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Abstract—We propose to mine the graph topology of a large attributed graph by finding regularities among vertex descriptors. Such

descriptors are of two types: 1) the vertex attributes that convey the information of the vertices themselves and 2) some topological

properties used to describe the connectivity of the vertices. These descriptors are mostly of numerical or ordinal types and their

similarity can be captured by quantifying their covariation. Mining topological patterns relies on frequent pattern mining and graph

topology analysis to reveal the links that exist between the relation encoded by the graph and the vertex attributes. We propose three

interestingness measures of topological patterns that differ by the pairs of vertices considered while evaluating up and down co-

variations between vertex descriptors. An efficient algorithm that combines search and pruning strategies to look for the most relevant

topological patterns is presented. Besides a classical empirical study, we report case studies on four real-life networks showing that

our approach provides valuable knowledge.

Index Terms—Data mining, mining methods and analysis, attributed graph mining, topological patterns

Ç

1 INTRODUCTION

REAL-WORLD phenomena are often depicted by graphs
where vertices represent entities and edges represent

their relationships or interactions. Entities are also described
by one or more attributes that constitute the attribute vectors
associated with the vertices of the attributed graph. Existing
methods that support the discovery of local patterns
in graphs mainly focus on the topological structure of the
patterns, by extracting specific subgraphs while ignoring
the vertex properties (cliques [22], quasi-cliques [21], [31]),
or compute frequent relationships between vertex attribute
values (frequent subgraphs in a collection of graphs [17] or
in a single graph [4]), while ignoring the topological status
of the vertices within the whole graph, for example, the
vertex connectivity or centrality. The same limitation holds
for the methods proposed in [19], [24], [28], and [29], which
identify sets of vertices that share local attributes and that
are close neighbors. Such approaches only focus on a local
neighborhood of the vertices and do not consider the
connectivity of the vertex in the whole graph. In this paper,
we propose to compute relevant patterns that integrate
information about the connectivity of the vertices and their
attribute values.

The connectivity of each vertex is described by topolo-
gical properties that quantify its topological status in the

graph. Some of these properties are based on the close
neighborhood of the vertices (e.g., the vertex degree), while
others describe the connectivity of a vertex by considering
its relationship with all other vertices (e.g., the centrality
measures). Combining such microscopic and macroscopic
properties characterizes the connectivity of the vertices and
it may be a sound basis to explain why some vertices have
similar attribute values.

Such topological properties and vertex attributes are
mostly of numerical or ordinal types and their similarity
can be captured by quantifying their covariation. Such
covariation indicates how a set of vertex descriptors tend to
monotonically increase or decrease all together. Therefore,
following the way paved by Calders et al. [5], we propose to
mine rank-correlated sets over graph descriptors by extract-
ing topological patterns defined as a set of vertex properties
and attributes that strongly covary over the vertices of the
graph. We introduce several interestingness measures of
topological patterns that differ by the pairs of vertices that are
considered while evaluating up and down covariations
between descriptors: 1) Considering all the vertex pairs
enables to find patterns that are true all over the graph;
2) Including only the vertex pairs that are in a specific order
regarding a selected numerical or ordinal attribute reveals
the topological patterns that emerge with this attribute;
3) Examining the vertex pairs that are connected in the graph
makes it possible to identify patterns that are structurally
correlated to the relationship encoded by the graph. We also
design an operator that identifies the top k representative
vertices of a topological pattern.

Let us illustrate our proposal on a coauthorship graph
depicted in Fig. 1, where vertices (from A to P ) denote
authors, edges encode coauthorship relations, and three
attributes describe author: h corresponds to the author h-
index, which attempts to measure both the productivity
and the impact of the published work of each author [16];
i denotes the average number of hours per week spent by
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LyonTech Campus de la doua, INSA-Lyon, LIRIS CNRS UMR 5205,
Bâtiment Blaise Pascal, F-69621 Villeurbanne Cedex, France.
E-mail: adriana_bechara@yahoo.com.br, {Celine.Robardet,
jean-francois.boulicaut}@insa-lyon.fr.

. M. Plantevit is with the Université de Lyon, LyonTech Campus de la doua,
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each author on instructional duties; and t designates the
number of publications the author had in the IEEE TKDE
journal. As topological property, we consider the between-
ness centrality measure that is the number of times a
vertex appears on a shortest path of the graph (see
Section 2). This value is in a circle associated with each
vertex on Fig. 1. For instance, vertex D has attribute
values h ¼ 25, i ¼ 1:5, and t ¼ 18 and a betweenness
centrality value equal to 73. One of the topological
patterns extracted from this attributed graph is
P ¼ fhþ; i�;BETWþg, whose meaning is the higher the
value of attribute h, the lower the value of attribute i and the
higher the betweenness centrality of a vertex. In other words,
authors that tend to have a high h-index, tend to have a
low instructional duty and publish articles with coauthors
that are also central in the graph, inducing a rather small
distance to other vertices. This topological pattern com-
bines a topological property (BETW) with two vertex
attributes (h and i) and is supported by 89 pairs of
vertices among the ð16

2 Þ possible pairs over the graph. Its
top three representative vertices are E; I, and D (sha-
dowed on Fig. 1). These vertices have the highest values
on h and BETW, and the lowest values on attribute i
compared to other vertices. Therefore, these dominant
vertices have a significant impact on the support of this
pattern.

In this paper, we design an algorithm, called Top-
GraphMiner, which discovers topological patterns. Given
an attributed graph, such as the one in Fig. 1, it first
computes a set of topological properties for every of its
vertices. TopGraphMiner then integrates search and prun-
ing strategies to look for the most relevant topological
patterns. Finally, it gives to the user the ability to visualize
every pattern on the input graph by identifying its top k
representative vertices.

Our main contributions are as follows: First, we propose
a new kind of graph analysis that exploits attributes and
topological properties of vertices. Second, to produce such
an analysis, we provide new insights into simpler covaria-
tion pattern mining [5] by considering up and down
covariations. We define new upper bounds on the support
of such covariations. We also introduce several interesting-
ness measures for topological patterns, and a valuable

support to pattern visualization on the original graph

thanks to the identification of its top k representative

vertices. Third, we present an empirical study that includes:

1. A comparison of TopGraphMiner with a baseline
approach;

2. A study of its empirical complexity;
3. An analysis of the pruning capability of the

proposed upper bound; and
4. A qualitative feedback on some patterns extracted

from four real-life networks: a coauthorship net-
work, a movie coactor network, a patent citation
network, and a gene interaction network.

This paper is structured as follows: Section 2 presents

topological vertex properties. Sections 3 and 4 introduce our

new model for mining topological patterns. Our algorithm

is defined in Section 5. Its efficiency and its effectiveness are

discussed in Sections 6 and 7. Section 8 addresses the

related work and Section 9 concludes.

2 TOPOLOGICAL VERTEX PROPERTIES

The input of our mining task is a nondirected attributed

graph G ¼ ðV ;E; LÞ, where V is a set of n vertices, E a set of

m edges, and L ¼ fl1; . . . ; lpg a set of p attributes associated

with each vertex of V , which may be numerical or ordinal.
Important properties of the vertices are also encoded by

the edges of the graph, which describe inter-relations

between vertices. From this relation, we can compute some

topological properties that synthesize the role played by

each vertex in the graph. The topological properties we are

interested in range from a microscopic level—those that

described a vertex based on its direct neighborhood—to a

macroscopic level—those that characterize a vertex by

considering its relationship to all other vertices in the

graph. Statistical distributions of these properties are

generally used to depict large graphs (see, e.g., [2], [18]).

We propose here to use them as vertex descriptors. Some

examples of these properties are given from Fig. 1.

