it means that this cell reference is not completely determined,

and that the generation must be aborted since no spreadsheet corresponding to the specification can

be derived.

6



Step 2 This step produces for each cell the relation that defines its content. These relations are

obtained by the specialization of the spreadsheet specification with respect to the references of the

cells (and eventually their contents if available) that have been computed in Step 1.

All cells containing a deferred input have been associated with the same contents denoted @. In

this step, their contents are still unknown, but they will be differentiated explicitly by associating a

different constant noted @i with i ∈ N to each different cell reference. Let A′ be the set of facts in A
(generated in Step 1) transformed in this way.

A′ = {gr2(mike, math):14, gr2(mike, phys):12, gr2(alan,math):15, gr2(alan, phys):16,

gr2(mike, cs):@1, gr2(mike, chemistry):@2, gr2(alan, cs):@3, gr2(alan, chemistry):@4,

gr2(mike, finalAvg):@5, gr2(alan, finalAvg):@6}
The specialization of the specification is then made by instantiating the rules in SRS in all possible

ways with the facts contained in I ∪ A′.
On our running example, the instantiation of (R1) gives the four following rules:

(R′1) gr2(mike, math):14 ←− school(mike, math):14, school(mike, group):gr2,math 6= group.

(R′2) gr2(mike, phys):12 ←− school(mike, phys):12, school(mike, group):gr2, phys 6= group.

(R′3) gr2(alan, math):15 ←− school(alan, math):15, school(alan, group):gr2,math 6= group.

(R′4) gr2(alan, phys):16 ←− school(alan, phys):16, school(alan, group):gr2, phys 6= group.

The rule (R2) can be instantiated in two ways:

(R′5) gr2(mike, finalAvg):@5 ←− gr2(mike, math):14, gr2(mike, phys):12, gr2(mike, cs):@1,

gr2(mike, chemistry):@2, number(@2),

@5 is (2× 14 + 2× 12 + @1 + @2)/6.

(R′6) gr2(alan, finalAvg):@6 ←− gr2(alan, math):15, gr2(alan, phys):16, gr2(alan, cs):@3,

gr2(alan, chemistry):@4, number(@4),

@6 is (2× 15 + 2× 16 + @3 + @4)/6.

And finally, the rule (R3) is instantiated as two rules:

(R′7) gr2(mike, finalAvg):@5 ←− gr2(mike, math):14, gr2(mike, phys):12, gr2(mike, cs):@1,

gr2(mike, chemistry):nc,@5 is (2× 14 + 2× 12 + 2×@1)/6.

(R′8) gr2(alan, finalAvg):@6 ←− gr2(alan, math):15, gr2(alan, phys):16, gr2(alan, cs):@3,

gr2(alan, chemistry):nc, @6 is (2× 15 + 2× 16 + 2×@3)/6.

Let SRSinst be the set of rules obtained by the instantiation of the rules in SRS. SRSinst

is called the instantiation of the spreadsheet relation specification. In the example, SRSinst =

{R′1, R′2, R′3, R′4, R′5, R′6, R
′
7, R

′
8}.

The most interesting aspect of these rules is that they describe how to compute, from user-supplied

values, the intentionally defined content of cells. This is used in the next step to generate the formulae

to be placed in the grid of the spreadsheet. For example, the rules (R′5) and (R′7) define the contents of

the cell reference gr2(mike, finalAvg), and correspond to the following (not optimized) pseudo-code:

7



IF gr2(mike, chemistry) contains a number THEN

gr2(mike, finalAvg) contains

((2× 14 + 2× 12 + valueInCell(gr2(mike, cs)) + valueInCell(gr2(mike, chemistry)))/6)

ELSE

IF gr2(mike, chemistry) contains the string “nc” THEN

gr2(mike, finalAvg) contains ((2× 14 + 2× 12 + 2× valueInCell(gr2(mike, cs)))/6)

ELSE

the contents of gr2(mike, finalAvg) is not defined

ENDIF

ENDIF

Step 3 The grid at the physical level is now filled with the appropriated content. This is performed

as follows:

1. Each cell reference is associated with a physical location, and the names of the rows (e.g., mike)

and columns (e.g., finalAvg) are placed in the grid.

