
3

Closed Patterns Meet n-ary Relations

LOÏC CERF

INSA-Lyon

JÉRÉMY BESSON

Institute of Mathematics and Informatics

and

CÉLINE ROBARDET and JEAN-FRANÇOIS BOULICAUT

INSA-Lyon

Set pattern discovery from binary relations has been extensively studied during the last decade.
In particular, many complete and efficient algorithms for frequent closed set mining are now avail-
able. Generalizing such a task to n-ary relations (n ≥ 2) appears as a timely challenge. It may
be important for many applications, for example, when adding the time dimension to the popular
objects × features binary case. The generality of the task (no assumption being made on the relation
arity or on the size of its attribute domains) makes it computationally challenging. We introduce
an algorithm called DATA-PEELER. From an n-ary relation, it extracts all closed n-sets satisfying
given piecewise (anti) monotonic constraints. This new class of constraints generalizes both mono-
tonic and antimonotonic constraints. Considering the special case of ternary relations, DATA-PEELER

outperforms the state-of-the-art algorithms CUBEMINER and TRIAS by orders of magnitude. These
good performances must be granted to a new clever enumeration strategy allowing to efficiently
enforce the closeness property. The relevance of the extracted closed n-sets is assessed on real-life
3-and 4-ary relations. Beyond natural 3-or 4-ary relations, expanding a relation with an additional
attribute can help in enforcing rather abstract constraints such as the robustness with respect to
binarization. Furthermore, a collection of closed n-sets is shown to be an excellent starting point
to compute a tiling of the dataset.

Categories and Subject Descriptors: F.2.2 [Analysis of Algorithms and Problem Complexity]:
Nonnumerical Algorithms and Problems; H.2.8 [Database Management]: Database
Applications—Data mining

General Terms: Algorithms

Additional Key Words and Phrases: Closed patterns, constraint-based mining, constraint proper-
ties, n-ary relations, tiling

This work is partly funded by EU contract IST-FET IQ FP6-516169, INRA and ANR BINGO2
(MDCO 2007).
Authors’ addresses: L. Cerf, INSA-Lyon, LIRIS CNRS UMR5205, F 69621 Villeurbanne, France;
email: Loic.cerf@liris.cnrs.fr; J. Besson, Institute of Mathematics and Informatics, LT-08663
Vilnius, Lithuania; C. Robardet, J.-F. Boulicaut, INSA-Lyon, LIRIS CNRS UMR5205, F 69621
Villeurbanne, France.
Permission to make digital or hard copies of part or all of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2009 ACM 1556-4681/2009/03-ART3 $5.00
DOI 10.1145/1497577.1497580 http://doi.acm.org/10.1145/1497577.1497580

ACM Transactions on Knowledge Discovery from Data, Vol. 3, No. 1, Article 3, Publication date: March 2009.

3:2 • L. Cerf et al.

ACM Reference Format:

Cerf, L., Besson, J., Robardet, C., and Boulicaut, J. F. 2009. Closed patterns meet n-ary relations.
ACM Trans. Knowl. Discov. Data. 3, 1, Article 3 (March 2009), 36 pages. DOI = 10.1145/1497577.
1497580 http://doi.acm.org/10.1145/ 1497577.1497580

1. INTRODUCTION

Constraint-based mining has become a popular framework for supporting pat-
tern discovery tasks (see, e.g., Boulicaut and Jeudy [2005]). First, it enables to
provide more interesting patterns when the analyst can specify a priori rele-
vancy by means of constraints. Next, this has been identified as a key issue to
achieve the tractability of many data mining tasks: Useful constraints can be
deeply pushed into the extraction process such that it is possible to get com-
plete (every pattern satisfying the user-defined constraint is computed) though
efficient algorithms.

In this article, we focus on patterns that hold in 0/1 datasets. In a popular
setting, such datasets generally correspond to relations between two attributes
only, for example, transactions × items or objects × features. Frequent itemset
mining or formal concept mining are typical data mining tasks in such bi-
nary relations. Frequent itemset mining has been introduced by Agrawal et al.
[1993] and Agrawal and Srikant [1994]. To tackle difficult cases, one major
breakthrough has been the study of (frequent) closed itemset mining (see, e.g.,
Pasquier et al. [1999], Pei et al. [2000], Wang et al. [2003], Zaki and Hsiao [2002],
Uno et al. [2005], Grahne and Zhu [2005], and Goethals and Zaki [2004] for an
experimental survey). Formal concepts (see, e.g., Stumme et al. [2002], Besson
et al. [2005], and Gély [2005]) are closed sets of items (or features) associated
to their supporting sets of transactions (or objects).

We address here the more general problem of closed pattern mining in n-ary
relations. Hereafter, such patterns are called closed n-sets. When n = 2, this
task turns out to be the classical formal concept mining in binary relations.
Mining n-ary relations with n > 2 is clearly useful across multiple application
domains. For example, in the context of sale data analysis, we can easily have
relations crossing items, customers, dates, and regions. We may want to extract
maximal associations between such attributes for business decision making.
Another typical (generic) application domain concerns the numerous situations
where object properties can be recorded as features for a collection of objects
over time. This typically provides ternary relations.

The main challenge of constraint-based closed n-set mining in n-ary relations
relies on the ability to push constraints during the extraction and to handle an
important amount of data. This is especially difficult when no assumption is
made on the arity of the relation and the attribute domain sizes. The pattern
enumeration strategy becomes even more important than for itemset or formal
concept extraction. Indeed, it is no longer possible to enumerate one attribute
domain (usually items) and compute the rest of the pattern thanks to a Galois
connection. A closed set in one attribute domain is related to one and only one
closed set of the other attribute domain. In n-ary relations, subsets of n − 1

ACM Transactions on Knowledge Discovery from Data, Vol. 3, No. 1, Article 3, Publication date: March 2009.

Closed Patterns Meet n-ary Relations • 3:3

attribute domains are needed to determine the subset of the remaining at-
tribute domain. Indeed, a n − 2-set does not define a unique closed n-set.

Furthermore, the enumeration strategy has a major impact on the class of
constraints that can be efficiently pushed. To achieve tractability, it is especially
crucial to efficiently enforce the closeness constraint. Algorithms TRIAS [Jaschke
et al. 2006] and CUBEMINER [Ji et al. 2006] have been recently proposed to
compute closed 3-sets in ternary relations. They have different enumeration
strategies. TRIAS basically relies on formal concept mining (i.e., closed 2-set
mining) from two different binary relations that are projections of the original
ternary relation. It works well if we assume that at least one attribute has
a small domain size. CUBEMINER uses a ternary enumeration that recursively
splits the dataset into smaller pieces. Unfortunately, several additional checks
must be performed to ensure the unicity of the extracted patterns.

This article presents an algorithm, called DATA-PEELER, which has been intro-
duced in Cerf et al. [2008]. The preliminary version focused on the theoretical
basis of the algorithm. We provide here many more details about the algorithm
itself, but also new and efficient optimizations. Moreover, we introduce here
several original applications of closed n-set mining like robustness assessment
with respect to binarization techniques or n-ary relation tiling. DATA-PEELER

is inspired by D-MINER [Besson et al. 2005], namely an algorithm which com-
putes complete collections of closed 2-sets satisfying minimal size and/or area
constraints in binary relations. DATA-PEELER extracts closed n-sets in n-ary re-
lations where n ≥ 2. It is based on an original enumeration process which
considers any attribute on a same basis. Thus, the order in which the elements
are selected is performed along the enumeration time (not a priori). Our algo-
rithm can efficiently exploit (i.e., “push” at extraction time) a broad class of con-
straints called piecewise (anti)-monotonic constraints. This class includes (but
is not restricted to) monotonic and antimonotonic constraints. For instance, it
can exploit the isolated constraint that enforces to compute only patterns con-
taining elements that are significantly different from the elements “outside” it.
Furthermore, DATA-PEELER enforces the closeness constraint in such a way that
there is no need to store previously computed patterns.

The rest of the article is organized as follows. In Section 2, we formalize
the mining task and discuss the type of constraints our algorithm handles. In
Section 3, we present the DATA-PEELER algorithm that extracts closed n-sets
under constraints. Implementation issues are discussed in Section 4. Section 5
studies space complexity. Experimental results are provided in Section 6. Sec-
tion 7 focus on an original use of closed n-set mining to ensure robustness with
respect to binarization. Section 8 details how to postprocess DATA-PEELER output
to solve the tiling problem on n-ary relations. Finally, related work is discussed
in Section 9, and Section 10 briefly concludes.

2. PROBLEM SETTING

Let A1, . . . , An be n categorical attributes and assume their domains are re-
spectively D1, . . . , Dn. Also R is an n-ary relation on these attributes, that
is, R ⊆ D1 × · · · × Dn. Moreover, n-sets are elements of 2D1 × · · · × 2Dn

. In

ACM Transactions on Knowledge Discovery from Data, Vol. 3, No. 1, Article 3, Publication date: March 2009.

3:4 • L. Cerf et al.

Fig. 1. Boolean representation of the relation RE ⊆ {α, β, γ } × {1, 2, 3, 4} × {A, B, C}.

this section, we provide the formal definitions of a closed n-set and of the
new class of piecewise (anti)-monotonic constraints. We use the � operator to
denote set cardinality. The so-called n-sets manipulated in this article are
essentially n-tuples of sets. To make the notations easier to read, a 3-set de-
noted 〈(α, γ), (1, 2), (A, B)〉 stands for the 3-tuple ({α, γ }, {1, 2}, {A, B}). Further-
more, given an n-set H = 〈X 1, . . . , X n〉, we will write that e ∈ H instead of
∃i = 1 . . . n such that e ∈ X i. In the same spirit, given e ∈ Di, H ∪ {e} (re-
spectively, H \{e}) will denote the n-set 〈X 1, . . . , X i ∪{e}, . . . , X n〉 (respectively,.
〈X 1, . . . , X i \ {e}, . . . , X n〉).

2.1 Closed n-Sets

Closed n-sets are a generalization of formal concepts to n-ary relations when
n > 2. Intuitively, an n-set H = 〈X 1, . . . , X n〉 such that ∀i = 1 . . . n, X i ⊆ Di is a
closed n-set iff: (a) All elements of each set X i are in relation with all the other
elements of the other sets in R, and (b) X i sets cannot be enlarged without
violating (a). Formally, H is a closed n-set iff it satisfies both the constraints
Cconnected and Cclosed.

Definition 2.1 (Cconnected). Pattern H satisfies Cconnected in R iff

∀u = (x1, . . . , xn) ∈ X 1 × · · · × X n, u ∈ R.

Definition 2.2 (Cclosed). Pattern H satisfies Cclosed in R iff

∀ j = 1 . . . n, ∀x j ∈ D j \X j , 〈X 1, . . . , X j ∪{x j }, . . . , X n〉 does not satisfy Cconnected.

In binary relations, a closed 2-set is a 2-set 〈X 1, X 2〉 satisfying Cconnected ∧
Cclosed. In the literature, it has often been called the formal concept since Wille
[1982]. It can also be defined as a closed itemset and its supporting set of
objects/transactions.

Example 2.3. Figure 1 provides a ternary relation RE ⊆ {α, β, γ } ×
{1, 2, 3, 4} × {A, B, C}. The relation could represent customers (1, 2, 3, and 4)
buying items (A, B, and C) along three months (α, β, and γ).

〈(α, γ), (1, 2), (A, B)〉 and 〈(α, β, γ), (4), (C)〉 are examples of closed 3-sets in
RE . 〈(α, γ), (1, 2), (A, B)〉 shows that the customers 1 and 2 buy both items A
and B during the months α and γ (Cconnected). Moreover, it is closed with respect
to every attribute (Cclosed).

—There is no other month during which these two customers buy these two
items.

—No other customer buys these two items during these two months.

ACM Transactions on Knowledge Discovery from Data, Vol. 3, No. 1, Article 3, Publication date: March 2009.

Closed Patterns Meet n-ary Relations • 3:5

—No other item is simultaneously bought by these two customers during these
two months.

The 3-set 〈(α, γ), (1, 2, 3), (A, B)〉 violates Cconnected because (α, 3, A) �∈ RE or
(γ , 3, B) �∈ RE . The 3-set 〈(β), (3, 4), (C)〉 satisfies Cconnected but not Cclosed because
(β, 1, C) ∈ RE or (γ , 3, C) ∈ RE ∧ (γ , 4, C) ∈ RE .