2.1 Microscopic Properties

We propose to use four topological properties to describe

the direct neighborhood of a vertex v:

. The degree of v is the number of edges incident to v
(degðvÞ ¼ jfu 2 V ; fu; vg 2 Egj). When normalized
by the maximum number of edges a vertex can
have, it is called the degree centrality coefficient:
DEGREEðvÞ ¼ degðvÞ

n�1 (e.g., DEGREEðBÞ ¼ 3
15 ).

. The clustering coefficient evaluates the connectivity
of the neighbors of v and thus its local density:

CLUSTðvÞ ¼ 2 j ffu;wg 2E; fu; vg 2 E ^ fv; wg 2 Egj
degðvÞðdegðvÞ � 1Þ ;

(e.g., CLUSTðBÞ ¼ 2jffA;DgfC;Dggj
3�2 ¼ 2

3 ).
. To better understand the structure of the neighbor-

hood of v, we also consider the quasi-cliques [21]
that involve v. v belongs to a �-quasi clique Q iff the
graph GQ induced by the set of vertices Q is
connected and satisfies
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8u 2 Q; degGQ
ðuÞ � d�ðjQj � 1Þe;

where degGQ
ðuÞ is the degree of u in GQ (e.g.,fA;B;

C;Dg is a 2=3-quasi clique since

degGQ
ðAÞ ¼ degGQ

ðcÞ ¼ 2 � 2

3
ð4� 1Þ

� �
and

degGQ
ðBÞ ¼ degGQ

ðDÞ ¼ 3 � 2Þ:

We consider two properties based on the quasi-
cliques involving v: the size of the largest quasi-
clique (SZQCðvÞ) and the number of quasi-cliques
(NBQCðvÞ).

2.2 Macroscopic Properties

We consider five macroscopic topological properties to
characterize a vertex while taking into account its con-
nectivity to all other vertices of the graph.

. Vertex communities can be computed by looking for
a partition of V that maximizes the Newman’s
modularity measure [25]. This criterion is based on
the proportion of edges that fall within the commu-
nity minus the expected such proportion if edges
were distributed at random:

Q ¼ 1

4m

X
u;v

11Eðfu; vgÞ �
degðuÞdegðvÞ

2m

� �
�cu;cv ;

where cv is the community assigned to v, �cu;cv is
the Kronecker delta (�cu;cv ¼ 1 if cu ¼ cv and �cu;cv ¼
0 otherwise), 11Eðfu; vgÞ is the indicator function of
the set E (11Eðfu; vgÞ ¼ 1 if fu; vg 2 E, 0 otherwise).
For example, according to such a definition, the
four communities on Fig. 1 are fA;B;C;Dg; fE;N;
O; Pg; fF;G;Hg; fI; J;K; L;Mg. As topological
property, we consider the size of the community
of vðSZCOMðvÞÞ.

. The relative importance of vertices in a graph can be
obtained through centrality measures [11]. Close-
ness centrality CLOSEðvÞ is defined as the inverse of
the average distance between v and all other vertices
that are reachable from it. The distance between two
vertices is defined as the number of edges of the
shortest path between them:

CLOSEðvÞ ¼ nP
u2V jshortest pathðu; vÞj

(e.g., CLOSEðBÞ ¼ 0:021 and CLOSEðEÞ ¼ 0:037).
. The betweenness centrality BETWðvÞ of v is equal to

the number of times a vertex appears on a shortest

path in the graph. It is evaluated by first computing all

the shortest paths between every pair of vertices, and

then counting the number of times a vertex appears

on these paths: BETWðvÞ ¼
P

u;w 11shortest pathðu;wÞðvÞ
(e.g., BETWðBÞ ¼ 1 and BETWðEÞ ¼ 166).

. The eigenvector centrality measure (EGVECT) favors
vertices that are connected to vertices with high
eigenvector centrality. This recursive definition can
be expressed by the following eigenvector equation
Ax ¼ �x which is solved by the eigenvector x
associated with the largest eigenvalue � of the

adjacency matrixA of the graph (e.g., EGVECTðBÞ ¼
0:093 and EGVECTðEÞ ¼ 0:114).

. The PAGERANK index [3] is based on a random walk
on the vertices of the graph, where the probability to
go from one vertex to another is modelled as a
Markov chain in which the states are vertices and the
transition probabilities are computed based on the
edges of the graph. This index reflects the prob-
ability that the random walk ends at the vertex itself:

PAGERANKðvÞ ¼ �
X
j

11Eðfu; vgÞ
PAGERANKðuÞ

degðuÞ

þ 1� �
n

;

where the parameter � is the probability that a
random jump to vertex v occurs (e.g.,

PAGERANKðBÞ ¼ 1:11 and

PAGERANKðEÞ ¼ 1:50Þ:

These nine topological properties characterizes the graph
relationship encoded by E. These properties, along with the
set of vertex attributes L, constitutes the set of vertex
descriptors D used in this paper.

3 TOPOLOGICAL PATTERNS

Let us now consider topological patterns as a set of vertex
attributes and topological properties that behave similarly
over a large part of the vertices of the graph. We assume
that all topological properties and vertex attributes are of
numerical or ordinal type, and we propose to capture their
similarity by quantifying their covariation over the vertices
of the graph. Topological patterns are defined as
P ¼ fD1

s1 ; . . . ; D‘
s‘g, where Dj is a vertex descriptor from

D and sj 2 fþ;�g is its covariation sign. Following the
example of Fig. 1, the trend “the more papers in IEEE TKDE
(t) the lower the average number of hours per week spent on
instructional duties (i)” is represented by the pattern {tþ, i�}.
In the following, we propose three interestingness measures
that are different with respect to the pairs of vertices
considered while evaluating the support of such patterns.

3.1 Topological Patterns over the Whole Graph

Several signed vertex descriptors covary if the orders
induced by each of them on the set of vertices are consistent.
This consistency is evaluated by the number of vertex pairs
ordered the same way by all descriptors. The number of
such pairs constitutes the so-called support of the pattern.
This measure can be seen as a generalization of the
Kendall’s � measure. When we consider all possible vertex
pairs, this interestingness measure is defined as follows.

Definition 1 (SuppallSuppall). The support of a topological pattern P
over all possible pairs of vertices is

SuppallðP Þ ¼
jfðu; vÞ 2 V 2 j 8Dsj

j 2 P : DjðuÞ .sj DjðvÞgj
ðn2Þ

;

where .sj denotes < when sj is equal to þ, and .sj denotes >
when sj is equal to �.
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This measure gives the number of vertex pairs ðu; vÞ such
that u is strictly lower than v on all descriptors with sign þ,
and u is strictly higher than v on descriptors with sign�. For
instance, the pattern P ¼ ftþ; i�g is supported by 85 pairs
among the 120 possibles ones, hence SuppallðP Þ ¼ 0:71.

As mentioned in [5], Suppall is an antimonotonic measure
for positively signed descriptors. This is still true when
considering negatively signed ones: adding D�lþ1 to a
pattern P leads to a support lower than or equal to that of
P since the pairs ðu; vÞ that support P must also satisfy
Dlþ1ðuÞ > Dlþ1ðvÞ. Besides, when adding descriptors with
negative sign, the support of some patterns can be deduced
from others, the latter referred to as symmetrical patterns.

Property 1 (Support of Symmetrical Patterns). Let P be a
topological pattern and P be its symmetrical, that is, 8Dsj

j 2 P ,
D
sj
j 2 P , with sj ¼ fþ;�g n fsjg. If a pair ðu; vÞ of V 2

contributes to the support of P , then the pair ðv; uÞ contributes
to the support of P . Thus, we have SuppallðP Þ ¼ SuppallðP Þ.