2. The squares in the grid that contain a deferred input are highlighted (e.g., with a particular

border) to indicate that they must be filled by the user.

3. The cell contents computed in Step 1 are placed in the grid.

4. Finally, the formulae are generated and placed in the appropriated squares.

The first operation is performed using a default binding of the cell references in the grid (e.g., a binding

based on a lexicographical ordering of the names of the rows and of the columns). For the second

operation, the squares that will be used to enter the deferred input can be determined automatically,

since they correspond to cell references associated with a content that is not known and not defined

by a rule. These cells are the cells in A having a content equal to @, and such that their references

do not appear in the head of a rule in SRSinst. In our example, the references of these cells are:

{gr2(mike, cs), gr2(mike, chemistery), gr2(alan, cs), gr2(alan, chemistry)}
Concerning the third operation, the set of cells containing definitively known constants corresponds

to: {gr2(mike, math) : 14, gr2(mike, phys) : 12, gr2(alan,math) : 15, gr2(alan, phys) : 16}. Given

the physical binding, the corresponding squares can be filled.

Finally, for the last operation, the set of squares containing a formula corresponds to the references

of cells in A that are not associated with a deferred input or a known constant (determined during op-

erations 2 and 3). In our example, the references of cells containing a formula are gr2(mike, finalAvg)

and gr2(alan, finalAvg).

For each such cell reference, we consider the rules in SRSinst defining its content (i.e., the set of

rules in SRSinst such that this cell reference appears in the rule head). As mentioned in Step 2, this

set of rules corresponds to a pseudo-code that can be used to compute the cell content. At the physical

level, the IF statements in the pseudo-code are encoded in formulae using the IF function available

in most of the spreadsheet programs. This function uses three parameters: IF (Exp1; Exp2; Exp3),

where Exp1 is a boolean expression and where both Exp2 and Exp3 are unrestricted expressions

8



(e.g., a numeric or a string constant, another IF statement). From an operational point of view,

when Exp1 evaluates to true then IF (Exp1;Exp2; Exp3) evaluates to Exp2, otherwise it evaluates

to Exp3.

Consider a physical binding corresponding to the spreadsheet depicted in figure 4, where the cell ref-

erence gr2(mike, cs) is associated in the grid to square L2C4 (line 2, column 4), while gr2(mike, chemi-

stry) and gr2(mike, finalAvg) are associated respectively to squares L2C5 and L2C6. Then the rules

defining the contents of gr2(mike, finalAvg) (corresponding to the pseudo-code given in Step 2) are

encoded in square L2C6 by the following formula (using Excel syntax [14]):

= IF (ISNUM(L2C5);

(2× 14 + 2× 12 + L2C4 + L2C5)/6;

IF (L2C5 = ”nc”; (2× 14 + 2× 12 + 2× L2C4)/6; ”undefined”))

where the function ISNUM(X) evaluates to true if X turns to be a number.

4 Conclusion

We presented a technique to generate automatically a spreadsheet from its specification written in a

database query language. The key intuition of the generation process is that a spreadsheet is a query

that has not been fully evaluated because some data were missing. The computation that can not be

performed is delayed and encoded as formulae in the spreadsheet. The implementation of the technique

in SWI-Prolog [19] to produce Excel [14] spreadsheets from their query-based definitions shows that

the technique is effective. This prototype has been used to generate more complex spreadsheets than

the one used as a running example in this paper and in particular it handles textual constraints to

specify the ordering of the rows and columns in the grid. Interesting extensions to this work concern

the use of a single query language to specify data manipulation within database management systems,

data mining tools and spreadsheet programs (see [3] for a preliminary study).

References

[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of databases. Addison-Wesley, Reading, MA,

1995.