2.2 Piecewise (anti)-Monotonic Constraints

Enabling user-defined constraints is extremely useful to support subjective in-
terestingness and thus the relevancy of the extracted collections. It is also well
known that the active use of constraints (i.e., “pushing” them into the extraction
phase) is a key issue to achieve extraction tractability (i.e., working on large
domain sizes and/or a high density of related elements). For example, we may
ask for patterns with a minimal number of elements in some domains (i.e., a
counterpart of the classical minimal frequency constraint on itemsets) and/or
patterns covering at least a given number of elements of R (i.e., some kind of
minimal area or volume constraint). We now define the monotonicity property
of constraints in the context of n-set mining.

Definition 2.4 (Monotonicity). Let us consider a constraint C taking m
sets Pσ (1)

1 , . . . , Pσ (m)
m as arguments. Each argument Pσ (i)

i is a subset of the
attribute domain Dσ (i), σ being a mapping between the parameter indices
and the attribute domain ones (σ (i) = j iff P j

i ⊆ D j). Specifically, C is
monotonic on its ith argument iff ∀Pσ (1)

1 , . . . , Pσ (m)
m and ∀E, F such that E ⊆

F ⊆ Dσ (i), C(Pσ (1)
1 , . . . , E, . . . , Pσ (m)

m) ⇒ C(Pσ (1)
1 , . . . , F, . . . , Pσ (m)

m). Dually,
C is antimonotonic on its ith argument iff C(Pσ (1)

1 , . . . , F, . . . , Pσ (m)
m) ⇒

C(Pσ (1)
1 , . . . , E, . . . , Pσ (m)

m).

This definition is a straightforward extension of the monotonicity as defined
on binary relations. If a constraint is monotonic (respectively, antimonotonic)
on each of its arguments, then it is monotonic (respectively, antimonotonic).

It is, however, possible to define a new and broader class of constraints that
can be efficiently exploited. The so-called piecewise (anti)-monotonic constraints
include classical constraints, such as monotonic and antimonotonic. In the ex-
pression of a piecewise (anti)-monotonic constraint every argument can occur
several times. When this argument grows (with respect to the inclusion order),
some of its occurrences tend to satisfy the constraint, whereas the other ones
tend to violate it. Differentiating these two kinds of occurrences in two sepa-
rate arguments makes the constraint monotonic or antimonotonic on each of
them. In this way, they are easy to handle. We now provide a few examples of
piecewise (anti)-monotonic constraints and we explain how their expressions
can be transformed.

Assume that we want to extract the closed n-sets whose numbers of elements
in the two first attributes are approximately the same. This approximation is
tuned through a parameter ε ∈ R

+. The smaller ε is, the stronger the constraint

ACM Transactions on Knowledge Discovery from Data, Vol. 3, No. 1, Article 3, Publication date: March 2009.

3:6 • L. Cerf et al.

(ε = 0 forces �X 1 = �X 2). Here is how this constraint C1 can be formally defined.

C1(X 1, X 2) ≡ �X 1

�X 2
− �X 2

�X 1
≤ ε ∧ �X 2

�X 1
− �X 1

�X 2
≤ ε ∧ X 1 �= ∅ ∧ X 2 �= ∅

C1 is neither monotonic nor antimonotonic, nor succinct (the itemsets satisfying
a succinct constraint can be expressed by unions and differences of powersets
of sets of all items having a nonempty support satisfying arbitrary predicates)
[Ng et al. 1998]. It is not even convertible (i.e., monotonic or antimonotonic for a
specific enumeration order) [Pei et al. 2001], but it is piecewise (anti)-monotonic.
Intuitively, a constraint is piecewise (anti)-monotonic if it is either monotonic
or antimonotonic on every occurrence of its arguments. For example, C1 has two
arguments X 1 and X 2 and each of them occurs five times in the expression of
the constraint. When rewritten with different arguments for each of these ten
occurrences, the resulting new constraint PC1 is monotonic or antimonotonic on
each of its ten arguments. Here is this constraint.

PC1 (P1
1 , P1

2 , P1
3 , P1

4 , P1
5 , P2

6 , P2
7 , P2

8 , P2
9 , P2

10)

≡ �P1
1

�P2
6

− �P2
7

�P1
2

≤ ε ∧ �P2
8

�P1
3

− �P1
4

�P2
9

≤ ε ∧ P1
5 �= ∅ ∧ P2

10 �= ∅

It is easily shown that PC1 is monotonic on P1
3 , P1

4 , P1
5 , P2

6 , P2
7 , and P2

10 and
antimonotonic on P1

1 , P1
2 , P2

8 , and P2
9 .

Considering RE ⊆ {α, β, γ }× {1, 2, 3, 4}× {A, B, C}, the constraint specifying
that every n-set must contain a proportion of a given 2-set 〈(α, γ), (A, B)〉 greater
than 0.5 is another example of piecewise (anti)-monotonic constraint.

C2(X 1, X 3) ≡ �(X 1 ∩ {α, γ }) × �(X 3 ∩ {A, B})
�X 1 × �X 3

≥ 0.5

This constraint is rewritten as follows.

PC2 (P1
1 , P1

2 , P3
3 , P3

4) ≡ �(P1
1 ∩ {α, γ }) × �(P3

3 ∩ {A, B})
�P1

2 × �P3
4

≥ 0.5

Let us now define the class of piecewise (anti)-monotonic constraints.

Definition 2.5 (Piecewise (anti)-Monotonic Constraint). Let C be a con-
straint and PC its associated constraint, (i.e., a rewrite of C in which every
occurrence of a same variable is replaced by a separate variable). C is piece-
wise (anti)-monotonic if PC is either monotonic or antimonotonic on each of its
arguments.

Both Cconnected and Cclosed constraints are piecewise (anti)-monotonic. Some
other examples of piecewise (anti)-monotonic constraints are as follows.

—Cμ−size(X) ≡ �X ≥ μ (PC
μ−size (P) ≡ �P ≥ μ is monotonic on P) Cμ−size is the

classical (absolute) frequency constraint in one attribute (support attribute).
—Cν−volume(X 1, . . . , X m) ≡ ∏m

i=1 �X i ≥ ν (PC
ν−volume(P1, . . . , Pm) ≡ ∏m

i=1 �Pi ≥ ν

is monotonic on every Pi). Cν−volume endorses the role of restricting the collec-
tion of closed n-sets to the largest ones, thus finding significant associations.

ACM Transactions on Knowledge Discovery from Data, Vol. 3, No. 1, Article 3, Publication date: March 2009.

Closed Patterns Meet n-ary Relations • 3:7

—Cv−avg(X) ≡
∑

x∈X V al+(x)
�X ≥ v, where V al+ is a real-valued positive function.

(PCv−avg(P1, P2) ≡
∑

p∈P1
V al+(p)

�P2
≥ v is monotonic on P1 and antimonotonic

on P2). Cv−avg is extremely useful in many applications. For example, in a
transactional data set, it enables the extraction of all the closed n-sets such
that the average price of the items, in every closed n-set, is above a specified
threshold.

—Cdiffval(X) ≡ ∑
x∈X Val+1 (x)−∑

x∈X Val+2 (x) ≥ 0, where Val+1 and Val+2 are real-
valued positive functions (PCdiffval (P1, P2) ≡ ∑

p∈P1
Val+1 (p)−∑

p∈P2
Val+2 (p) ≥

0 is monotonic on P1 and anti-monotonic on P2). Cdiffval is a very useful con-
straint, too. For example, in a transactional dataset, if Val+1 gives the prices of
the items in a supermarket and Val+2 the prices of the same items in another
supermarket, this constraint makes the extraction focus on closed n-sets,
gathering items that are advantageously bought in the first supermarket.

Among the piecewise (anti)-monotonic constraints, let us discuss a promising
one pertaining to pattern relevancy. For a given closed n-set, Cclosed only forces
the elements outside the pattern not to be connected to the inside elements.
Some of them may be absent of the pattern because of one tuple absent from R.
In other terms, an element outside a closed n-set may be in relation with almost
all the elements of the closed n-set. In RE , 〈(α, β, γ), (1), (A, B)〉 is a closed 3-set.
However the element 2 is “almost” identical to element 1 on {α, β, γ } × {A, B}
(five tuples out of six are in RE). To avoid the extraction of such closed n-sets,
we propose a new constraint, namely Cδ−isolated. It is defined as follows.

Definition 2.6 (Cδ−isolated). An n-set H = 〈X 1, . . . , X n〉 is isolated with re-
spect to the attribute X i, denoted Cδ−isolated(H, i), iff ∀x ∈ Di \ X i, �(K \ R) >

δ × �K , where K = X 1 × · · · × {x} × . . . X n and δ ∈ [0, 1] is a user-defined
parameter.

In other words, if Cδ−isolated is satisfied, each x ∈ Di outside the closed n-
set must have a density (in terms of relative number of elements in R) on the
elements inside the closed n-set lower than 1 − δ. When δ = 1, every element of
Di that is outside the closed n-set must not be in relation with elements from
the (D j) j �=i contained in the closed n-set. When δ = 0, the C0−isolated constraint
is equivalent to the Cclosed constraint on the attribute Ai.

Example 2.7. In RE , let H = 〈(α, β), (1), (A, B, C)〉. Then C0.4−isolated(H, 2)
is true whereas C0.5−isolated(H, 2) is not because of elements 2 and 4.

To summarize, the data mining task considered in this article is the extrac-
tion of closed n-sets satisfying piecewise (anti)-monotonic constraints and, in
particular, the Cδ−isolated constraint.

3. THE DATA-PEELER ALGORITHM

3.1 Links with Closed-2-Set Mining

There does not seem to exist any “simple” bijection between n-ary relations and
binary ones helping for the extraction of closed n-sets. Such a transformation

ACM Transactions on Knowledge Discovery from Data, Vol. 3, No. 1, Article 3, Publication date: March 2009.

3:8 • L. Cerf et al.

would certainly lead to a combinatorial explosion of the number of elements.
Indeed, the attributes of the binary relation should combine several elements
of the different sets to encompass the n-ary relation. Though it is trivial to
transform an n-ary relation to n binary relations (give an id to every n-tuple
and relate this id with each of the n elements), this leads to a multirelational
data mining problem which is more general, therefore more difficult. Other
attempts to reuse the knowledge on closed 2-set extraction include Represen-
tative Slice Mining and TRIAS (see Section 9). DATA-PEELER outperforms both
of them by orders of magnitude. Even though DATA-PEELER does not rely on
closed-2-set extractions, its underlying principles are highly similar to that of
the D-MINER algorithm [Besson et al. 2005]. DATA-PEELER can even be considered
as a generalization of D-MINER to n-ary relations.

3.2 Enumeration Strategy

Materializing and traversing all possible n-sets is, in practice, not feasible.
Therefore, we look for a decomposition of the original search space into smaller
pieces such that each portion can be independently studied in main memory
and such that the union of the closed n-sets extracted from each portion is the
whole collection of closed n-sets.

DATA-PEELER uses a binary enumeration. Each node N in the enumeration
tree is a pair (U, V), where U and V are two n-sets. N represents all the
n-sets containing all the elements of U and a subset of the elements of V .
In other words, this is the search space of the n-sets 〈X 1, . . . , X n〉 such that
∀i = 1 . . . n, Ui ⊆ X i ⊆ Ui ∪ V i. The root node (〈∅, . . . , ∅〉, 〈D1, . . . , Dn〉) repre-
sents all possible n-sets. On the contrary, nodes such that ∀i = 1 . . . n, V i = ∅
represent a single n-set 〈U 1, . . . , U n〉. More generally, a node (U, V) represents
2

∑n
i=1 �V i

n-sets.

Example 3.1. The node E = (U, V) = (〈(α), ∅, (C)〉, 〈(γ), (1, 4), (A, B)〉) rep-
resents 25 (i.e., 32) 3-sets. For instance, it represents 〈(α), ∅, (C)〉, 〈(α), (4), (C)〉
and 〈(α, γ), (1, 4), (A, B, C)〉. In the contrary, it represents neither 〈(α), ∅, ∅〉 (C
must be in the 3-set) nor 〈(α, β, γ), (4), (C)〉 (β must not be in the 3-set).

At a node N = (U, V), DATA-PEELER recursively selects an element p from
V (see Section 4.2 for the selection criterion) and generates two new nodes
NL = (UL, VL) = (U ∪ {p}, V \ {p}) and NR = (UR , VR〉 = 〈U, V \ {p}). NL
(respectively, NR) represents the n-sets of N that contain (respectively, do not
contain) p.

Example 3.2. Considering the node E of Example 3.1, the selection of elem-
ent 4 ∈ V leads to the two nodes EL = (〈(α), (4), (C)〉, 〈(γ), (1), (A, B)〉) and
ER = (〈(α), ∅, (C)〉, 〈(γ), (1), (A, B)〉) (see Figure 2).