Topological patterns and their symmetrical patterns are
semantically equivalent. To avoid the irrelevant computa-
tion of duplicate topological patterns, we exploit Property 1.

Thus, mining frequent topological patterns consists in
computing all sets of signed descriptors P , but not their
symmetrical ones, such that SuppallðP Þ � minsup, where
minsup is a user-defined minimum support threshold.

3.2 Other Interestingness Measures

To identify most interesting topological patterns, we
propose to give to the end-user the possibility of guiding
its data mining process by querying the patterns with
respect to their correlation with the relationship encoded by
the graph or with a selected descriptor. Therefore, we revisit
the notion of emerging patterns [10] by identifying the
patterns whose support is significantly greater (i.e., accord-
ing to a growth-rate threshold) in a specific subset of vertex
pairs than in the remaining ones. This subset can be defined
in different ways according to the end-user’s motivations:
either it is defined by the vertex pairs that are ordered with
respect to a selected descriptor called the class descriptor, or
it is equal to E, the set of edges. Whereas the former
highlights the correlation of a pattern with the class
descriptor, the latter enables to characterize the importance
of the graph structure within the support of the topological
pattern. For instance, considering the toy example of Fig. 1,
hþtþ and hþt� are both frequent with minimum support of
20 percent. Note that although these patterns are contra-
dicting, they are both output by our approach when only
the frequency constraint is considered. The extraction of
emerging patterns with respect to t outputs the pattern hþtþ

as the frequency of hþ is significantly greater in tþ than in t�

(with a factor of 2.13). hþtþ is more emerging with respect
to E than hþt�, their growth rates being, respectively, equal
to 1.23 and 0.59.

3.2.1 Emerging Patterns w.r.t. a Selected Descriptor

Let us consider a selected descriptor C 2 D and a sign
r 2 fþ;�g. The set of pairs of vertices that are ordered byCr is

CCr ¼ fðu; vÞ 2 V 2 j CðuÞ .r CðvÞg:

The support measure based on the vertex pairs of CCr is
defined below.

Definition 2 (SuppCrSuppCr ). The support of a topological pattern P

over Cr is

SuppCrðP Þ ¼
jfðu; vÞ 2 CCr j 8Dsj

j 2 P : DjðuÞ .sj DjðvÞgj
jCCr j :

Analogously, the support of P over the pairs of vertices that
do not belong to CCr is denoted SuppCrðP Þ. To evaluate the
impact ofCr on the support ofP , we consider the growth rate
of the support of P over the partition of vertex pairs
fCCr ; CCrg: GrðP;CrÞ ¼ SuppCr ðP Þ

Supp
Cr
ðP Þ .

If GrðP;CrÞ is greater than a minimum growth-rate
threshold, then P is referred to as emerging with respect to
Cr. If GrðP;CrÞ � 1, P is as frequent in CCr as in CCr . If
grðP;CrÞ � 1, P is much more frequent in CCr than in CCr .
For example, Grðfhþ; i�;BETWþg; tþÞ ¼ 2:31. The intuition
behind this definition is to identify the topological patterns
that are mostly supported by pairs of vertices that are also
ordered by the selected descriptor.

3.2.2 Emerging Patterns w.r.t. the Graph Structure

It is interesting to measure if the graph structure plays an
important role in the support of a topological pattern P . To
this end, we define a similar support measure based on
pairs that belongs to E, the set of edges of the graph:

CE ¼ fðu; vÞ 2 V 2 j fu; vg 2 Eg:

Based on this set of pairs, we define the support of P as.

Definition 3 (SuppESuppE). The support of a topological pattern P

over the pairs of vertices that are linked in G is

SuppEðP Þ ¼
2jfðu; vÞ 2 CE j 8Dsj

j 2 P : DjðuÞ .sj DjðvÞgj
jCE j

:

The maximum value of the numerator is jCE j2 since: 1) if
ðu; vÞ 2 CE then ðv; uÞ 2 CE , and 2) it is not possible that
8Dsj

j 2 P , DjðuÞ .sj DjðvÞ, and DjðvÞ .sj DjðuÞ at the same
time. For instance, the pattern fhþ; i�g is supported by all
the 20 possible pairs that are edges, its support is, thus,
equal to 1. The support of P over the pairs of vertices that
do not belong to CE is denoted SuppEðP Þ.

As before, to evaluate the impact of E on the support

of P , we consider the growth rate of the support of P over

the partition of vertex pairs fCE; CEg: GrðP;EÞ ¼
SuppEðP Þ
Supp

E
ðP Þ .

GrðP;EÞ enables to assess the impact of the graph
structure on the pattern. Therefore, if GrðP;EÞ � 1, P is
said to be structurally correlated. If GrðP;EÞ � 1, the graph
structure tends to inhibit the support of P . For example, on
Fig. 1, the most structurally correlated pattern is P ¼
fhþ; tþ;BETWþg with GrðP;EÞ ¼ 1:628.

4 TOP k REPRESENTATIVE VERTICES

The user may be interested in identifying the vertices that
are the most representative of a given topological pattern,
thus enabling the projection of the patterns back into the
graph. For example, the representative vertices of the

4 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 25, NO. X, XXXXXXX 2013



pattern {tþ, BETW�} would be researchers with a relatively
large number of IEEE TKDE papers and a low betweenness
centrality measure.

We denote by SðP Þ the set of vertex pairs ðu; vÞ that
constitutes the support of a topological pattern P :

SðP Þ ¼ fðu; vÞ 2 V 2 j 8Dsj
j 2 P : DjðuÞ .sj DjðvÞg;

which forms, with V , a directed graph GP ¼ ðV ; SðP ÞÞ. This
graph satisfies the following property.

Property 2. The graph GP ¼ ðV ; SðP ÞÞ is transitive and acyclic.

Proof. Let us consider ðu; vÞ 2 V 2 and ðv; wÞ 2 V 2 such
that , 8Dsj

j 2 P : DjðuÞ .sj DjðvÞ and DjðvÞ .sj DjðwÞ.
Thus, DjðuÞ .sj DjðwÞ and ðu;wÞ 2 SðP Þ. Therefore, GP

is transitive.
As .s 2 f<;>g, it stands for a strict inequality. Thus, if

ðu; vÞ 2 SðP Þ, ðv; uÞ 62 SðP Þ. Furthermore, as GP is tran-
sitive, if there exists a path between u and v, there is also
an arc ðu; vÞ 2 SðP Þ. Therefore, ðv; uÞ 62 SðP Þ and we can
conclude that GP is acyclic. tu

As GP is acyclic, it admits a topological ordering of its
vertices, which is, in the general case, not unique. The top k
representative vertices of a topological pattern P are
identified on the basis of such a topological ordering of V
and are the k last vertices with respect to this ordering.
Considering that an arc ðu; vÞ 2 SðP Þ is such that v
dominates u on P , this vertex set contains the most
dominant vertices on P . The top k representative vertices
of P can be easily identified by ordering the vertices by their
incoming degree as shown in Section 5.3.2.

5 ALGORITHM TOPGRAPHMINER

Having described the topological pattern domain, this
section aims at presenting TopGraphMiner, an efficient
algorithm that combines search and pruning strategies to
identify the most relevant topological patterns. Indeed, as
the support counting is quadratic in the number of vertices,
it is important to avoid, in linear time, some useless
support computation. To this end, we derive an upper
bound on the support used to safely prune nonpromising
topological patterns.