[2] J.-F. Boulicaut, P. Marcel, F. Pinet, and C. Rigotti. Spreadsheet generation from rule-based

specifications. In P. Fraternali, U. Geske, C. Ruiz, and D. Seipel, editors, Proceedings of the 6th

International Workshop on Deductive Database and Logic Programming (DDLP’98), volume 22

of GMD-Studien, pages 59–70, Manchester, UK, June 1998.

[3] J-F. Boulicaut, P. Marcel, and C. Rigotti. Knowledge discovery in multidimensional data. In

Proceedings of the ACM Second International Workshop on Data Warehousing and On-Line

Analytical Processing DOLAP’99, pages 87 – 93, Kansas City, Missouri, USA, November 1999.

ACM Press.

[4] P. Brown and P. Gould. An experimental study of people creating spreadsheets. ACM Trans. on

Information Systems, 5(3):258–272, July 1987.

9



[5] W. Chen, M. Kifer, and D.S. Warren. HiLog: a foundation for higher-order logic programming.

Journal of Logic Programming, 15(3):187–230, February 1993.

[6] E. F. Codd, S. B. Codd, and C. T. Salley. Providing OLAP (On-Line Analytical Processing) to

user-analysts: An IT mandate. White paper - http://www.hyperion.com/whitepapers.cfm, 1993.

[7] P. B. Cragg and M. King. Spreadsheet modeling abuse: an opportunity for OR? Journal of the

Operational Research Society, 44(8):743–752, August 1993.

[8] M. S. Hacid, P. Marcel, and C. Rigotti. A rule-based CQL for 2-dimensional tables. In Proceedings

of the 2nd International Workshop on Constraint Database Systems (CDB’97), volume 1191 of

LNCS, pages 92–104, Delphi, Greece, Jan. 1997. Springer-Verlag.

[9] M. S. Hacid, P. Marcel, and C. Rigotti. A rule-based data manipulation language for OLAP

systems (short paper). In Proc. of the 5th International Conference on Deductive and Object-

oriented Databases DOOD’97, volume 1341 of LNCS, pages 417–418, Montreux, Switzerland,

December 1997. Springer-Verlag.

[10] J.-L. Hainaut. Bases de données et modèles de calcul : outils et méthodes pour l’utilisateur.

InterEditions, Paris, 1994.

[11] T. Isakowitz, S. Schocken, and H. C. Lucas Jr. Towards a logical/physical theory of spreadsheet

modeling. ACM Trans. on Information Systems, 13(1):1–37, Jan. 1995.

[12] ISO/IEC JTC1/SC21 N5739. Database language SQL, 1991.

[13] P. Marcel. Modeling and querying multidimensional databases. Networking and Information

System journal, 2(5/6):515–548, 1999.

[14] Microsoft. EXCEL V5.0 user’s guide, 1993.

[15] R. R. Panko and R. P. Halverson. Spreadsheets on trial: a survey of research on spreadsheet

risks. In Proceedings of the Twenty-Ninth Hawa International Conference on System Sciences,

Maui, Hawai, January 1996.

[16] G. Gottlob S. Ceri and L. Tanca. What you always wanted to know about Datalog (and never

dared to ask). IEEE Transactions on Knowledge and Data Engineering, 1(1):146–166, March

1989.

[17] M. Stadelmann. A spreadsheet based on constraints. In Proceedings of the 6th ACM symposium

on User interface software and technology, pages 217–224, Atlanta, GA, USA, Nov. 1993.

[18] S. Tsur, J. D. Ullman, S. Abiteboul, C. Clifton, R. Motwani, S. Nestorov, and A. Rosenthal. Query

flocks: a generalization of association-rule mining. In Proceedings of the 1998 ACM SIGMOD

International Conference on Management of Data, Seattle, Washington, USA, June 2-4, 1998,

pages 1–12. ACM Press, 1998.

[19] J. Wielemaker. SWI-Prolog 2.9.6. Dept. of Social Science Informatics (SWI). University of

Amsterdam, Roeterstraat 15, 1018 WB Amsterdam, The Netherlands, 1997.

10