3.3 Checking Cconnected

It is possible to exploit constraint Cconnected to reduce the size of VL and, as a
consequence, to cut down the number of candidates to be considered. Indeed,
elements of V that cannot be added to UL without violating Cconnected can be
safely removed from VL.

ACM Transactions on Knowledge Discovery from Data, Vol. 3, No. 1, Article 3, Publication date: March 2009.

Closed Patterns Meet n-ary Relations • 3:9

Fig. 2. Enumeration of the element 4 ∈ D2 from node E of Example 3.2.

Fig. 3. Enumeration of the element 4 ∈ D2 from node E of Example 3.3.

More formally, let U = 〈U 1, . . . , U n〉, V = 〈V 1, . . . , V n〉 and N = (U, V). If
the selected element is p ∈ V j , then NL = (UL, VL) and NR = (UR , VR), defined
by the function Children(N , p) = (NL, NR), are such that:

—UL = 〈U 1, . . . , U j ∪ {p}, . . . , U n〉
—VL = 〈V ′1, . . . , V ′n〉 such that ∀i = 1 . . . n,

V ′i =
{

V j if i = j
V i \ {v ∈ V i|¬Cconnected(〈U 1, . . . , {p}, . . . , {v}, . . . , U n〉)} otherwise.

—UR = U
—VR = 〈V 1, . . . , V j \ {p}, . . . , V n〉.

UL now contains p, meaning that p belongs to all the n-sets represented by
NL. All the elements of the (V i)i �= j that, once added to UL, lead to unconnected
n-sets, are absent from VL. For NR , p is simply removed from VR . Hence, NR
represents no n-set containing p anymore. Thanks to this enumeration strategy,
every n-set satisfying Cconnected is browsed once and only once.

Example 3.3. In our running example, the elements A and B cannot be
added to UL = 〈(α), (4), (C)〉 to form a 3-set satisfying Cconnected. Indeed, (α, 4, A) �∈
R and (α, 4, B) �∈ R. As a consequence, Cconnected removes those two elements
from V 3: We finally obtain EL = (〈(α), (4), (C)〉, 〈(γ), (1), ∅〉) (see Figure 3).

Until now, we discussed how to extract all n-sets satisfying Cconnected in n-ary
relations. We now need to enforce the closeness property.

ACM Transactions on Knowledge Discovery from Data, Vol. 3, No. 1, Article 3, Publication date: March 2009.

3:10 • L. Cerf et al.

Fig. 4. Enumeration of the element 4 ∈ D2 from node E of Example 3.4.

3.4 Checking Cclosed

For better performance, the closeness constraint must be handled during the
enumeration process (safe pruning) rather than in a postprocessing phase.
Basically, if there exists an element p such that p ∈ D j \ (U j ∪ V j) and
Cconnected(〈U 1 ∪ V 1, . . . , {p}, . . . , U n ∪ V n〉) is satisfied, then every n-set repre-
sented by N can be extended with p to form a larger n-set satisfying Cconnected.
In other terms, it is not closed. Therefore, N can be safely pruned. Its closure
is computed and output in another part the enumeration tree (where p ∈ U).

Thanks to our enumeration strategy, we do not have to check every element
of (D1 × · · · × Dn) \ (U ∪ V). Elements that have been removed from V when
applying Cconnected cannot be used to form any n-set connected with the elements
of U . Indeed, this is the reason why they were removed from V . On the contrary,
the closeness with respect to an element p that was selected and removed
during the enumeration (Children(N , p) was called) must be checked on NR
and its descendants. A stack, denoted S, is in charge of storing such elements.
More formally, the closeness constraint is defined in the node space as follows:
Cclosed((U, V), S) ≡ ∀e ∈ S, ¬Cconnected(〈U 1 ∪ V 1, . . . , {e}, . . . , U n ∪ V n〉).

Example 3.4. Let us refer to the running example and assume that S = {β}
for E. Neither EL nor ER satisfies Cclosed (see Figure 4). Indeed 〈(β), (1, 4), (C)〉 is
connected and so is 〈(β), (1), (A, B, C)〉. Hence, among the 32 3-sets represented
by E, none is both connected and closed.

3.5 Piecewise (anti)-Monotonic Constraints

Let us now study how DATA-PEELER can take advantage of piecewise (anti)-
monotonic constraints, that is, how it can prune a node as early as possible with-
out missing any closed n-set. The idea is to define a new constraint ModC in the
node space such that, for all n-sets H represented by N , ¬C(H) ⇔ ¬ModC(N).
In other words, a node does not satisfy ModC iff none of the n-sets it represents
satisfies C.

Definition 3.5. Let C be a piecewise (anti)-monotonic constraint.

ModC((U, V)) ≡ PC
(
Pσ (1)

1 , . . . , Pσ (m)
m

)
ACM Transactions on Knowledge Discovery from Data, Vol. 3, No. 1, Article 3, Publication date: March 2009.

Closed Patterns Meet n-ary Relations • 3:11

Fig. 5. The DATA-PEELER algorithm.

where ∀ j = 1 . . . m, Pσ (j)
j = U σ (j) ∪ V σ (j) if C is monotonic on Pσ (j)

j or Pσ (j)
j =

U σ (j) if C is antimonotonic on Pj .

Example 3.6. As explained in Section 2.2, the piecewise (anti)-monotonic
constraint C2(X 1, X 3) ≡ �(X 1∩{α,γ })×�(X 3∩{A,B})

�X 1×�X 3 ≥ 0.5 is rewritten so that it is
monotonic or (anti)-monotonic on each of its arguments: PC2 (P1

1 , P1
2 , P3

3 , P3
4) ≡

�(P1
1 ∩{α,γ })×�(P3

3 ∩{A,B})
�P1

2 ×�P3
4

≥ 0.5. Here is how it is enforced at extraction time (see

Definition 3.5): ModC2 ((U, V)) ≡ PC2 (U
1 ∪ V 1, U 1, U 3 ∪ V 3, U 3). Thus, C2

does not prune the node of Example 3.1 since ModC2 ((〈(α), ∅, (C)〉, 〈(γ), (1, 4),
(A, B)〉)) ≡ �({α,γ }∩{α,γ })×�({A,B,C}∩{A,B})

�{α}×�{C} ≥ 0.5 is true.

4. IMPLEMENTATION

4.1 Algorithm

DATA-PEELER is a depth-first search algorithm. It takes two arguments: the
current node N and its related stack S. It starts with the root node N0 =
(〈∅, . . . , ∅〉, 〈D1, . . . , Dn〉) and an empty stack S = ∅. Its major steps are pres-
ented in Figure 5. First of all, the closeness property is checked (see
Section 3.4) as well as a user-defined piecewise (anti)-monotonic constraint
C (see Section 3.5). If both are satisfied and no element remains to be enu-
merated, the n-set U is output. Otherwise the enumeration process splits the
current node N into two new nodes NL and NR . To do so, an element p of
V is selected (see Section 4.2) and the function Children(N , p), described in
Section 3.2, is called. Finally, DATA-PEELER(NL, S) and DATA-PEELER(NR , S∪{p})
are recursively called. Notice that the stack S of NR now contains p. Indeed,
p has been removed from NR by the enumeration and not by the enforcement
of Cconnected.

4.2 Selecting the Element to be Enumerated

As explained in Section 3.2, an element p ∈ V must be selected. Its choice
determines the two nodes NL and NR deriving from the current one. The more
elements their V n-sets contain, the greater the remaining search space. VR

ACM Transactions on Knowledge Discovery from Data, Vol. 3, No. 1, Article 3, Publication date: March 2009.

3:12 • L. Cerf et al.

Fig. 6. Illustration of Example 4.1.

always contains �V − 1 elements. Hence, DATA-PEELER’s selection strategy for
p focuses on minimizing the number of elements VL contains, that is, it aims
at maximizing the number of elements Cconnected removes from the search space
when p is set present.

Whenever an element is enumerated, Cconnected removes some elements if:
(a) they are in V and (b) elements from the n − 1 other attributes are in U .
The following formula gives the maximum number of elements of R that are
browsed when enforcing Cconnected after an element from V d is enumerated.∑

k �=d

(
�V k ×

∏
l �∈{d ,k}

�Ul
)

DATA-PEELER enumerates an element on the attribute domain d maximizing this
formula. The chosen element in V d is the one presenting the lowest density inR.
Indeed, the less elements are connected in R, the more likely Cconnected removes
elements from V to build VL. The experiment in Section 6.2 empirically shows
that the proposed selection criterion outperforms other sensible criteria.

4.3 Optimizations

4.3.1 Moving Elements from V to U. Every n-set represented by a node
N = (U, V) is “included in” 〈U 1 ∪ V 1, . . . , U n ∪ V n〉. As a consequence, an
element of V i which, in R, is associated to all the elements of × j �=iU j ∪ V j is
necessarily an element of every closed n-set represented by N . It can be moved
to U .

This set of elements which can be moved to U is {v ∈ V |Cconnected(〈U 1 ∪
V 1, . . . , {v}, . . . , U n ∪ V n〉)}. It can be easily deduced from this expression that,
given N , finding the elements of this set means checking the presence of at most
(if all the elements of V can extend N)

∑n
k=1(�V k ×∏

l �=k �(Ul ∪V l)) tuples of R.
This cost may look high. However, recall that the enumeration subtree whose
root is N contains at worst (no pruning) 21+∑n

i=1 �V i − 1 nodes. Hence, removing
elements from V as soon as possible significantly reduces the number of nodes
to consider and, as a consequence, the running time of DATA-PEELER.

Example 4.1. Given the node (U, V) = (〈(α), ∅, ∅〉, 〈(γ), (1, 2, 3, 4), (A, B)〉)
and relation RE , the elements 1 and 2 from D2 are safely moved from V to
U (see Figure 6). Indeed, both 〈(α, γ), (1), (A, B)〉 and 〈(α, γ), (2), (A, B)〉 satisfy
Cconnected.

ACM Transactions on Knowledge Discovery from Data, Vol. 3, No. 1, Article 3, Publication date: March 2009.

Closed Patterns Meet n-ary Relations • 3:13

Fig. 7. Illustration of Example 4.2.

4.3.2 Removing Elements from S. Every n-set represented by a node
N = (U, V) “contains” 〈U 1, . . . , U n〉. As a consequence, the elements of S that
violate Cconnected when added to 〈U 1, . . . , U n〉 will not enlarge any n-set repre-
sented by N . They can be removed from S. Formally, this set of elements is
{s ∈ S|¬Cconnected(〈U 1, . . . , {s}, . . . , U n〉)}. These elements which are safely re-
moved from S are found in the following way: ∀s ∈ S, whenever an element p
is moved from V to U , if 〈U 1, . . . , {p}, . . . , {s}, . . . , U n〉 does not verify Cconnected,
s is removed from S. This process is similar to the enforcement of Cconnected (see
Section 3.3) but applied on S instead of V . This optimization speeds-up the
enforcement of Cclosed for all the nodes deriving from N . The gain is twofold.

—S containing less elements, the global cost pertaining to the enforcement of
Cclosed is lowered;

—when enforcing Cclosed, there is no need to browse {U 1×· · ·×{s}×· · ·×U n|s ∈ S}:
All these tuples are present otherwise some s ∈ S would have been removed
by this optimization.

Example 4.2. Let us return to Example 4.1 and assume that S = {β, C}.
When 2 is moved from V to U , the elements of S are browsed. β is kept
(〈(β), (2), ∅〉 does verify Cconnected), whereas C is removed (〈(α), (2), (C)〉 does not
verify Cconnected) (see Figure 7).

4.4 Example of Computation

Figure 8 depicts a part of the computation of DATA-PEELER on RE where every
closed 3-set satisfying C5−volume is to be extracted. The dashed leaf is a closed
3-set satisfying C5−volume. The dotted ones are pruned. The enumeration strategy
follows the rule enunciated in Section 4.2.

5. SPACE COMPLEXITY

In this section, the size (in bits) of an element id is denoted a and the size (in
bits) of a pointer is denoted b.

5.1 Storing the Dataset

Unlike for binary relation mining algorithms, it is not possible to store the
projection (usually called “tidset”) of the input dataset R on each element e of
D1 ∪ · · · ∪ Dn. The use of sophisticated data structures like FP-trees [Han et al.
2000] remains an open problem because of the multiple attributes to consider

ACM Transactions on Knowledge Discovery from Data, Vol. 3, No. 1, Article 3, Publication date: March 2009.

3:14 • L. Cerf et al.