5.1 Upper Bound on the Support Measure

To define an upper bound on the support of a given
topological pattern which benefits from the presence of ties
in the descriptors, a rank value �ðDðuÞÞ is associated with
each numerical descriptor value DðuÞ [5]. �ðDðuÞÞ is the
index of u in V when V is sorted in ascending order with
respect to D, such that 1 � �ðDðuÞÞ � jV j, ties being
handled arbitrarily. Actually, due to the presence of ties,
there are many possible rankings, but in all of them, the
ranks of a given value range in an interval defined by
½�ðDðuÞÞ; �ðDðuÞÞ	 with:

�ðDðuÞÞ ¼ minf�ðDðvÞÞ j v 2 V and DðvÞ ¼ DðuÞg;
�ðDðuÞÞ ¼ maxf�ðDðvÞÞ j v 2 V and DðvÞ ¼ DðuÞg:

For instance, on graph of Fig. 1, �ðBETWðBÞÞ ¼ 8 and
�ðBETWðBÞÞ ¼ 9. Given two descriptors A and B and

their respective signs sa and sb, the ranking intervals over
these descriptors can be used to establish a lower bound
on the number of vertices that cannot form a supporting
pair with u. If va is a vertex such that ðAðvaÞ .saAðuÞÞ, then
the pair ðu; vaÞ cannot support AsaBsb . On the other hand,
if a vertex vb does not satisfy ðBðvbÞ .sb BðuÞÞ, then the pair
ðvb; uÞ cannot support AsaBsb either. We denote Isa and Jsb

the sets of vertices va and vb, respectively. Then, DiffAsaBsb

is the set of vertices that cannot form a supporting
pair with u:

DiffAsaBsb ¼ fv 2 V j v 2 Isa ^ v 62 Jsbg:

Depending on the values of sa and sb, the cardinality of Isa

and Jsb can easily be computed from the end points of the
ranking intervals:

jIþj ¼ jfv 2 V j AðvÞ � AðuÞ and v 6¼ ugj ¼ �ðAðuÞÞ � 1;

jJþj ¼ jfv 2 V j BðvÞ < BðuÞ and v 6¼ ugj ¼ �ðBðuÞÞ � 1;

jI�j ¼ jfv 2 V j AðvÞ � AðuÞ and v 6¼ ugj ¼ jV j � �ðAðuÞÞ;
jJ�j ¼ jfv 2 V j BðvÞ > BðuÞ and v 6¼ ugj ¼ jV j � �ðBðuÞÞ:

Fig. 2 illustrates these sets. In every case, the line
represents the vertices sorted by the descriptor depicted
on the right, in ascending order. In each line, we distinguish
a given vertex u and the end points of the interval
containing the vertices with the same value as u (�ðDðuÞÞ
and �ðDðuÞÞ). Besides, the hatched gray rectangle gives the
set Isa or Jsb .

Since we cannot derive the exact cardinality of DiffAsaBsb ,
given that we do not know how the sets Isa and Jsb

intersect, we compute a lower bound on it. If jIsa j � jJsb j,
then the cardinality of DiffAsaBsb is minimal when Jsb 
 Isa .
Analogously, if jIsa j < jJsb j, then DiffAsaBsb can be empty,
and thus its cardinality is 0. Thus,

jDiffAþBþ j � maxf0; ð�ðAðuÞÞ � �ðBðuÞÞÞg;
jDiffA�B� j � maxf0; ð�ðBðuÞÞ � �ðAðuÞÞÞg;
jDiffAþB� j � maxf0; ð�ðAðuÞÞ � 1� ðjV j � �ðBðuÞÞÞÞg;
jDiffA�Bþ j � maxf0; ðjV j � �ðAðuÞÞÞ � ð�ðBðuÞÞ � 1ÞÞg:

To establish an upper bound on the support of a pattern
P , we take, for each vertex u, the pair of signed
descriptors AsaBsb of P that maximizes DiffAsaBsb :
maxDiffP ðuÞ ¼ maxAsaBsb2P 2 jDiffAsaBsb j. F o r i n s t a n c e ,
maxDifffi�BETWþgðBÞ ¼ maxfjDiffi�BETWþ j; jDiffBETWþ;i� jg ¼
maxf16� 7� 8þ 1; 9� 1� 16þ 7g ¼ 2. This leads to the
following upper bound:
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Theorem 1 (Upper Bound on SuppSupp). Let P be a topological
pattern,

SuppallðP Þ � 1�
P

u2V maxDiffP ðuÞ
nðn� 1Þ : ð1Þ

Proof. For each vertex u, let us consider two descriptors Asa

and Bsb from P such as maxDiffP ðuÞ ¼ jDiffAsaBsb ðuÞj.
This is a lower bound on the number of vertices v such
that ðAðvÞ .saAðuÞÞ and :ðBðvÞ .sb BðuÞÞ. For each such
vertex v, neither ðu; vÞ nor ðv; uÞ contributes to SuppallðP Þ.
If we sum these numbers over all vertices from V , we get
a lower bound on the number of ordered pairs that
cannot support P . Since every ordered pair of vertices
ðu; vÞ is taken into account twice, we need to divide it
by 2 to get a lower bound on the pairs of vertices that do
not contribute to the support of P . Finally, we divide the
upper bound by ðn2Þ. tu

Observe that this upper bound on Suppall is very
convenient since its computation is in OðjV jÞ, whereas the
computation of Suppall is in OðjV j2Þ. On the one hand, it
requires storing two additional values for every descriptor
and every vertex (the end points of the ranking intervals).
On the other hand, since we are enumerating descriptors
and not descriptor values (as in item set mining) this is not
costly in terms of memory usage.

5.2 Algorithm

TopGraphMiner computes frequent topological patterns
and their top k representative vertices from an attributed
graph (see Algorithms 1 and 2). It takes in input the graph
G ¼ ðV ;E; LÞ and two parameters: minsup and k. In Line 1
of Algorithm 1, it performs the computation of topological
vertex properties. The computation of topological patterns
is done in an ECLAT-based way [32]. More precisely, all the
subsets of a pattern P are always evaluated before P itself.
In this way, by storing all frequent patterns in the hash-tree
M, the antimonotonic frequency constraint is fully checked
on the fly (Line 4, in Algorithm 2). We start by enumerating
the singleton positive descriptors to avoid the generation of
duplicate patterns. Larger patterns are recursively gener-
ated by the function EXTEND_PATTERN (see Line 13, in
Algorithm 1). We compute the upper bound on the support
to prune nonpromising topological patterns (function
COMP_UB in Line 8 of Algorithm 1). This function is the
strict application of Theorem 1 (see supplementary material,
which can be found on the Computer Society Digital
Library at http://doi.ieeecomputersociety.org/10.1109/
TKDE.2012.154, for the pseudocode). When this upper
bound is greater than the minimum threshold, the exact
support is computed (function COMP_SUPP in Algorithms 1
and 2). This step and its optimization are discussed in the
following section.

Algorithm 1. TopGraphMiner
Require: G ¼ ðV ;E; LÞ, minsup, k

Ensure: M: the frequent topological patterns and

their top k representative vertices.

1: Compute T , the set of topological properties of G

that associate a numerical value to vertices of V

based on the relation E.

