

From SQL to RQL

or how to re-use SQL techniques for pattern mining

Jean-Marc Petit INSA/Université de Lyon, CNRS

Joint work with: Brice Chardin, Emmanuel Coquery, Christine Froidevaux, Marie Paillloux (Agier), Jef Wijsen ... and Einoshin Suzuki!

RQL in a nutshell

About logical implications

- Logical consequence (or entailment)
 - One of the most fundamental concepts in logic
 - Premises, Conclusion (If ... then ...): Reasoning using proofs and/or models
 - Examples
 - " If 2=3 then I am the queen of England"
 - right or wrong? Why?
 - " If 2=2 then I am the gueen of England"
 - right or wrong? Why?
- Focus on a specific class of logical implications
 - Three properties to be verified
 - Reflexivity, augmentation, transitivity (Armstrong axioms)

About databases

- Relational databases systems everywhere!
 - RDBMS market expected to double by 2016 [MarketResarch.com, Aug 2012]
 - Query optimization: Awesome!
- Simple goals :
 - Query the data where they are
 - Use/extend DB languages for pattern mining problems (e.g. DMQL, MSQL, ...)

About Data Mining

- Focus on pattern mining in DB
 - patterns = logical implication, called rules hereafter
 - DB= Relational DBs
 - Quality measure: not considered
- Pattern mining discovery seen as query processing

Reusing optimization techniques from DB

RQL: contributions

- Original ideas
 - Marie Agier, Jean-Marc Petit, Einoshin Suzuki: Unifying Framework for Rule Semantics: Application to Gene Expression Data. Fundam. Inform. 78(4): 543-559 (2007)
- Since then, what we have done?
 - SafeRL: a well-founded logical query language derived from Tuple Relational Calculus (TRC)
 - not discussed in detail here
 - RQL: Its practical counterpart derived from SQL
 - A rewriting technique to use as much as possible the underlying DBMS
 - → A web application : http://rql.insa-lyon.fr

- Getting started with RQL through examples
- SafeRL and Query rewriting
- RQL Web Application
- Conclusions

Outline

EMP	Empno	Lastname	Work	Job	Educ	Sex	Sal	Bonus	Comm	Mgrno
			dept		level					
	10	SPEN	C01	FINANCE	18	F	52750	500	4220	20
	20	THOMP	-	MANAGER	18	M	41250	800	3300	-
	30	KWAN	-	FINANCE	20	F	38250	500	3060	10
	50	GEYER	-	MANAGER	16	M	40175	800	3214	20
	60	STERN	D21	SALE	14	M	32250	500	2580	30
	70	PULASKI	D21	SALE	16	F	36170	700	2893	100
	90	HENDER	D21	SALE	17	F	29750	500	2380	10
	100	SPEN	C01	FINANCE	18	M	26150	800	2092	20

Rules between attributes with NULL values in EMP ?

Motivating examples

FINDRULES
OVER workdept, mgrno
SCOPE t1 EMP
CONDITION ON \$A IS t1.\$A IS NULL

- Mgrno -> Workdept holds
- Workdept -> Mgrno does not
 - => counter-example: Empno 30 (or 50)

Functional dependencies

- Remember the definition:
 - **₹** X->Y holds in r

iff
$$\forall t_1, t_2 \in r$$
,

if $\forall A \in X$, $t_1[A] = t_2[A]$ then $\forall B \in Y$, $t_1[B] = t_2[B]$

With RQL:

```
FINDRULES

OVER Lastname, Workdept, Job, Sex, Bonus

SCOPE t1, t2 Emp

CONDITION ON $A IS t1.$A = t2.$A
```

Variant of FDs: Conditional FDs

OVER Lastname, Workdept, Job, Sex, Bonus SCOPE t1, t2 (select * from Emp where educlevel > 16) CONDITION ON \$A IS t1.\$A = t2.\$A sex -> bonus holds i.e. « above a certain level of qualification, the gender determines the

Kyushu University April 15, 2014

bonus »

Approximative FDs

```
FINDRULES

OVER Educlevel, Sal, Bonus, Comm

SCOPE t1, t2 EMP

CONDITION ON $A IS

2*abs(t1.$A-t2.$A)/(t1.$A+t2.$A)<0.1
```

Sal -> Comm holds
i.e. « employees earning similar salaries
 receive similar commissions »

Sequential FDs

FINDRULES

OVER Educlevel, Sal, Bonus, Comm

SCOPE t1, t2 EMP

CONDITION ON \$A t1.\$A >= t2.\$A

Sal -> Comm and Sal -> Comm hold
i.e. « higher salary is equivalent to
 higher commission »