Fig. 8. Part of the computation of DATA-PEELER on RE .

and the required ability to enumerate any of them all along the enumeration.
As a consequence, the whole dataset must be stored in main memory so that
Cconnected and Cclosed can be enforced.

Two classes of data structures were investigated, namely a bitset-based
structure and a list-based structure. In both cases, the dataset is stored in
a complete prefix tree of height n−1 corresponding to the n−1 first attributes.
The nodes at depth i = 0 . . . n − 2 always have �Di+1 children, one for every
element of Di+1. From depth 0 to n − 2, the edges binding a node to its chil-
dren are pointers. Each leaf stands for a prefix of size n − 1 of every element
of D1 × · · · × Dn−1. The difference between the two studied structures relies in
how the last attribute elements are stored.

5.1.1 The Bitset-Based Structure. In such a structure, every leaf of the
prefix tree points to a bitset representing the last attribute elements. A “0”
(respectively, “1”) in the bitset stands for the absence (respectively, the presence)
of the related element ofR. The presence of such an element is tested in constant
time. The space occupied by the dataset is.

b
n−1∑
i=0

i∏
j=1

�Di

︸ ︷︷ ︸
the depths from 0 to n−1

+
n∏

j=1

�D j

︸ ︷︷ ︸
the bitsets

5.1.2 List-Based Structure. Here, every leaf points to a list of Ids of ele-
ments of Dn. Each of them represents an element of R. The presence of such

ACM Transactions on Knowledge Discovery from Data, Vol. 3, No. 1, Article 3, Publication date: March 2009.

Closed Patterns Meet n-ary Relations • 3:15

an element is tested in O(log �Dn). Choosing Dn to be the smallest attribute
domain minimizes the access time. If d = �R∏n

i=1 �Di denotes the density of the
dataset, the space requirement is:

b
n−1∑
i=0

i∏
j=1

�D j

︸ ︷︷ ︸
the depths from 0 to n−1

+ a × d
n∏

j=1

�D j

︸ ︷︷ ︸
the lists

Compared to the bitset-based structure, a space gain occurs if and only if d < 1
a .

Taking a = 64 (size of an integer on modern hardware), the density of the
dataset must be under 1.56% for the list-based structure to present a space
advantage over the bitset-based structure. Thus, the bitset-based structure is
always better in data access time and, in most cases, in space requirements as
well. Therefore, this structure was chosen for our implementation.

Notice that other sparser structures were theoretically investigated. They
consist in using an incomplete prefix tree. Of course, the time access cost in-
creases (O(

∑n
i=1 log �Di) for a totally sparse tree). Furthermore, the space re-

quirement can be greater since we need to add an element id to each node.
Indeed, the child node addressed by a pointer cannot be identified from the
position of the child in the list of children (some are “missing”). It can be shown
that a space gain occurs only when, on average, a node at depth i has less than

b
a+b�Di+1 children. Unless the dataset is very sparse and/or nonhomogeneous,
even depth n− 2 does not satisfy such a property. This justifies the fact that we
focused on the list-based structure where only the deepest level is sparse.

5.2 Storing the Nodes of the Enumeration Tree

Both U andS can be statically stored. At every recursive call, one single element
is pushed in either U (when constructing NL) or S (when constructing NR) and
popped once this recursive call is completed.

Any element of V can be removed when Cconnected is enforced. As a result,
V cannot be statically stored. The construction of the enumeration tree being
depth-first, the worst case is bound to reaching the deepest node. At worst, the
depth of the enumeration tree is

∑n
i=1 �Di where each recursive call removes

only one element from V . In this case, the required space to store V is

a

∑n
j=1 �D j∑
i=1

i = a
2

n∑
j=1

�D j ×
(

n∑
j=1

�D j − 1

)
.

5.3 Space Complexity

Combining the results from Section 5.1 and Section 5.2, the space complexity
of DATA-PEELER is linear in the size of the input relation (

∏n
i=1 �Di). More

precisely it is:

—O((�D1 + �D2)2) if n = 2 (the space requirement for the V set predominates);
or

—O(
∏n

i=1 �Di) if n > 2 (the space requirement for the dataset predominates).

ACM Transactions on Knowledge Discovery from Data, Vol. 3, No. 1, Article 3, Publication date: March 2009.

3:16 • L. Cerf et al.

6. EXPERIMENTAL RESULTS

Every experiment described here has been performed on a GNU/Linux system
equipped with an AMD 2600 + processor and 512 Mo of RAM. DATA-PEELER is
implemented in C++ and compiled with GCC 4.1.2.

6.1 Presentation of the Datasets

6.1.1 Synthetic Datasets. To study the behavior of DATA-PEELER and to com-
pare it to competitors in different situations, we have used the IBM Quest data
generator [Agrawal and Srikant 1994]. Various synthetic basket datasets with
predefined attributes and densities have been generated. Three attributes are
considered: the customers, the bought items, and the time periods (in months).

To test the scalability of DATA-PEELER with respect to the arity of the relation
(the size of the input data remaining constant), three kinds of uniformly random
datasets are generated.

(1) 16 attributes with 2-valued domains (Boolean attributes);
(2) 8 attributes with 4-valued domains; and
(3) 4 attributes with 16-valued domains.

In such a relation, every tuple has a given probability to be in R. When
generating a large dataset, its density d = �R∏n

i=1 �Di is close to this probability.
Datasets built in this way usually do not contain any large closed n-sets: The
extraction problem is known to be hard.

6.1.2 Real Datasets. To assess the added-value of DATA-PEELER both in
terms of the relevancy of the extracted closed n-sets and its performance with
respect to competitors, we have been working on logs from the DistroWatch.com
Web site. This popular Web site gathers comprehensive information about
GNU/Linux, BSD, and Solaris distributions. Every distribution being described
on a separate page, a visitor loading such a page is considered “interested” in
the distribution. Every IP address contacting the server is analyzed so that the
country the connection comes from is logged as well. Finally, timestamps en-
able to study the evolution of the interest granted to the different distributions
along time. The whole dataset gathers 36 months, 243 countries, and 538 dis-
tributions. Two different datasets have been derived from it. In both cases, data
has been normalized so that every country and every time period has the same
importance. They have been transformed in 0/1 data in the following way: For
each distribution, we have kept the elements of R containing this distribution
and such that its normalized interest exceeds a threshold equal to one-quarter
of the maximal normalized interest for this distribution in R.

6.2 Impact of the Enumeration Strategy

Let us first empirically compare the enumeration strategy presented in
Section 4.2 with two other sensible strategies.

(1) For each node (U, V), the enumerated attribute j is chosen such that it
has the smallest nonempty �V j . Among all the elements of V j , the element
with the smallest density in R is selected.

ACM Transactions on Knowledge Discovery from Data, Vol. 3, No. 1, Article 3, Publication date: March 2009.

Closed Patterns Meet n-ary Relations • 3:17

 0.01

 0.1

 1

 10

 100

 1000

 0 5 10 15 20 25 30 35

ti
m

e
 (

s
)

number of months

Basket Analysis Problem Along Time

Enumeration 1
Data–Peeler enumeration

Enumeration 2

Fig. 9. Comparing DATA-PEELER enumeration with two other sensible strategies.

(2) For each node (U, V), the enumerated element pj ∈ ∪n
i=1V i is chosen such

that (D1 × D2 × . . . × {pj } × . . . × Dn) \ R has the largest cardinality.

The first strategy enumerates every element of the n − 2 attributes with the
smallest cardinalities. Then, when enumerating elements from the two remain-
ing attributes, Cconnected may finally succeed in reducing the V set. Indeed, n−1
attributes need to be set (Ui �= ∅) for Cconnected to, hopefully, remove elements
from the last attribute.

The second strategy globally sorts the elements of the attributes all together.
If every attribute domain has the same cardinality, this order follows a growing
density. Otherwise, an element pj from a small attribute domain size is usually
preferred, since D1 × . . . × {pj } × . . . × Dn is larger.

Tests have been performed on the datasets generated by the QUEST data
generator. Whereas the chosen enumeration strategy of DATA-PEELER scales very
well, the other strategies force us to choose small size attributes to be able to
plot results: 36 customers buying on average 6 items out of 18 (density of about
33%) per month. The number of months varies from 6 to 36 and we enforce the
constraint that every closed 3-set must contain at least 3 customers, 2 items,
and 3 months.

Results are represented in Figure 9. The enumeration strategy of DATA-
PEELER largely outperforms the two other strategies. The performances of enu-
meration 1 mainly depend on the size of the smallest attribute domain (above
18 months, the smallest attribute domain becomes the set of items that is con-
stant). This behavior, as mentioned earlier, is due to the complete enumeration
of the smallest domain. The performance of enumeration 2 emphasizes the
need, when selecting the element to be enumerated, to take into account the
characteristics of the current node.

ACM Transactions on Knowledge Discovery from Data, Vol. 3, No. 1, Article 3, Publication date: March 2009.

3:18 • L. Cerf et al.

 0.1

 1

 10

 100

 1000

 10000

 100000

 0 10 20 30 40 50 60

ti
m

e
 (

s
)

number of months

Basket Analysis Problem Along Time

CubeMiner
Data–Peeler

Trias

Fig. 10. Comparison with respect to CUBEMINER and TRIAS.

6.3 Comparisons with Competitors

DATA-PEELER is compared to both CUBEMINER [Ji et al. 2006] and TRIAS [Jaschke
et al. 2006] on 3-ary relations. We have been using the implementations pro-
vided by their respective authors.

6.3.1 Mining Synthetic Datasets. Comparisons with CUBEMINER and TRIAS

are achieved on synthetic QUEST-generated datasets. 144 customers buying on
average 6 items out of 72 (density of about 8.3%) per month have been gener-
ated. We make the number of months vary from 6 to 66 and we constrain every
closed 3-set to involve at least 2 customers, 2 items, and 2 months.

The results are represented in Figure 10. DATA-PEELER outperforms its com-
petitors by several orders of magnitude. The growing number of months (the
smallest domain) significantly alters the performance of TRIAS, whereas it has
less effect on CUBEMINER.

For example, considering data along 48 months, to extract all the 5801 closed
n-sets, CUBEMINER takes 1 hour and 50 minutes, TRIAS 3 hours and 14 minutes,
whereas DATA-PEELER only needs 2.5 seconds. Unlike its competitors, even with
600 months, DATA-PEELER is still able to extract all closed n-sets in a reasonable
time, namely, 1 minute and 21 seconds for 431892 closed n-sets.

6.3.2 Empirical Evaluation on a Real Dataset. A ternary relation has been
derived from the logs of DistroWatch.com. It indicates, month after month,
whether visitors from a country look interested in a distribution. All data
(36 months, 243 countries, and 538 distributions) have been kept. Compared
to the synthetic datasets considered earlier, this one is relatively large. It is
also much sparser since its density is 0.55%. We constrain every closed 3-set

ACM Transactions on Knowledge Discovery from Data, Vol. 3, No. 1, Article 3, Publication date: March 2009.

Closed Patterns Meet n-ary Relations • 3:19

 0.1

 1

 10

 100

 1000

 10000

 100000

 0 5 10 15 20 25 30 35

ti
m

e
 (

s
)

minimal number of months

DistroWatch.com Log Analysis

CubeMiner
Data–Peeler

Trias

Fig. 11. Comparison with respect to CUBEMINER and TRIAS (real data).

to involve at least 2 countries and 2 distributions and the minimal number of
months a closed 3-set must contain varies from 0 to 36.

Results are represented in Figure 11. DATA-PEELER outperforms its competi-
tors by several orders of magnitude. Thanks to the small number of months
in the dataset, TRIAS succeeds in extracting the closed 3-sets even without any
constraint on the time attribute. CUBEMINER suffers a lot from the global size
of the dataset. It is unable to perform the extraction under a size constraint of
33/36 months.

With a requirement of at least 6 months out of 36, DATA-PEELER needs 2.6
seconds and TRIAS 69.3 seconds to extract all the 87 patterns. Without any
minimal size constraint on the number of months, 10658 closed n-sets are com-
puted in 4.4 seconds by DATA-PEELER and in 1531 seconds by TRIAS. In both cases,
CUBEMINER cannot perform the task.

6.4 Scalability with Respect to the Arity

Here we study whether the performances of DATA-PEELER are affected by the
arity of the relation (versus only the size of the input data). The three kinds
of uniformly random datasets (presented in Section 6.1.1) were generated with
densities varying between 0 and 0.5 (given a density, the size of the input data
is the same for all three datasets). The extracted closed n-sets are constrained
to contain at least 4 tuples (this constraint depends neither on the arity of the
relation nor on the size of the attribute domains). The results are plotted in
Figure 12. When the datasets are sparse (e.g., a 0.05 density), a high arity has
a negative impact on the performance of DATA-PEELER. With greater densities
the extraction times on the three datasets, are of the same order of magnitude.