2: D  T [ L
3: M ;
4: for all D 2 D, in descending order do

5: for all v 2 V do

6: Compute �ðDðvÞÞ and �ðDðvÞÞ.
7: end for

8: UB COMP UBðfDþg; �; �Þ
9: if (UB � minsup) then

10: ðsupp; topkÞ  COMP SUPPðfDþg; kÞ
11: if (supp � minsup) then

12: M M[ ðfDþg; topkÞ
13: EXTEND PATTERNðfDþgÞ
14: end if

15: end if

16: end for

Algorithm 2. Extend_Pattern

Require: P a topological pattern, minsup, k, �, �

Ensure: Compute all frequent extensions of P and

add them to the global variable M with their top

k representative vertices

1: for all B 2 D; B greater than the last descriptor in

P do

2: for all s 2 fþ;�g do

3: Q P [ fBsg
4: if (8R � Q, R 2M) then

5: UB minfCOMP UBðQ; �; �Þ,
COMP DEDUCðQ;MÞg

6: if (UB � minsup) then

7: ðsupp; topkÞ  COMP SUPPðQ; kÞ
8: if (supp � minsup) then

9: M M[ ðQ; topkÞ
10: Extend PatternðQÞ
11: end if

12: end if

13: end if

14: end for

15: end for

Another optimization is based on the deduction of the
support from already evaluated patterns (function COMP_

DEDUC in Line 5 of Algorithm 2). A pair of vertices that
supports a pattern P can support pattern PAþ or pattern
PA�, or none of them. Thus, another upper bound on
SuppallðPA�Þ is SuppallðP Þ � SuppallðPAþÞ. Note that these
patterns have already been considered before the evaluation
of PA�. So, to be stringent, we bound the support by taking
the minimum between this value and the upper bound
defined in Theorem 1 (see Line 5 in Algorithm 2). When
computing the support of the pattern, the top k representa-
tive vertices are also identified (see Section 5.3.2).

5.3 Discussion and Optimizations

We discuss other optimizations used in TopGraphMiner

algorithm and how emerging topological patterns are

computed.

5.3.1 Computation of Suppall
The support of P is evaluated by function COMP_SUPP that

counts the number of pairs of vertices ðu; vÞ such that
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8Asa 2 P; AðuÞ .sa AðvÞ. This computation requires to per-
form a quadratic operation on the number of vertices.
However, as proposed in [5], a more directed search for all
vertices that have smaller or greater values on all
descriptors in P is implemented by using range trees and
it enable good performances when jP j is not too large. For
a singleton pattern fDþg, the range tree is simply a binary
search tree where each node contains a value x of D along
with two values: yþ, that is, the number of vertices that is
lower than or equal to x, and y�, that is, the number of
vertices having a value greater or equal to x. Then, to
compute the support of fDþg, we simply loop over the
vertices of the graph, find their corresponding nodes in the
range tree and sum the yþ values of their left subtrees.
When extending a pattern P , every node in the range tree
is expanded to contain a nested range tree that corresponds
to the added descriptor. To compute the support, we loop
over the graph vertices, find their corresponding nodes in
the inner range trees and sum up the yþ (resp. y�) values
for positive (resp. negative) descriptors of their left (resp.
right) subtrees.

5.3.2 Computation of the Top k Representatives

As explained in Section 4, the vertex pairs SðP Þ that support
a topological pattern P define a transitive acyclic directed
graph GP ¼ ðV ; SðP ÞÞ (see Property 2) that admits at least
one topological ordering of its vertices. The top k

representative vertices are the k last vertices with respect
to one of these orderings.

Property 3. Let G ¼ ðV ;AÞ be a transitive directed graph and let

Deg�ðvÞ be the incoming degree of the vertex v 2 V
(deg�ðvÞ ¼ jf8u 2 V such that ðu; vÞ 2 Agj). For any arc
ðu; vÞ 2 A, deg�ðuÞ � deg�ðvÞ þ 1.

Proof. Given an arc ðu; vÞ 2 A, 8t 2 V such that ðt; uÞ 2 A, by
transitivity of G there exists an arc ðt; vÞ 2 A. Therefore,
deg�ðuÞ � deg�ðvÞ þ 1. tu

As a result, ordering V with respect to deg� constitutes a
topological sorting of GP . The range trees used for
computing the support of P is exploited to retrieve the
top k representative vertices of P : during the loop over the
vertices of the graph, their incoming degree is considered
and the set of k vertices having the largest incoming degree
is maintained in a heap, using operations in Oðlog kÞ.

5.3.3 Computation of SuppCr , SuppE, and Gr

Emerging topological patterns can easily be computed by
adapting Algorithm 1: the selected descriptor Cr is the last
one in the pattern being enumerated (in the ECLAT
enumeration fashion, the last descriptor in the pattern is
the first to be enumerated), and when enumerated, its
support provides SuppCrðP Þ. When subtracting this value
from the support of its direct ancestor, it provides
SuppCrðP Þ. We, therefore, retrieve only those patterns with
a growth-rate higher than a threshold. The computation of
SuppEðP Þ can be done in a time complexity proportional to
the number of edges in the graph. Finally, GrðP;EÞ can be
deduced from SuppEðP Þ and SuppallðP Þ.

6 PERFORMANCE STUDY

We report experimental results to illustrate the interest of
our approach. We start by describing the four attributed
graphs we use in our experiments. Then, we provide a
performance study. Qualitative results are given in the next
section. All experiments were performed on a cluster.
Nodes are equipped with 16 processors at 2.5 GHz and
16 GB of RAM under Linux operating systems. TopGraph-
Miner algorithm is implemented in C.

6.1 Real-World Attributed Graphs

We considered four real-world attributed graphs whose
characteristics are given in Table 1:

1. DBLP: This coauthorship graph is built from the
DBLP digital library. Each vertex represents an
author who published at least one paper in one of
the major conferences and journals of the data
mining and database communities1 between January
1990 and February 2011. Each edge links two authors
who coauthored at least one paper (no matter the
conference or journal). The vertex properties are the
number of publications in each of the 29 selected
conferences or journals.

2. MOVIES: Each vertex of this graph represents a
movie and an edge exists between two movies if
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TABLE 1
Main Characteristics of the Graphs DBLP, MOVIES, PATENTS, and GENES

1. Conferences: KDD, ICDM, ECML/PKDD, PAKDD, SIAM DM, AAAI,
ICML, IJCAI, IDA, DASFAA, VLDB, CIKM, SIGMOD, PODS, ICDE, EDBT,
ICDT, SAC—Journals: IEEE TKDE, DAMI, IEEE International Systems,
SIGKDD Exploration, Communication ACM, IDA Journal, KAIS, SADM,
PVLDB, VLDB Journal, ACM TKDD.



they have an actor in common.2 The vertex attributes
are based on movie ratings from Netflix customers:
the number of ratings, their average and standard
deviation values, the release year of the movie and
its number of actors.

3. PATENTS: It is a graph derived from a subset of the

citation graph of US patents granted between

January 1963 and December 1999.3 We selected only

patents of the subcategory “Computer Peripherals.”

There are 10 vertex attributes as, for example, the

grant year and the corresponding number of claims.
4. GENES: This graph contains gene-gene interactions

[30], that is, each vertex stands for a gene and an
edge links two vertices if they are known to interact
during the biological transcription process. The
vertex attributes associated with each gene are its
expression values in each of 348 biological situations.
Those situations are as many human tissues from
several organs that are healthy or cancerous.

The main characteristics of these graphs are reported in
Table 1. All these properties have a minimum value of 0.
Many of these properties have a standard-deviation greater
than their average, suggesting that they follow power law
distributions. The computation of the topological descriptor
values in these networks take few hours. For instance, the
computation of centrality measures in DBLP, which is the
most expensive, takes around 4 hours. Note that we do not
compute NBQC, SZQC, and CLUST for the attributed graph
PATENTS, since it is a directed graph and, as such, there are
very few dense quasi-cliques and triangles.

6.2 Performance Study

6.2.1 Comparison with a Baseline Approach

Since there is no other algorithm that simultaneously
computes up and down covariations using the same
support measure as in our approach, we first study the
performance of TopGraphMiner by comparing it with a
baseline approach. It consists in using the algorithm of [5],
which only computes up covariations, after having dupli-
cate and reverse each descriptor. For instance, the vertex
ranked first with respect to the descriptor Dþ is ranked last
with respect to D�. Notice that nonsensible patterns, such
as {Dþ; D�}, will be discarded in linear time since their
support is 0. Besides, it is necessary to postprocess the
output patterns to remove the symmetrical patterns. This

additional step is quadratic in the size of the output and can
be computationnaly expensive. However, for these experi-
ments, we do not take into account the execution time of
this postprocessing step.