ACM Transactions on Knowledge Discovery from Data, Vol. 3, No. 1, Article 3, Publication date: March 2009.

3:20 • L. Cerf et al.

 0

 10

 20

 30

 40

 50

 60

 0 0.1 0.2 0.3 0.4 0.5

ti
m

e
 i
n
 s

density

Uniformly Random Data Sets

Data set 1 (n = 16, |D| = 2)
Data set 2 (n = 8, |D| = 4)
Data set 3 (n = 4, |D| = 16)

Fig. 12. Effect of the arity on the extraction times.

6.5 A Qualitative Feedback

6.5.1 Data and Problem Setting. An interesting 4-ary relation has been
derived from the logs of DistroWatch.com. It takes in consideration visitors
(identified by their IP addresses) who have loaded at least two different dis-
tribution pages the same day. It is assumed that this is a sign of a common
interest in the visited distributions. The less relevant countries and distribu-
tions have been removed. The days have been aggregated in semesters (the
release period of many distributions). In the end, we have a 4-ary relation
RDW (D1, D2, S, C) indicating that people from country C (among 39) show a
common interest in distributions D1 and D2 (among 323) during the semester
S (among 6). This relation covers 1.7% of the possible associations between
attributes. We aim at extracting all the maximal sets of distributions that
are simultaneously interesting for people from a maximal set countries dur-
ing a maximal set of semesters. To obtain them, we need to extract the closed
4-sets 〈X 1, X 2, X 3, X 4〉 ∈ 2D1 × 2D2 × 2S × 2C of RDW such that X 1 = X 2. This
constraint is antimonotonic. However, handling it by a modification of the enu-
meration strategy is much more efficient: Whenever a distribution is chosen to
be enumerated (either moved from V to U or from V to S), the same distribu-
tion in the other domain is moved in the same manner. In the following, all the
extracted closed n-sets will satisfy this constraint.

6.5.2 Minimal Size and Volume Constraints. DATA-PEELER extracts every
closed 4-set from the dataset in 229 seconds. Since it is impossible to inspect all
the 602290 closed 4-sets, minimal sizes are enforced on every set: We constrain
every closed 4-set to involve at least 2 semesters, 2 countries, and 3 distri-
butions. After 20 seconds, DATA-PEELER provides 17196 closed 4-sets. Again, it
prevents a systematic interpretation of each of them.

ACM Transactions on Knowledge Discovery from Data, Vol. 3, No. 1, Article 3, Publication date: March 2009.

Closed Patterns Meet n-ary Relations • 3:21

Therefore, we enforce a volume constraint to keep only the largest patterns.
Consider the new constraint Cv-weighted volume ≡ ∑n

d=1(�X d)α(d) ≥ v where α(d) =
n

∑n
i=1 �X i

�X d . It is a generalization of a minimal volume constraint where every
attribute is weighted with respect to its cardinality. The function α is such
that elements from an attribute domain that is twice as small will “count”
twice more in the weighted volume. Cv-Weighted Volume is monotonic. It reduces the
computation to 14 seconds and the number of extracted closed 4-sets to 352.

Given such a collection of 352 patterns, it is possible to manually inspect
them and assess their relevancy.

—94 closed 4-sets have on the distribution domain a subset of {Fedora,
FreeBSD, Debian, Ubuntu, Gentoo, MEPIS, Slackware, Yellow Dog,
Mandriva, openSUSE}. Considering all of them, every semester is mentioned.
All these distributions are mainstream general-purpose distributions. These
closed 4-sets involve many countries all over the world. However the United
Kingdom is showcased by being present in all these closed 4-sets but one.

—64 closed 4-sets have on the distribution domain a subset of {Astaro, Clark-
Connect, IPCop, m0n0wall, Devil, SmoothWall, CensorNet}. Every semester
is involved. These seven distributions are meant to serve a common interest:
They are all specifically designed to act as a firewall. These closed 4-sets in-
volve countries from every continent. Australia (closely followed by Belgium)
is the most present country.

—80 closed 4-sets have on the distribution domain a subset of {dyne:bolic,
ArtistX, AGNULA, MoviX, GeeXboX}. Every semester is involved. These five
distributions are meant to serve a common interest: They are all specifically
designed to manipulate movies and music. These 4-sets mainly contain oc-
cidental countries but India is very present too. Switzerland belongs to all
these 4-sets. GNU/Linux is obviously a popular choice among Swiss artists.

—83 closed 4-sets have on the distribution domain a subset of {dyne:bolic,
ArtistX, AGNULA, MoviX, GeeXboX} ∪ {Ubuntu, Damn Small, MEPIS,
KNOPPIX, PCLinuxOS, Xandros}. This could be seen as a “collision” between
two separate interests. Nevertheless, the distributions from the second set
being primarily designed for desktop use, they are also suited to play movies
and music. Furthermore, every distribution from these two sets uses the APT
package management system (if any).

The few remaining closed 4-sets are interesting, too. Among the distributions
that appear once in the returned closed 4-sets, Gentoox and GentooTH form
with Gentoo a closed 4-set running along the last four semesters (GentooTH
did not exist before) in 11 countries. Their common point is obvious from their
names: they are all based on Gentoo.

In the same way, Knopperdisk and Feather are mentioned in one single closed
4-set where they are associated with Damn Small along the last five semesters
(Knopperdisk did not exist before). These distributions have a strong common
point: All of them are KNOPPIX light derivatives aimed at being installed on
a USB pen drive.

ACM Transactions on Knowledge Discovery from Data, Vol. 3, No. 1, Article 3, Publication date: March 2009.

3:22 • L. Cerf et al.

 0

 50000

 100000

 150000

 200000

 250000

 0 0.2 0.4 0.6 0.8 1
 0

 10

 20

 30

 40

 50

n
b

 o
f

n
o

d
e

s
 i
n

 t
h

e
 e

n
u

m
e

ra
ti
o

n
 t

re
e

ti
m

e
 i
n

 s

delta

DistroWatch.com Logs Analysis

Size of the enumeration tree
Running time

Fig. 13. Effect of Cδ−isolated on the size of the enumeration tree and the extraction times.

6.5.3 δ-Isolated Constraint. Instead of searching for large closed patterns,
we now focus on extracting closed 4-sets that are isolated in the country domain
by enforcing the Cδ−isolated constraint.

We first set δ = 0.75 on the country attribute. Keeping the size constraints
from the previous section (3 distributions, 2 countries, and 2 semesters), DATA-
PEELER returns one single closed 4-set. It involves, during two semesters, the
distributions B2D, Linpus, and PUD for Taiwan and Hong Kong. These three
distributions are Taiwanese and insist on the direct support of traditional Chi-
nese. Traditional Chinese characters are almost exclusively used in Taiwan,
Hong Kong, and Macao (which was not kept among the 39 countries in the
dataset). Indeed, the impact of this particularity is revealed thanks to the
C0.75−isolated constraint.

When lowering δ to 0.7, DATA-PEELER returns two additional closed 4-sets.
Both of them refer to Russia and Ukraine during 2006 and involve ALT, ASP,
and one mainstream distribution (either Ubuntu or Mandriva). Both ALT and
ASP are Russian distributions. Again, the particularity of the Russian alphabet
as the default character encoding is captured thanks to the Cδ−isolated constraint.

It could be expected that the Cδ−isolated constraint dramatically reduces the
extraction times, since the explored search space (i.e., the traversed enumera-
tion tree) is smaller. However, to verify this constraint, DATA-PEELER needs, at
every node, to browse the parts of the relations related to every element outside
U ∪ V . More precisely, it checks whether the proportion of “0” values in the pro-
jection of U ∪ V on every element outside U ∪ V exceeds δ. This additional cost
almost compensates for the gain granted by the reduction of the search space.
Figure 13 depicts both the size of the enumeration tree and the extraction times
when δ (on the country attribute) varies.

ACM Transactions on Knowledge Discovery from Data, Vol. 3, No. 1, Article 3, Publication date: March 2009.

Closed Patterns Meet n-ary Relations • 3:23

7. ROBUSTNESS WITH RESPECT TO BINARIZATION

Many relations are built from binarized numerical datasets. This is the case
of our ternary relation based on DistroWatch.com’s logs (Section 6.1.2): Every
tuple binding a month, a country, and a distribution is numerically valued
by how many times the Web page related to the distribution was downloaded
by visitors from the country during the month. To decide which tuples are
eventually elements of R, several binarization methods exist and/or, for a given
method, various parameter settings are possible.

Gene expression data analysis is one of the promising application domains
that has motivated the design of closed pattern mining algorithms (see, e.g.,
Besson et al. [2005], Pan et al. [2003], Jiang et al. [2004], and Zhao and Zaki
[2005]). In this typical setting, the gene expression value is a number that has to
be transformed into truth values for Boolean properties (e.g., a given gene is in-
hibited or not in a given experiment). Even though various methods have been
proposed to capture relevant Boolean gene expression [Pensa and Boulicaut
2005], we do not know what is the best method or, using a method, which
parameter setting is correct for capturing relevant patterns. Since various set-
tings give rise to different datasets and thus different collections of patterns, it
makes sense to study binarization assessment by means of the expansion of the
relation with one more attribute that encodes the different values for different
binarization procedures.

7.1 Examples of Binarization Methods

Many different binarization methods exist. Taking for example the binarization
of DistroWatch.com’s logs, a few of them are presented here.

7.1.1 Per-Distribution Binarization. In Section 6.1.2, the DistroWatch.
com’s logs are first normalized: For any pair of month and country, a coefficient
is applied such that the sum of the values along the distributions is constant.
Then, for each distribution, a tuple is kept if its normalized value reaches at
least adistribution = 1/4 of the greatest normalized value for this distribution.
Hence, whatever the distribution, some tuples involving it are kept in the re-
lation. They correspond to the months and countries (simultaneously) where
this distribution has been granted the most attention. With this binarization
method, the popularity of the distribution does not play any role.

7.1.2 Global Binarization. Another binarization method starts with the
same normalization, but then consists in keeping the tuples having a normal-
ized value greater than bdistribution = 1/16 of the maximal one in the whole
dataset. In this way, the most popular distributions will be well represented in
R, whereas obscure ones may be totally absent. With this binarization method,
the popularity of a distribution plays an essential role.

7.1.3 Focusing on Another Attribute. In these two binarization methods,
the attributes “months” and “countries” play the same role, whereas the at-
tribute “distributions” is particular. If the purpose of the mining task focuses
on the adoption of Free operating systems along time (respectively space), the

ACM Transactions on Knowledge Discovery from Data, Vol. 3, No. 1, Article 3, Publication date: March 2009.

3:24 • L. Cerf et al.

Table I. Binarization Parameters

Attributes aattribute (per-value coeff.) battribute (global coeff.)

“Months” 3/4 1/2
“Countries” 1/4 1/16
“Distributions” 1/4 1/16

same two binarization methods can be used with months (respectively, coun-
tries) being the particular attribute. In this way, we have six sensible binariza-
tion methods providing six different relations to mine. Obviously, many others
exist.

7.2 Binarization as an Additional Attribute

If the pattern extraction aims at picking the most relevant information in a
dataset where no specific question is to be answered, the binarization can be
considered as a bias. Indeed, as illustrated in the previous paragraphs, differ-
ent binarization methods provide different perspectives on the data. Focusing
on one perspective may hide relevant patterns which would be present with
many others. In the opposite, direction a particular binarization may bring out
some patterns which would not appear in any other. The most interesting pat-
terns are (at least partially) present in several relations obtained with various
binarization methods.

Given a numerical n-ary relation, gathering different binarizations as the
values of a new attribute provides an (n + 1)-ary relation: Every tuple is
tagged with the binarization methods selecting it. Extracting closed (n+1)-sets,
whose number of values in the binarization attribute exceeds a given size, pro-
vides patterns showing a robustness to the binarization method. Beyond “real”
n-ary relations, this original approach emphasizes how useful multidimen-
sional patterns are.

7.3 Experimental Results

Experiments were made on the DistroWatch.com’s logs binarized with the six
different methods mentioned in Section 7.1. The coefficients aattribute and battribute
must be wisely chosen. Indeed, if a binarization is included in another one, it
is a simple restriction rather than a real different perspective on the data. As
a consequence, given an attribute Di, we must have aDi > bDi . Furthermore,
when an attribute is rather homogeneous with respect to the others, the applied
coefficients must be larger (in our case, the number of connections along time
does not vary as much as along any other attribute). The chosen coefficients
are listed in Table I. The obtained 4-ary relation contains 132528 tuples out of
25681968 possible (d = 0.5%).

We made DATA-PEELER extract the closed 4-sets present in it. They are only
constrained to run along a minimal number of binarizations varying from 3
(presence in at least half of the binarizations) to 6 (presence in every binariza-
tion). Both the extraction times and the number of extracted 4-sets are listed
in Table II.

ACM Transactions on Knowledge Discovery from Data, Vol. 3, No. 1, Article 3, Publication date: March 2009.

Closed Patterns Meet n-ary Relations • 3:25

Table II. Extracting Robust Patterns in Distrowatch.com’s Logs

Minimal nb of binarizations Nb of closed 4-sets Time (in s)

3 3580 18.93
4 1297 15.82
5 229 11.62
6 2 8.58

8. TILING AN n-ARY RELATION R

8.1 Problem Setting

Usually, a relation is defined as a set of tuples. For instance, in Section 2, RE
is expressed in this way. Storing and retrieving a relation by listing all of its
tuples one by one is both time and space consuming. Hence, minimizing the
expression of an arbitrary n-ary relation R is an interesting problem. Since
a collection of tuples is not a satisfactory solution, we may look for relevant
collections of patterns that, in this context, are generically called tiles. The
tiling task consists in finding a collection of (possibly overlapping) tiles that is
as compact as possible but still entirely expresses R(i.e., the union of the tuples
in all tiles equals R).

Choosing the tiles to be closed n-sets looks like a clever idea. Indeed, a closed
n-set can be seen as a syntactical summary of a part of R, since it is shorter to
write a closed n-set than listing all the tuples it covers. For example, without any
loss of information, we can write that RE contains 〈(β, γ), (1, 2, 4), (A)〉 instead
of listing all the tuples this closed 3-set covers.

(β, 1, A), (β, 2, A), (β, 4, A), (γ , 1, A), (γ , 2, A), (γ , 4, A)

A collection of a few, well-chosen, closed 3-sets shortly expresses the whole
relation RE .

〈(α, γ), (1, 2), (A, B)〉
〈(β, γ), (3, 4), (C)〉

〈(α, β), (1), (A, B, C)〉
〈(γ), (1, 2, 4), (A, B)〉
〈(β), (1, 2, 4), (A, C)〉
〈(α, β, γ), (4), (C)〉
〈(α), (1, 2, 3), (B)〉

By definition, closed n-sets satisfy both Cconnected and Cclosed. However, for the
sake of minimizing the expression of R, constraining the tiles to be closed does
not make sense. Indeed, in some situations, when two (or more) closed n-sets
are overlapping, one of them can be “cropped” so that the relation is expressed
in a shorter way. For example, in the preceding collection, 〈(β), (1, 2, 4), (A, C)〉
can be “cropped” in 〈(β), (2, 4), (A, C)〉 if 〈(α, β), (1), (A, B, C)〉 is kept (unaltered)
in the collection. Indeed, this closed 3-set already covers {β} × {1} × {A, C}.

Hence, the tiles are advantageously chosen among the n-sets rather than the
closed n-sets. The n-set domain is a superset of the closed n-sets domain, where
Cconnected still needs to be checked but where Cclosed does not necessarily hold.

ACM Transactions on Knowledge Discovery from Data, Vol. 3, No. 1, Article 3, Publication date: March 2009.

3:26 • L. Cerf et al.

With tiles from this larger pattern domain, the previous tiling of RE can be
improved into the following one.

〈(α, γ), (1, 2), (A, B)〉
〈(β, γ), (3, 4), (C)〉

〈(α, β), (1), (A, B, C)〉
〈(γ), (1, 2, 4), (A, B)〉

〈(β), (2, 4), (A)〉
〈(α), (4), (C)〉
〈(α), (3), (B)〉

Interestingly, the attributes (Ai)i=1...n can be seen as variables of a multivalued
logic function whose truth table is given by R. Notice that Boolean functions
are a specialization of this framework (∀i = 1 . . . n, �Di = 2). In this perspective,
tiling R is equivalent to simplifying the related multivalued logic function.

For example, the tiling of RE written before provides this simplified expres-
sion of the related multivalued logic function.

(A1 = α ∨ A1 = γ) ∧ (A2 = 1 ∨ A2 = 2) ∧ (A3 = A ∨ A3 = B)
∨ (A1 = β ∨ A1 = γ) ∧ (A2 = 3 ∨ A2 = 4) ∧ (A3 = C)
∨ (A1 = α ∨ A1 = β) ∧ (A2 = 1) ∧ (A3 = A ∨ A3 = B ∨ A3 = C)
∨ (A1 = γ) ∧ (A2 = 1 ∨ A2 = 2 ∨ A2 = 4) ∧ (A3 = A ∨ A3 = B)
∨ (A1 = β) ∧ (A2 = 2 ∨ A2 = 4) ∧ (A3 = A)
∨ (A1 = α) ∧ (A2 = 4) ∧ (A3 = C)
∨ (A1 = α) ∧ (A2 = 3) ∧ (A3 = B)

Given a tiling, its quality can be measured with the number of logic operators
(∨ and ∧) in the simplified expression of the related multivalued logic function,
the smaller the better. For example, 18 ∨ and 14 ∧ are present in our simplified
expression of the multivalued logic function related to RE . The quality of this
tiling is 18 + 14 = 32.

8.2 Postprocessing DATA-PEELER’s Output

The set of all closed n-sets returned by DATA-PEELER (without enforcing any
constraint) is a tiling of the relation, since it is integrally covered. Its quality
is very poor, though: Most of the time, it is far worse than listing every tuple
one by one. Nevertheless, we consider the closed n-sets as a starting point.
Postprocessing DATA-PEELER will take care of removing useless information from
the computed closed n-sets to obtain a tiling of R with a good quality.

8.2.1 Removing the Complete Sets. Given a tile 〈X 1, X 2, . . . , X n〉, when
one of the X i equals Di, listing its elements one by one is useless. For exam-
ple, in RE , 〈(α, β), (1), (A, B, C)〉 can be shortened into 〈(α, β), (1), −〉 meaning
that, whatever the value v of the last attribute, the tuples 〈(α), (1), (v)〉 and
〈(β), (1), (v)〉 are in RE . In this way, when a tile has its set X i = Di, the number
of required logic operators to express it is lowered (i.e., the quality is improved)
by �Di. Let us analyze the previous example using the multivalued logic form.

ACM Transactions on Knowledge Discovery from Data, Vol. 3, No. 1, Article 3, Publication date: March 2009.

Closed Patterns Meet n-ary Relations • 3:27

(A1 = α ∨ A1 = β) ∧ (A2 = 1) ∧ (A3 = A ∨ A3 = B ∨ A3 = C) requires 5 logic
operators to be written. Once turned into (A1 = α ∨ A1 = β) ∧ (A2 = 1), only
5 − �D3 = 2 logic operators are needed.

8.2.2 Tightening the Tiles. Verifying whether all the tuples related to one
element of one set of a tile were already covered by the previously output tiles is
straightforward. Here is how it is achieved: Whenever a tile is output, the tuples
it covers are removed from the relation. In this way, a tile 〈(β, γ), (1, 2, 4), (A)〉
can be tightened into 〈(β), (2, 4), (A)〉 if 〈(α, β), (1), −〉 and 〈(γ), (1, 2, 4), (A, B)〉
were previously output. Indeed, they already cover both 〈(β, γ), (1), (A)〉 (slice
related to element 1) and 〈(γ), (1, 2, 4), (A)〉 (slice related to element γ). The
quantity of information safely removed in this way greatly depends on the
order in which the tiles are processed.

8.2.3 Ordering the Tiles. Relying on the order in which n-sets are discov-
ered by DATA-PEELER does not provide a good tiling of R. Advantageously, we
replace it by the following heuristic.

Heuristic 8.1. Output first the tile presenting the best ratio between the
number of newly covered (i.e., not covered by previously output tiles) tuples
and the number of logic operators (∨ and ∧) needed to express it.

To do so, the closed n-sets are stored in main memory instead of being directly
output. Whenever a tile is output, the part of R it covers is removed. Thus,
a large tile may be moved towards the end of the sequence (and even never
be output) if there are larger tiles covering many of its tuples. The algorithm
terminates when R is completely covered.

Notice that the sequence of remaining tiles is not maintained ordered at any
time. Instead, only the first tile is considered. If the quantity of tuples it covers
(initialized at extraction time) has decreased, it is moved down the sequence.
Otherwise, it is output.

8.2.4 Don’t-Care Set. Don’t-care set is the name given to a set RDCS of
tuples that can either be considered as elements of R or not. Typically they are
impossible combinations of values for the n attributes. The don’t-care set plays
an interesting role in the tiling problem: Its elements can enable bigger tiles
even though they are not required to be part of a tile. Tiling with DATA-PEELER

easily takes advantage of a don’t-care set. The closed n-sets are extracted on
R∪RDCS. Then the tuples ofRDCS are removed (i.e., they are considered covered)
and the postprocess, detailed in this section, is performed unchanged.

8.3 Experimental Results

Here again, the experiments have been performed on a GNU/Linux system
equipped with a AMD 2600+ processor and 512Mo of RAM. The performance
in tiling a multivalued logic function is evaluated with respect to:

—the time it takes to tile (extraction of the closed n-sets included),
—the number of logic operators (∨ and ∧) in the tiling.

ACM Transactions on Knowledge Discovery from Data, Vol. 3, No. 1, Article 3, Publication date: March 2009.

3:28 • L. Cerf et al.

Table III. Tiling of Random Multivalued Logic Functions

(a) 6.25% density
Time performances in s Quality in number of ∨ and ∧

Data set E-MV D-P Var. rate E-MV D-P Var. rate

1 2.21 10.62 +380.54% 46068 46518 +0.97%
2 146.88 1.95 −98.67% 23662 23166 −2.09%
3 103.62 0.52 −99.49% 10734 10035 −6.51%

(b) 25% density
Time performances in s Quality in number of ∨ and ∧

Data set E-MV D-P Var. rate E-MV D-P Var. rate

1 36.09 19.75 −45.27% 107869 109722 +1.71%
2 957.75 6.34 −99.33% 69460 57014 −17.91%
3 552.11 4.39 −99.20% 28118 23082 −17.91%

(c) 50% density
Time performances in s Quality in number of ∨ and ∧

Data set E-MV D-P Var. rate E-MV D-P Var. rate

1 122.21 48.81 −60.06% 120170 122452 +1.89%
2 1781.62 25.31 −98.57% 99763 66512 −33.32%
3 1064.33 50.81 −95.22% 45060 27886 −38.11%

8.3.1 Comparision with ESPRESSO-MV. An implementation of the ESPRESSO-
MV algorithm [Rudell and Sangiovanni-Vincentelli 1985] (shipped with the
MVSIS 3.0 package [Gao et al. 2000] for logic synthesis and verification) was
used as a reference in our tests. ESPRESSO-MV is a generalization to multival-
ued functions of the ESPRESSO-II algorithm [Brayton et al. 1984], which only
simplifies Boolean functions. It is widely used in programmable logic devices
(electronic components building reconfigurable digital circuits).

DATA-PEELER and ESPRESSO-MV are compared on the uniformly random
datasets presented in Section 6.1.1. We recall here the dimensions of these
datasets:

(1) 16 attributes with 2-valued domains (Boolean attributes);
(2) 8 attributes with 4-valued domains; and
(3) 4 attributes with 16-valued domains.

Typical results (no significant variation from one random generation to another)
are listed in Table III for three different densities (d = 6.25%, d = 25%, and
d = 50%).

8.3.2 Discussion. Boolean attributes. Although its simplification is slightly
(between 0 and 3%) worse than ESPRESSO-MV’s, DATA-PEELER shows good perfor-
mances, especially on dense datasets. Above a 15% density, it performs faster
than ESPRESSO-MV.

Multivalued attributes. When the attributes take more than 2 values, DATA-
PEELER significantly outperforms ESPRESSO-MV both in quality and running
time. The gain in quality grows with the number of values per attribute and
the density of the dataset. With a 50% density, the tilings obtained from DATA-
PEELER are more than one-third smaller than what ESPRESSO-MV achieves. The

ACM Transactions on Knowledge Discovery from Data, Vol. 3, No. 1, Article 3, Publication date: March 2009.

Closed Patterns Meet n-ary Relations • 3:29

gain in time is impressive: DATA-PEELER performs the task in about 1% of the
time required by ESPRESSO-MV.