Fig. 3A gives the ratio of the execution time of the
baseline approach to the execution time of our approach on
the four attributed graphs. We can see that for the graphs
MOVIES, PATENTS, and GENES, our approach is at least
twice as faster as the baseline. Besides, the lower the
support, the higher this ratio is. Notice that we were not
able to compute topological patterns for low support values
on the graph GENES, since there are many vertex attributes.
This behavior shows that our approach is more efficient
than the baseline one and that this efficiency does not only
rely on the fact that the number of descriptors of the graphs
is twice as smaller than the one used by the baseline
approach, but also on the pruning capability. With the DBLP

graph, however, the ratio decreases for lower supports. This
can be explained by the fact that there are many non-
frequent topological patterns with negative signs that are
early pruned by the baseline approach. Fig. 3B shows the
execution time spent by both algorithms with respect to
different numbers of randomly chosen original descriptors
from the MOVIES graph, with minimum support of
20 percent. We can observe that our approach outperforms
the baseline one and the gain is more important when the
number of descriptors increases. Fig. 3C gives the execution
time spent by both algorithms with respect to the number of
vertices in the attributed graph MOVIES, with minimum
support of 20 percent (the x-axis gives the replication
factor). We can notice that TopGraphMiner is faster than the
baseline approach and this especially as the number of
vertices increases. Although the computation of the support
of the patterns is quadratic in the number of vertices,
the execution times do not increase accordingly due to the
use of the range trees. We can, therefore, conclude that the
results shown in Fig. 3A are more influenced by the number
of descriptors than that of vertices.

6.2.2 Empirical Complexity of TopGraphMiner

Figs. 4A and 4B present, respectively, the execution time of
TopGraphMiner and the number of obtained frequent
patterns according to the minimum support threshold.
The execution time is strongly related to the number of
frequent topological patterns, even if the computation of the
support may impact the execution time when the number of
vertices is high. For example, for minimum supports greater
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Fig. 3. Comparison w.r.t. a baseline technique: (A) execution time ratio, (B) execution time w.r.t. the number of descriptors (MOVIES, minsup ¼ 20%),
and (C) execution time w.r.t. a replication factor (MOVIES, minsup ¼ 20%).

2. http://www.imdb.com/.
3. http://www.nber.org/patents/.



than 60 percent, the number of frequent patterns in the
graphs MOVIES and PATENTS is greater than that in DBLP.

Nevertheless, the extraction of the patterns is faster in the
former two since they have fewer vertices than the latter.

Regarding the efficiency of our pruning technique (i.e.,

the upper bound on the support), Fig. 4C gives, for every
minimum support, the ratio of the number of pruned
patterns, thanks to (1), to the number of patterns that, in the

end, turned out to be indeed nonfrequent. In other words, it
gives the recall of our pruning technique. It can be seen
from this figure that the technique is very efficient for high

minimum support values on the four attributed graphs. In
fact, when the minimum support is higher than 70 percent,

almost all nonfrequent patterns are pruned without
computing their exact support.

However, for lower support values, we observe that the
upper bound is less stringent on MOVIES and PATENTS,

while keeping its performance for the graphs GENES and
DBLP. This behavior can be explained by the fact that the
upper bound exploits tie values, whose ratio is higher in the

latter two. Let us consider the ratio of tie values defined as

TiesðGÞ ¼
P

D2D
P

u;v2V 2u<v DðuÞ ¼ DðvÞ
jDj:ðn2Þ

:

In the four real-world attributed graphs, this ratio is

The presence of many tie values in DBLP and GENES

descriptors may explain the robustness of the upper bound

with respect to the minimum support threshold.
Fig. 5 shows the execution time of TopGraphMiner

with and without using the upper bound. To show that

the use of the upper bound is more and more advanta-
geous as the number of vertices of the graph grows, we
plot the execution time of TopGraphMiner on GENES

graph with respect to a replication factor. We can observe
that the use of the upper bound reduces the execution
time and that this difference increases with the number of
vertices. Note that this difference is lightened by the use
of range trees, which reduce the impact of the computa-
tion of unpromising patterns.

7 CASE STUDIES

We now analyze the effectiveness of our approach on the
real-world attributed graphs.

7.1 Tell Us Where You Publish, We Tell You How
Important You Are

We examine the results obtained by TopGraphMiner on the
DBLP attributed graph regarding the following questions:

. Are there any interesting patterns among publica-
tions?

. Are there interesting trends between some authors’
publications and topological properties?

. What about IEEE TKDE authors?

Before extracting topological patterns with TopGraph-
Miner, we compute correlations between descriptors.
The resulting correlation matrix is reported in Fig. 6A.
The vertex attributes that have a correlation higher than
0.7 are VLDB, ICDE, and SIGMOD. The most correlated
topological properties are, on the one hand, BETW, DEGREE,
and PAGERANK and, on the other hand, SZQC and NBQC.
The vertex attributes and the topological properties that
are not correlated with any other (with a correlation
always lower than 0.2) are: SAC, Communication of
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Fig. 4. (A) Execution time, (B) number of patterns, and (C) pruning recall w.r.t. minimum support threshold.

Fig. 5. Impact of the upper bound on the execution time with respect to a
replication factor (GENES, minsup ¼ 40 percent).

Fig. 6. (A) Correlation matrix between vertex attributes (1 to 29) and
topological properties (30 to 38) in DBLP. (B) Silhouette plot of the K-
means clustering on some topological patterns.



ACM, IEEE International Systems, CLOSE and CLUST. These
correlation measures will help us in the interpretation of the
following results.

7.1.1 Topological Patterns on Conferences and Journals

Let us first consider topological patterns among publica-
tions venues. Mining all frequent topological patterns with
a support threshold of 1 percent takes 68 seconds. The
output contains 263 topological patterns, from which 58
(22 percent) involve negatively signed attributes. To better
understand the type of information retrieved by these
263 patterns, we performed a clustering analysis of
the topological patterns. We use K-means algorithm on
the 263� 57 Boolean matrix where the rows correspond to
the patterns and the columns to the signed vertex attributes
(2� 29� 1). We use the cosine distance and employ the
silhouette plot to determine the number of clusters. It
suggests 10 clusters (see Fig. 6B). The most frequent vertex
attributes of each cluster are shown in Table 2, that is the
vertex attributes that appear in at least in 2/3 of the cluster
patterns. We can observe that the majority of the clusters are
homogeneous, referring either to data mining or to database
publications. For instance, Clusters 1, 2, 6, and 9 refer to
data mining publications, while Clusters 3, 8, and 10 clearly
refer to database publications. Other clusters are related to a
specific conference/journal.

Interestingly, 20 of these patterns contain the attribute
SAC� together with positively signed attributes. Examples of
such patterns are fSAC�;KDDþg, fSAC�;ECML=PKDDþg,
fSAC�;VLDBþg, and fSAC�; SIGMODþg. This type of
pattern can be explained by the fact that SAC scope is larger
than that of the other selected conferences, which are more

focused either on database or data mining topics. Since the
topics covered by SAC are much more general (e.g.,
programming languages, geometric constraints and reason-
ing, and applied biometrics), it is not surprising that many
authors that have several publications in SAC conference
series have none or few publications in the data mining or
database areas.

7.1.2 Are There Interesting Trends between Author

Publications and Topological Properties?