8.4 Using Constraints

The ability to enforce constraints allows to focus on the extraction of the
best closed n-sets for tiling purposes. If the constraints are piecewise (anti)-
monotonic, they can be handled along the extraction phase, tiling is more
quickly achieved, and the memory requirements are lowered. Since the con-
strained closed n-sets may not totally cover R, the collection of tiles is com-
pleted by a linear procedure browsing the uncovered dataset and outputting
aggregates of tuples along the largest attribute domain. Of course, the quality
of the tiling gradually decreases with the stringiness of the constraints until
no closed n-set satisfies them. In this extreme case, the tiling is the collection
of aggregates of tuples along the largest attribute domain.

The more natural constraint to enforce when tiling R is the one related to
the order in which the tiles are stored: The ratio between the area of a closed
n-set and the number of logic operators (∨ and ∧) needed to express it must
exceed a given threshold k. Expressed formally, the constraint is

Ck−summary ≡
n∏

i=1

�X i ≥ k
n∑

i=1

f (X i) where f (X i) =
{

0 if X i = Di

�X i otherwise
.

This constraint is piecewise (anti)-monotonic. In RE , the six closed 3-sets sat-
isfying C1.5−summary ∧ C1−area cover 17 tuples out of 23. They are completed with
aggregates of the remaining tuples along D2 (the largest domain). Once the
steps detailed in Section 8.2 are applied, the tiling is

〈(α, β), (1), −〉
〈−, (1, 2), (A)〉
〈(γ), −, (A)〉
〈−, (4), (C)〉

〈(γ), (1, 2, 4), (B)〉
〈(α), (2, 3), (B)〉
〈(γ), (3), (C)〉
〈(β), (3), (C)〉
〈(β), (4), (A)〉.

The four first tiles come from the extracted closed 3-sets. The five last tiles are
aggregates of tuples along D2. In this example, two closed 3-sets do not generate
any tile (see Section 8.2.3).

On particular datasets, other constraints can be useful. For example, to tile
the graph dataset derived from DistroWatch.com logs, we can restrict ourselves
to tiles having identical sets in the two “distributions” attributes. In this way,
the tiling is performed very quickly. In the shorter expression of the dataset,
one of the two distributions attribute can be omitted (since identical to the other
one).

A synthetic QUEST-generated dataset (144 customers buying in average 6
items out of 72 during 144 months) and the ternary relation derived from the

ACM Transactions on Knowledge Discovery from Data, Vol. 3, No. 1, Article 3, Publication date: March 2009.

3:30 • L. Cerf et al.

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 0 0.5 1 1.5 2 2.5 3
 0

 20

 40

 60

 80

 100

 120

 140

 160

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000
n
b
 o

f
lo

g
ic

 o
p
e
ra

to
rs

ti
m

e
 i
n
 s

k

Basket Data Minimization

Quality
Running time

(a) Time

 0

 20000

 40000

 60000

 80000

 120000

 140000

 160000

 0 0.5 1 1.5 2 2.5 3
 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

n
b
 o

f
lo

g
ic

 o
p
e
ra

to
rs

n
b
 o

f
e
x
tr

a
c
te

d
 3

-s
e
ts

k

Basket Data Minimization

Quality

 100000

Space requirement

(b) Space

Fig. 14. Tiling under Ck−summary a QUEST-generated dataset.

 50000

0

 100000

 150000

 200000

 250000

 0 2 4 6 8 10 12
 0

 5

 10

 15

 20

 25

ti
m

e
 i
n

 s

k

DistroWatch.com Logs Minimization

Quality

n
b

 o
f

lo
g

ic
 o

p
e

ra
to

rs

Running time

(a) Time

 0

 50000

 100000

 150000

 200000

 250000

 0 2 4 6 8 10 12
 0

 20000

 40000

 60000

 80000

 100000
n

b
 o

f
lo

g
ic

 o
p

e
ra

to
rs

n
b

 o
f

e
x
tr

a
c
te

d
 3

-s
e

ts

k

DistroWatch.com Logs Minimization

Quality
Space requirement

(b) Space

Fig. 15. Tiling under Ck−summary DistroWatch.com’s logs.

logs of DistroWatch.com are now tiled under Ck−summary ∧ C1−volume constraints.
The running time (extraction included) and the space requirements (estimated
by the number of extracted closed 3-sets) are plotted in Figures 14 and 15.

The QUEST-generated dataset is not very prone to being tiled. In other terms,
the 3-sets it contains do not make good summaries; Indeed, none of them satisfy
C2.8−summary ∧ C1−volume. As a consequence the quality of the tiling of the QUEST-
generated dataset is not much altered when k increases. Indeed, when no 3-set
is extracted, the tiling (the conjunction of every aggregate of tuples along the
largest attribute domain) is less than 14% bigger. Thus, enforcing C1.5−summary
divides by two the space requirements against a minor alteration of the quality
of the tiling (+0.84% logic operators).

Although the ternary relation derived from the DistroWatch.com’s logs is
very sparse (d = 0.55%), it contains many 3-sets that are well suited for tiling
purposes. For example, 32572 3-sets satisfy C2.8−summary∧C1−volume. Indeed, when
no 3-set is extracted, the tiling has about 66% more logic operators. The quality
of the tiling significantly decreases as soon as k begins moving away from 0.

ACM Transactions on Knowledge Discovery from Data, Vol. 3, No. 1, Article 3, Publication date: March 2009.

Closed Patterns Meet n-ary Relations • 3:31

9. RELATED WORK

We do not consider that pattern discovery in binary relations (e.g., mining closed
2-sets) has to be discussed here. Many surveys are available (see, e.g., Goethals
and Zaki [2004]) and so are excellent algorithms (see, e.g., Stumme et al. [2002],
Zaki and Hsiao [2002], Pei et al. [2000], Wang et al. [2003], Uno et al. [2005],
Grahne and Zhu [2005], and Besson et al. [2005]). Therefore, we discuss related
work on n-ary relation data mining where n ≥ 3. A couple of techniques for
n-dimensional real-valued matrix analysis are considered as well.

9.1 Preliminary Version

First of all, it must be noticed that DATA-PEELER has been introduced in Cerf
et al. [2008]. In this extended article, the way DATA-PEELER enumerates the
elements is clearer (more illustrations) and the new optimizations, presented
in Section 4.3, significantly improve the time performance.

In the applicative domain, DATA-PEELER provides original solutions to inter-
esting problems which are not necessarily in the direct vicinity of closed n-set
mining. The extended article focuses on two of them, namely the robustness
with respect to binarization and the tiling, whereas the preliminary version
settles for direct applications only.

9.2 Real-Valued Matrices

Considering kinetic microarray data, Jiang et al. [2004] propose an ad hoc
multistep algorithm to compute maximal sets of genes that are coherent on a
subset of samples during the whole time series. For each gene and each pair
of samples, it computes the Pearson’s correlation coefficient between these two
time series. Correlations above a user-defined threshold are captured. Then a
samples × samples matrix is constructed for each gene from which maximal
cliques are computed. They correspond to maximal sets of samples coherent
for the gene. Finally, for each sample set, the corresponding maximal gene
set is computed; that is, a gene g is associated with a sample set S if there
exists a maximal coherent sample set Sg (a clique associated with g) such
that S ⊆ Sg . Such a processing is more efficiently achieved with DATA-PEELER.
Furthermore, Jiang et al. consider the time attribute at a global scale. Thus the
method is unable to find temporal trends applicable to only a subset of the time
points.

Considering the same application, Zhao and Zaki [2005] propose to mine
different types of patterns in the ternary relation on “genes” × “samples” ×
“timestamps.” First of all, a range multigraph is computed for each time slice.
Vertices stand for biological samples and an edge binds two gene sets present-
ing a similar expression ratio. On this graph, maximal cliques are computed
and postprocessed. In this way, biclusters are obtained. They associate sets of
samples (vertices) with sets of genes that are obtained by intersection of the sets
bound to the edges. Finally, a new multigraph is computed where timestamps
are vertices and pairs of highly overlapping biclusters (gene set, samples) form
edges between these vertices. The so-called, triclusters are obtained by extract-
ing the maximal cliques in this graph. By constructing a ternary relation on

ACM Transactions on Knowledge Discovery from Data, Vol. 3, No. 1, Article 3, Publication date: March 2009.

3:32 • L. Cerf et al.

“genes” × “samples” × “timestamps,” DATA PEELER computes similar patterns
in a single step.

Sun et al. [2006] propose to extend Principal Component Analysis (PCA) to
sequences of tensors (data cubes with M ≥ 3 attribute domains). Each tensor
gathers the measurements for one timestep. The so-called tensor analysis con-
sists in computing M orthogonal matrices such that the reconstruction error
is minimized. Each projection matrix crosses one attribute domain of the data
with syntactical variables summarizing it. Like PCA, the results of tensor anal-
ysis may be difficult to interpret, since all the data coordinates participate in
the linear combination that may mix both positive and negative weights, which
may partly cancel each other.

9.3 Mining Multirelational Data

Any n-ary relation can be turned into n binary relations. Indeed, every n-tuple
in the relation can be given an id that each of the elements in the tuple is related
to. This leads to a multirelational data mining problem which is more general,
therefore more difficult, than the particular case we tackle with DATA-PEELER.

In this very general framework, new problems arise as how to preserve the
(anti)-monotonic properties of the constraints and how to define and check pat-
tern closeness. Afrati et al. [2005] propose different algorithms and conditions
under which the a priori framework can be used while preserving the mono-
tonicity properties. Garriga et al. [2007] propose, within an inductive logic pro-
gramming framework, a clever way to unify several pattern mining problems,
such as, itemset and graph mining. Intuitively, patterns are sets of elements
connected by sets of relations and closed with respect to these connections. Us-
ing two popular subsumptions and two interpretations, the authors propose
different algorithms to deal with multirelational datasets.

9.4 Logic Minimization

DATA-PEELER extracts patterns from an n-ary relation between finite sets. Con-
sidering these sets as the domains of multivalued variables, the relation can
be seen as the truth table of a multivalued logic function with {0, 1} as a range.
Boolean functions are a specialization of this framework where every set gath-
ers two elements (usually bound to the semantics “true” and “false”).

The Karnaugh map [Karnaugh 1953] is a tool to simplify such Boolean func-
tions. This method is to be applied by hand (by eye would be more correct, since
it exploits the human capability to discern geometrical patterns). For this rea-
son, it works well for up to four variables, and becomes impractical for more
than six variables. It relies on organizing the truth table in such a way that
every maximal rectangle of “1” gives a prime implicant (a disjunction of con-
junctions) tiling the part of the Boolean function responsible for the “1”s of the
rectangle. Once every “1” is covered by at least one prime implicant, the disjunc-
tion of the prime implicants is a simplification of the original Boolean function.
Later, the QuineMcCluskey algorithm [McCluskey 1956] was designed to deal
with more variables. The procedure basically remains the same. However, the
organization of the truth table, used in the Karnaugh map, is substituted by a

ACM Transactions on Knowledge Discovery from Data, Vol. 3, No. 1, Article 3, Publication date: March 2009.

Closed Patterns Meet n-ary Relations • 3:33

tabular form which better suits computers’ way of processing data. This algo-
rithm always returns the minimal form of the Boolean function to the cost of
finding all prime implicants.

The EPRESSO algorithm [Brayton et al. 1984] uses a different approach. The
returned function is not always the minimal form (but close to it) and the com-
putation is reduced (in both memory and time) by orders of magnitude. It is
still heavily used, in particular in programmable logic devices. ESPRESSO was
adapted to deal with multivalued logic functions as well. Called ESPRESSO-MV
[Rudell and Sangiovanni-Vincentelli 1985], this algorithm addresses the same
task as DATA-PEELER postprocessed for tiling.

Hence, DATA-PEELER can be seen as a prime implicant extractor for multival-
ued logic functions. Section 8 of this article details how postprocessing these
patterns can tile/minimize multivalued logic functions. Apart from gains in
both quality and running time (compared to ESPRESSO-MV), the ability to push
constraints during the extraction makes DATA-PEELER differ from the classical
logic minimization algorithms presented here.

9.5 Closed 3-Set Mining

Considering ternary relations, DATA-PEELER faces two direct competitors: CUBE-
MINER [Ji et al. 2006] and TRIAS [Jaschke et al. 2006]. As detailed in Section 6.3,
our algorithm outperforms these state-of-the-art algorithms by orders of mag-
nitude.

Ji et al. [2006] propose two algorithms to extract closed 3-sets from ternary
relations. The first one, called representative slice mining, consists in enumer-
ating all subsets of the smallest attribute domain. For each of them, the related
binary relation is computed by bitwise AND operations between elements of this
subset. Then, any closed 2-set extractor can be used on each of these relations.
A postprocessing phase removes the 3-sets that are not closed.