Table 3 reports the most frequent topological pattern (Pall),
the most emerging pattern (PPAGERANKþ ) with respect to
PAGERANKþ and the most structurally correlated topolo-
gical pattern (PE). Pall is formed by descriptors SACþ and
SZCOM�. Its meaning is that SAC authors tend to belong to
small communities, that is, these authors are rather isolated
in the graph as illustrated in Fig. 7A, where the top-10
representative vertices and their direct neighborhoods are
displayed. These vertices have a low degree. As mentioned
in Section 7.1.1, the scope of the SAC conference is much
wider than database and data mining topics. This makes
this pattern sensible and justifies that 1) this pattern is not
much correlated to the graph structure (GrðP;EÞ ¼ 0:21),
and 2) its top-five supporting vertices are mostly research-
ers from software engineering and network areas.

The computation of emerging patterns with respect to
PAGERANK, with a support threshold of 1 percent and a
growth-rate threshold of 3, takes around 6 hours and
produces 4,313 patterns. The most emerging pattern
PPAGERANKþ (see Table 3) contains many topological proper-
ties with a positive sign, except CLUST, which has a
negative sign. As we have seen before, PAGERANK is highly
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TABLE 2
Most Frequent Vertex Attributes in Clusters of Patterns Found in

the DBLP Attributed Graph

Fig. 7. (A) Top 10 vertices supporting Pall, (B) PPAGERANK, and (C) PE and their connected vertices in DBLP.

TABLE 3
Top Topological Patterns in the DBLP Attributed Graph



correlated with DEGREE and BETW. Therefore, it is not
surprising that both appear in the pattern. On the other
hand, the presence of the property CLUST� suggests that
the higher the PAGERANK of the authors (and consequently
their DEGREE and BETW), the lower the connectivity of their
coauthors. In other words, authors with high PAGERANK

have many coauthors that do not publish together. This can
be observed on Fig. 7B where the connectivity between
coauthors of the top-10 representative vertices is low. Those
that advise many PhD students can be seen as typical
examples of these authors.

The most structurally correlated topological pattern PE
gathers the descriptors PVLDBþ, DEGREEþ, and BETWþ.
PVLDB is at the same time a well-established conference
and journal in the data mining and database communities.
This pattern is strongly structurally correlated (GrðP;
EÞ > 5), i.e., it tends to be more supported by pairs that
are edges than arbitrary pairs of vertices. Fig. 7C displays its
top-10 representative vertices.

We can also use emerging topological patterns, made
only of topological properties, to compare the relative
importance of conferences and journals. Let us consider

PTopo1
¼ fPAGERANKþ;DEGREEþg and

PTopo2
¼ fPAGERANKþ;BETWþg;

two such emerging patterns whose respective growth-rates

a r e GrðPTopo1
; PAGERANKþÞ ¼ 124:69 a n d GrðPTopo2

;

PAGERANKþÞ ¼ 584:46. These emerging patterns reveal

which conferences or journals are more related to the

topological properties BETWþ and DEGREEþ. To that end,

for each publication venue C and both emerging patterns

PTopo1
and PTopo2

, we compute the ratio
GrðPTopoiC;PAGERANKþÞ
GrðPTopoi ;PAGERANKþÞ .

Table 4A gives the top-five publications with respect to this

ratio. Surprisingly, we observe that data mining conferences

have a higher impact on the pattern {PAGERANKþ;

DEGREEþ}, while database conferences positively influ-

ence the growth-rate of the pattern {PAGERANKþ;

BETWþ}. Since data mining intersects many other research

areas, these results may be explained by the fact that data

mining authors may also publish with many others from

different areas, such as database and machine learning ones.

On the other hand, as database is an older well-established

research field, database authors tend to appear at the center

of the graph. For the most impacting publications, we

identify the top-five representative authors. They are shown

in Table 4B.

7.1.3 What about the IEEE TKDE Authors?

We also look for the emerging patterns with respect to the
attribute IEEE TKDE, with support threshold of 1 percent
and growth-rate threshold of 3 (their computation takes
around 5 hours). We obtain 745 emerging patterns with
respect to the class IEEE TKDEþ. The most emerging pattern
is PTKDE ¼ ICDEþ;VLDBþ;BETWþ;PAGERANKþ, with
GrðPTKDE;TKDEþÞ ¼ 11:75. This pattern indicates that
authors publishing in IEEE TKDE journal tend also to
publish papers in the conferences ICDE and VLDB.
BETWþ suggests that these authors are located at the center
of the coauthorship graph, while PAGERANKþ means that
they coauthored papers with other researchers that also
appear at the center of the graph. It is important to observe
that this pattern is also highly structurally correlated
(GrðPTKDE; EÞ ¼ 6:5758). Furthermore, this pattern is sensi-
ble since it is supported by well-established researchers in
the Database community: Christos Faloutsos, Jiawei Han,
Philip S. Yu, Beng Chin Ooi, and Hector Garcia-Molina are its
top-five representative authors.

7.2 Do We Only Appreciate Blockbusters?

Let us now consider the real-world attributed graph
MOVIES. Table 5 shows the four most frequent topological
patterns (with at least two descriptors) with their top-five
representative movies. Pattern P1 suggests that Netflix users
tend to rate movies they like. Its top-10 representative
movies are connected (see Fig. 8A), which indicates they
have at least one actor in common. The second pattern P2

reveals that many users tend to rate movies located at the
center of the graph, that is, movies with “major” actors (e.g.,
R. de Niro, S. Connery, T. Hanks, B. Willis, H. Ford, etc.).
Therefore, the supporting vertices of this pattern is made of
major blockbusters (see Fig. 8B). Pattern P3 indicates that
controversial movies (those with a high rating standard
deviation) tend to be isolated within the graph (lower
PAGERANK): they are more independent films without
well-known actors. Note that all the supporting movies of
this pattern have a degree of 0. Finally, pattern P4 suggests
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TABLE 4
Top-Five “Impacting” Publications in the Emergence of

DEGREEþ and BETWþ w.r.t. PAGERANKþ (A) along with
Their Top-Five Authors (B)

TABLE 5
Patterns Found in MOVIES and Their Top-Five Movies



that older movies are better rated. This can be due to the
fact that the ratings were given between 1998 and 2005.
Therefore, Netflix users tend to rate only noncontemporary
movies they like and to forget those they did not like
over time.

Table 6 shows the most emerging topological pattern
with respect to the PAGERANK and the most structurally
correlated pattern. Pattern PPAGERANK gathers descriptors
NB_ACTORSþ and all the centrality measures, plus
STD RATING� and NB RATINGSþ. As the edges of
MOVIES encode the fact that two movies share at least one
actor, it is not surprising that this pattern associates
NB ACTORSþ with all centrality measures. Furthermore,
the attribute STD RATING� indicates that the representa-
tive movies of this pattern are consensual.

The most structurally correlated topological pattern PE
reveals that recent movies (YEARþ) tend to play a central
role within the graph (BETWþ, EGVECTþ, PAGERANKþ)
and their neighbors tend to be not connected (CLUST�),
since it is not common that several movies share the same
casting. The projection of its top-10 representative vertices
on the graph is given in Fig. 8C.

7.3 How Do Patents Cite Each Other?

We now present some topological patterns found in
PATENTS. Table 7 shows the four most frequent patterns
that involve vertex attributes and topological properties.
The companies associated with the top-five representative
vertices of these patterns are also shown. For the pattern
P1, all five representatives belong to the same company
Canon Kabushiki Kaisha. For the other patterns, at least

two of the top-five representative patents belong to the
same company.