The second one, called CUBEMINER, directly operates on the ternary relation.
It consists in using the cubes X ×Y × Z , called cutters, presenting the following
particularity: None of their tuples is in relation. Thus, the authors generalize
the notion of cutter introduced in Besson et al. [2005] for closed 2-set mining.
CUBEMINER first considers the whole ternary relation as a candidate. Along
a depth-first enumeration, the cutters are recursively applied to generate 3
candidate children containing less tuples absent from the relation than the
parent: a first one without the elements of X , a second one without the elements
of Y , and a third one without the elements of Z . For each candidate, several
checks are required to ensure its closeness and unicity. For a child candidate
to be unique, its newly removed elements must not be included in a cutter
previously applied on this branch. To verify this, every formerly applied cutter is
intersected with the current one. For a child candidate to be closed, the elements
of these formerly applied cutters should not extend it. Hence, every candidate
is twice compared to the formerly applied cutters. By contrast, the enumeration
process of DATA-PEELER ensures, by itself, the unicity of all nodes. We believe that
the additional checks ensuring the unicity (whose cost per node grows linearly
with the height of the enumeration tree), the absence of a clever enumeration

ACM Transactions on Knowledge Discovery from Data, Vol. 3, No. 1, Article 3, Publication date: March 2009.

3:34 • L. Cerf et al.

strategy (like that of Section 4.2) generating smaller enumeration trees, and
the high cost required to check the closeness (at every node, intersections with
all cutters are performed) mainly explain the differences in extraction times
between CUBEMINER and DATA-PEELER.

TRIAS [Jaschke et al. 2006] also extracts closed 3-sets from ternary relations.
It basically relies on closed 2-set extractions from two binary relations. From
a relation on D1 × D2 × D3, TRIAS first constructs a new binary relation on
D1 × (D2 × D3) whose columns correspond to couples of elements of D2 and D3.
Every closed 2-set 〈A, B〉, extracted from this relation, is such that B contains
couples of D2 × D3 in relation with each of the elements of A ⊆ D1. The set B
stands for a relation which is not fully connected (i.e., there are false values in
its Boolean representation). Thus, in a second step, TRIAS extracts every closed
2-set from the relation generated from B and checks its closeness with respect
to D1. This verification is easily carried out: Its closure must be A. Nevertheless,
the larger D1 is, the more elements are, on average, in D1 \ A, and the more
unclosed 3-sets are generated before being discarded. We believe that this is
why TRIAS suffers a lot from large smallest attribute domains. In contrast, DATA-
PEELER prunes early the search spaces containing unclosed 3-sets.

10. CONCLUSION

We have proposed a new correct and complete algorithm called DATA-PEELER and
have defined the class of constraints it can handle at extraction time. From an
n-ary relation, DATA-PEELER computes every closed n-set satisfying given piece-
wise (anti)-monotonic constraints.

Previous works mainly deal with the binary relation case, often known as
formal concept mining. Indeed, numerous proposals have tackled the extraction
of closed 2-sets, possibly constrained by user-defined properties. Recently, two
algorithms were designed for the ternary relation case, namely CUBEMINER and
TRIAS. Although DATA-PEELER is designed to handle relations of any arity, our
empirical study shows that, in various settings, DATA-PEELER outperforms both
CUBEMINER and TRIAS by orders of magnitude.

A real-life 4-ary relation has been mined to assess the qualitative added
value of the considered mining task. In this application, we have interpreted
the relevancy of the closed n-sets DATA-PEELER extracts under various piecewise
(anti)-monotonic constraints. In particular, the introduced Cδ−isolated constraint
has been proved useful. Furthermore, we have shown how expanding a relation
with an additional attribute can help in enforcing rather abstract (though very
useful) constraints such as the robustness with respect to binarization.

Postprocessing the closed n-sets returned by DATA-PEELER can also bear fruit.
In this article, we have detailed how tiling can be achieved in this way. According
to our experiments, the quality of DATA-PEELER’s tilings outperforms Espresso-
MV’s when dealing with “real” multivalued functions (as opposed to Boolean
functions). Furthermore, our algorithm performs much faster.

We look forward to experimenting with DATA-PEELER in different applicative
domains. So far, only basket data analysis and Web usage mining scenarios have
been considered. We want to apply DATA-PEELER to kinetic gene expression data

ACM Transactions on Knowledge Discovery from Data, Vol. 3, No. 1, Article 3, Publication date: March 2009.

Closed Patterns Meet n-ary Relations • 3:35

and dynamic graphs. On the theoretical side, mining fault-tolerant patterns in
n-ary relations appears as an interesting challenge.

ACKNOWLEDGMENTS

We would like to thank the authors of CUBEMINER and TRIAS for providing the
implementations of their algorithms and L. Bodnar for sharing with us the
DistroWatch.com’s logs.

REFERENCES

AFRATI, F., DAS, G., GIONIS, A., MANNILA, H., MIELIKAINEN, T., AND TSAPARAS, P. 2005. Mining chains
of relations. In Proceedings of the 5th IEEE International Conference on Data Mining (ICDM’05).
IEEE Computer Society, 553–556.

AGRAWAL, R., IMIELINSKI, T., AND SWAMI, A. N. 1993. Mining association rules between sets of items
in large databases. In Proceedings of the ACM SIGMOD International Conference on Management
of Data (SIGMOD’93). ACM Press, 207–216.

AGRAWAL, R. AND SRIKANT, R. 1994. Fast algorithms for mining association rules in large databases.
In Proceedings of the 20th International Conference on Very Large Data Bases (VLDB’94). Morgan
Kaufmann, 487–499. Introduction to the Quest data generator.

BESSON, J., ROBARDET, C., BOULICAUT, J.-F., AND ROME, S. 2005. Constraint-based formal concept
mining and its application to microarray data analysis. Intell. Data Anal. 9, 1, 59–82.

BOULICAUT, J.-F. AND JEUDY, B. 2005. Constraint-Based data mining. In The Data Mining and
Knowledge Discovery Handbook, O. Maimon and L. Rokach, Eds. Springer, 399–416.

BRAYTON, R. K., SANGIOVANNI-VINCENTELLI, A. L., MCMULLEN, C. T., AND HACHTEL, G. D. 1984. Logic
Minimization Algorithms for VLSI Synthesis. Kluwer Academic, Norwell, MA.

CERF, L., BESSON, J., ROBARDET, C., AND BOULICAUT, J.-F. 2008. DATA-PEELER: Constraint-Based closed
pattern mining in n-ary relations. In Proceedings of the 8th SIAM International Conference on
Data Mining (SDM’08). SIAM.

MCCLUSKEY, J. 1956. Minimization of Boolean functions. Bell Syst. Tech. J. 35, 5, 1417–1444.
GAO, M., JIANG, J.-H., JIANG, Y., LI, Y., SINHA, S., AND BRAYTON, R. 2000. MVSIS. In Notes of the

IEEE International Workshop on Logic Synthesis. IEEE Computer Society.
GARRIGA, G. C., KHARDON, R., AND RAEDT, L. D. 2007. On mining closed sets in multi-relational data.

In Proceedings of the 20th International Joint Conference on Artificial Intelligence (IJCAI’07).
AAAI Press, 804–809.

GÉLY, A. 2005. A generic algorithm for generating closed sets of a binary relation. In Proceedings
of the 3rd International Conference on Formal Concept Analysis (ICFCA’05). Lecture Notes in
Computer Science, Vol, 3403, Springer, 223–234.

GOETHALS, B. AND ZAKI, M. J. 2004. Advances in frequent itemset mining implementations: Report
on FIMI’03. ACM SIGKDD Explor. Newslett. 6, 1, 109–117.

GRAHNE, G. AND ZHU, J. 2005. Fast algorithms for frequent itemset mining using FP-trees. IEEE
Trans. Knowl. Data Eng. 17, 10, 1347–1362.

HAN, J., PEI, J., AND YIN, Y. 2000. Mining frequent patterns without candidate generation. In Pro-
ceedings of the ACM SIGMOD International Conference on Management of Data (SIGMOD’00).
ACM Press, 1–12.

JASCHKE, R., HOTHO, A., SCHMITZ, C., GANTER, B., AND STUMME, G. 2006. TRIAS–An algorithm for
mining iceberg tri-lattices. In Proceedings of the 6th IEEE International Conference on Data
Mining (ICDM’06). IEEE Computer Society, 907–911.

JI, L., TAN, K.-L., AND TUNG, A. K. H. 2006. Mining frequent closed cubes in 3D data sets. In
Proceedings of the 32nd International Conference on Very Large Data Bases (VLDB’06). VLDB
Endowment, 811–822.

JIANG, D., PEI, J., RAMANATHAN, M., TANG, C., AND ZHANG, A. 2004. Mining coherent gene clus-
ters from gene-sample-time microarray data. In Proceedings of the 10th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining (KDD’04). ACM Press, 430–
439.

ACM Transactions on Knowledge Discovery from Data, Vol. 3, No. 1, Article 3, Publication date: March 2009.

3:36 • L. Cerf et al.

KARNAUGH, M. 1953. The map method for synthesis of combinational logic circuits. Trans. Amer.
Institute Electric. Eng. Part I 72, 9, 593–599.

NG, R. T., LAKSHMANAN, L. V. S., HAN, J., AND PANG, A. 1998. Exploratory mining and pruning op-
timizations of constrained associations rules. In Proceedings of the ACM SIGMOD International
Conference on Management of Data (SIGMOD’98). ACM Press, 13–24.

PAN, F., CONG, G., TUNG, A. K., YANG, J., AND ZAKI, M. J. 2003. CARPENTER: Finding closed
patterns in long biological datasets. In Proceedings of the ACM SIGKDD’03. ACM Press, 637–
642.

PASQUIER, N., BASTIDE, Y., TAOUIL, R., AND LAKHAL, L. 1999. Efficient mining of association rules
using closed itemset lattices. Inf. Syst. 24, 1 (Jan.), 25–46.

PEI, J., HAN, J., AND LAKSHMANAN, L. V. S. 2001. Mining frequent item sets with convertible con-
straints. In Proceedings of the 17th International Conference on Data Engineering (ICDE’01).
ACM Press, 433–442.

PEI, J., HAN, J., AND MAO, R. 2000. CLOSET: An efficient algorithm for mining frequent
closed itemsets. In Workshop on Research Issues in Data Mining and Knowledge Discovery
(SIGMOD’00). ACM Press, 21–30.

PENSA, R. G. AND BOULICAUT, J.-F. 2005. Boolean property encoding for local set pattern discovery:
An application to gene expression data analysis. In Local Pattern Detection. Vol. 3539. Springer,
115–134.

RUDELL, R. AND SANGIOVANNI-VINCENTELLI, A. 1985. Espresso-MV: Algorithms for multiple valued
logic minimization. In Proceedings of the IEEE Custom International Circuit Conference. IEEE
Computer Society, 230–234.

STUMME, G., TAOUIL, R., BASTIDE, Y., PASQUIER, N., AND LAKHAL, L. 2002. Computing iceberg concept
lattices with titanic. Data Knowl. Eng. 42, 189–222.

SUN, J., TAO, D., AND FALOUTSOS, C. 2006. Beyond streams and graphs: Dynamic tensor analysis.
In Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining (KDD’06). ACM Press, 374–383.

UNO, T., KIYOMI, M., AND ARIMURA, H. 2005. LCM ver.3: Collaboration of array, bitmap and prefix
tree for frequent itemset mining. In Proceedings of the 1st ACM International Workshop on Open
Source Data Mining (OSDM’05). ACM Press, 77–86.

WANG, J., HAN, J., AND PEI, J. 2003. CLOSET+: Searching for the best strategies for mining
frequent closed itemsets. In Proceedings of the 9th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD’03). ACM Press, 236–245.

WILLE, R. 1982. Restructuring lattice theory: An approach based on hierarchies of concepts. In
Ordered Sets, I. Rival, Ed. Reidel, 445–470.

ZAKI, M. J. AND HSIAO, C. J. 2002. CHARM: An efficient algorithm for closed itemset mining. In
Proceedings of the 2nd SIAM International Conference on Data Mining (SDM’02). SIAM.

ZHAO, L. AND ZAKI, M. J. 2005. TRICLUSTER: An effective algorithm for mining coherent clusters in
3D microarray data. In Proceedings of the ACM SIGMOD International Conference on Manage-
ment of Data (SIGMOD’05). ACM Press, 694–705.

Received April 2008; revised October 2008; accepted November 2008

ACM Transactions on Knowledge Discovery from Data, Vol. 3, No. 1, Article 3, Publication date: March 2009.