Patterns P1 and P2 are sensible since to have a high
PAGERANK value, a vertex must have high inner or outer
degree (see Figs. 9A and 9B). P3 means that “the younger
the patents, the lower the PAGERANK.” This knowledge
nugget is meaningful as older patents are more widely cited
than younger ones. All its top-10 representative patents
have a degree of 0. P4 reveals that the higher the number of
claims, the higher the PAGERANK of the patent. This can be
explained by the fact that the claims of the patents may refer
to many previously granted patents.

The most emerging topological pattern with respect to
PAGERANK indicates that the more generic a patent is, the
more its location tends to be central in the graph (see
Table 8). The vertex attribute named GENERAL is related to
the number of times the patent is cited by subsequent
patents that belong to a wide range of fields. PE discloses
the fact that the more recent a patent is, the higher the
number of citations to previously granted patents, whereas
it tends to be not cited and consequently its PAGERANK

tends to be low (see Fig. 9C).

7.4 Are Topological Patterns in GENES Relevant with
Respect to Prior Knowledge?

To validate our approach using the attributed graph GENES,
we analyze four specific patterns given in Table 9, along
with their corresponding measures. Each pattern is com-
posed of two vertex attributes. The first attribute is a
biological situation that corresponds to a healthy tissue:
normal pancreas (P1 and P2) or normal colon (P3 and P4).
The second attribute is a biological situation that corre-
sponds to the same but cancerous tissue (adenocarcinoma
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Fig. 8. (A) Top 10 vertices supporting P1, (B) P2, and (C) PE and their connected vertices in MOVIES.

TABLE 7
Frequent Patterns in PATENTS with the Associated Companies of

Their Top-Five Patents

TABLE 6
Top Topological Patterns in MOVIES



for P1 and P3, and carcinoma for P2 and P4). Moreover, the
first attribute is negatively signed, whereas the second one
is positively signed. So, the most representative genes of
these patterns are those that are inhibited in a normal tissue
but are overexpressed in a cancerous one.

To verify whether the given patterns are sensible, we
study their supporting genes. More precisely, for each
pattern, we consider the ranks achieved by some of their
supporting genes known to be involved in pancreatic and
colon cancer. We compute the normalized average ranks of
two specific sets of genes known to be overexpressed in
pancreatic cancer (HLA-DRB4, PPAPDC1B, THBS1) [6] and
also in colon cancer (ANXA1, GJB2, PSMC5, RPS7) [26]. The
lower the ranks achieved by such genes, the more
representative they are.

The computed average ranks are given in the fourth and
fifth columns of Table 9. As can be observed from the
fourth column, the genes defined as associated with
pancreatic cancer in [6] indeed highly support the patterns
related to pancreatic tissue, P1 and P2. On average, they are
ranked above the first half of the ranks. We can also
observe that the same genes are not the most representative
of the patterns related to colon cancer (P3 and P4), since
they achieved high average ranks for these patterns (above
0.8). From the fifth column of the same table, we can
observe that the genes identified in [26] as associated with
colon cancer are not only related to this type of cancer, but
also to pancreatic cancer, as they have low average ranks
for all four patterns. This is exactly what is claimed in [26]:
“the genes ANXA1, GJB2, RPS7 were ALSO identified as
metastasis-specific of pancreatic metastatic tumor cells versus
their nonmetastatic counterparts.” Finally, all patterns are
positively correlated to the graph structure, which means
that they are more supported by pairs of genes that are
known to interact than arbitrary gene pairs.

8 RELATED WORK

Graph mining is an active topic in data mining. In the
literature, there exist two main trends to analyze graphs. On
the one hand, graphs are studied at a macroscopic level by
considering statistical graph properties (e.g., diameter,
degree distribution) [2], [7]. On the other hand, sophisti-
cated graph properties are discovered by using a local
pattern mining approach. Recent approaches mine attrib-
uted graphs which convey more information. In such
graphs, information is locally available on vertices by
means of attribute values. As argued by Moser et al. [23],
“often features and edges contain complementary information,
i.e., neither the relationships can be derived from the feature
vectors nor vice versa.”

Attributed graphs are extensively studied by means of
clustering techniques (see, e.g., [1], [8], [13], [15], [20], [33])
whereas pattern mining techniques in such graphs have
been less investigated. The pioneering work [23] proposes a
method to find dense homogeneous subgraphs (i.e.,
subgraphs whose vertices share a large set of attributes).
Similar to this work, Günnemann et al. [14] propose a
method based on subspace clustering and dense subgraph
mining to extract nonredundant subgraphs that are homo-
genous with respect to vertex attributes. Silva et al. [29]
extract pairs of dense subgraphs and Boolean attribute sets
such that the Boolean attributes are strongly associated with
the dense subgraphs. In [24], Mougel et al. propose the task
of finding the collections of homogeneous k-clique perco-
lated components (i.e., components made of overlapping
cliques sharing a common set of true valued attributes) in
Boolean attributed graphs. Another approach is presented
in [19], where a larger neighborhood is considered. This
pattern type relies on a relaxation of the accurate structure
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Fig. 9. (A) Top 10 vertices supporting P1, (B) P2, and (C) PE and their connected vertices of PATENTS.

TABLE 8
Top Topological Patterns in PATENTS

TABLE 9
Four Specific Patterns in GENES



constraint on subgraphs. Roughly speaking, they propose a
probabilistic approach to both construct the neighborhood
of a vertex and propagate information into this neighbor-
hood. Following the same motivation, Sese et al. [27] extract
(not necessarily dense) subgraph with common item sets.

Note that these approaches use a single type of
topological information based on the neighborhood of the
vertices. Furthermore, they do not handle numerical
attributes as in our proposal. However, global statistical
analysis [11] of a single graph considers several measures to
describe the graph topology, but does not benefit from
vertex attributes. Besides, current local pattern mining
techniques on attributed graphs do not consider numerical
attributes nor macroscopic topological properties. To the
best of our knowledge, our paper represents a first attempt
to combine both microscopic and macroscopic analysis on
graphs by means of (emerging) topological pattern mining.
Indeed, several approaches aim at building global models
from local patterns [12], but none of them tries to combine
information from different graph granularity levels.

Covariation patterns are also known as gradual patterns
[9] or rank-correlated item sets [5]. Do et al. [9] use a
support measure based on the length of the longest path
between ordered objects. This measure has some draw-
backs w.r.t. computational and semantics aspects. Calders
et al. [5] introduce a support measure based on the
Kendall’s � statistical measure. However, their approach is
not defined to simultaneously discover up and down
covariation patterns as does our approach. Another
novelty of our work is the definition of other interesting-
ness measures to capture emerging covariations. Finally,
this work is also the first attempt to use covariation pattern
mining in attributed graphs.

9 CONCLUSION AND FUTURE DIRECTIONS

We propose TopGraphMiner, an algorithm that supports
network analysis by finding regularities among vertex
topological properties and attributes. It mines frequent
topological patterns as up and down covariations involving
both attributes and topological properties of graph vertices.
In addition, we define two interestingness measures to
capture the significance of a pattern with respect to either a
given descriptor, or the relationship encoded by the graph
edges. Furthermore, by identifying the top k representative
vertices of a topological pattern, we support a better
interaction with end-users. Experimental results illustrate
the added value of our approach. In particular, we report
on four real-world case studies: a coauthorship graph built
from the DBLP digital library, a graph derived from
movies’ characteristics, a citation graph of US patents,
and a protein-protein interaction graph. These case studies
show the capability of TopGraphMiner to discover sensible
patterns. Our work opens several perspectives. A short-
term perspective would be to extend our framework to take
into account the information conveyed by categorical vertex
descriptors. Another interesting perspective would be to
adapt the topological pattern mining approach to dynamic
graphs by, for instance, identifying unexpected topological
patterns over time.
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