Conditional sequential FDs

```
OVER Educlevel, Sal, Bonus, Comm

SCOPE t1, t2 (select * from EMP where Sex = 'M')

CONDITION ON $A t1.$A >= t2.$A

EducLevel -> Bonus holds

i.e. « male employees with higher education levels receive higher bonus »
```

Another kind of « FD »

OVER Educlevel, Sal, Bonus, Comm

SCOPE t1, t2 EMP

WHERE t1.empno = t2.mgrno

CONDITION ON \$A t1.\$A >= t2.\$A

{} -> Bonus holds

i.e. « managers always earn a bonus greater than or equal to their employees»

Another example (1/2)

- Example from gene expression data
- Assume tuples are ordered
- Idea: adapting FD for catching the evolution of attributes between two consecutive tuples

	g1	g2	g3	g4	g5	g6	g7	g8
t1	1,9	0,4	1,4	-1,5	0,3	1,8	0,8	-1,4
t2	1,7	1,5	1,2	-0,3	1,4	1,6	0,7	0,0
t3	1,8	-0,7	1,3	0,8	-0,1	1,7	0,9	0,6
t4	-1,8	0,4	1,7	1,8	0,6	-0,4	1,0	1,5
t5	-1,7	-1,4	0,9	0,5	-1,8	-0,2	1,2	0,3
t6	0,0	1,9	-1,9	1,7	1,7	-0,5	1,1	1,3

 $X \Rightarrow Y \text{ is satisfied in r iff } \forall t_i, t_{i+1} \in r,$ **if** $\forall g \in X, t_{i+1}[g] - t_i[g] \ge \varepsilon_1 \text{ then } \forall g \in Y, t_{i+1}[g] - t_i[g] \ge \varepsilon_1$ $\varepsilon_1 = 1.0$

Rules over genes

```
X \Rightarrow Y is satisfied in r iff \forall t_i, t_{i+1} \in r,

if \forall g \in X, t_{i+1}[g] - t_i[g] \ge \varepsilon_1 then \forall g \in Y, t_{i+1}[g] - t_i[g] \ge \varepsilon_1

\varepsilon_1 = 1.0
```

```
FINDRULES

OVER g1,g2,g3,g4,g5,g6,g7,g8

SCOPE t1, t2 GENES

WHERE t2.time= t1.time+1

CONDITION ON A IS t2.A - t1.A >= 1.0
```

Another kind of rules (2/2)

	g1	g2	g3	g4	g5	g6	g7	g8
t1	1,9	0 ,4						-1,4
t2	1,7	→ 1,5	1,2	> -0,3	1,4	1,6	0,7	0,0
t3	1,8	-0,7	1,3	9,0	-0,1	1,7	0,9	0,6
t4		→ 0,4	1,7	> 1,8	0,6	-0,4	1,0	1,5
t1 t2 t3 t4 t5	-1,7	-1,4	0,9	0,5			1,2	
t6	0,0	1 ,9	-1,9	> 1,7	1,7	-0,5	1,1	1,3

$$r \mid = g_2 \Rightarrow g_4$$

If expression level of g_2 grows between t_i and t_{i+1} ,

then expression level of g₄ also grows

But
$$r \not\models g_4 \Rightarrow g_2$$

t₂,t₃ is a couter-example

Local maximum

7 FINDRULES

OVER g1,g2,g3,g4,g5,g6,g7,g8

SCOPE t1, t2, t3 Genes

WHERE t2.time=t1.time+1 AND t3.time=t2.time +1

CONDITION ON \$A IS t1.\$A < t2.\$A AND t3.\$A < t2.\$A

=> three tuples variables needed to express a local maximum

Synthesis of RQL

- RQL: « look & feel » of SQL
 - Very simple and easy to use by SQL analysts
- Powerful query language
 - Allow interactions with data analysts
 - → Powerful tool, need some practice to get fluent with ...
- Can be used
 - To generate the rules (if schema permits)
 - 7 To test whether or not a given rule holds
 - If yes, just say « Yes » ②
 - Otherwise, find a counter-examples in the data and refine your query

- Motivating examples
- SafeRL and Query rewriting
- RQL Web Application
- Conclusions

Outline

SafeRL: a query language for rules

■ SafeRL: a well-founded logical query language

```
Q=\{X\rightarrow Y\mid \forall t1... \forall tn(\psi(t1,...,tn) \land (\forall A\subseteq X(\delta(A,t1,...,tn))\rightarrow \forall A\subseteq Y (\delta(A,t1,...,tn)))\}
```

- **➣** Syntax + semantics **not detailed here**: cf papers
- Every SafeRL query Q defines rules "equivalent to" FD or implications
 - Result: There is a closure system C(Q) associated to Q

Contribution: Query rewriting

- A base B of a closure system C is such that
 - **7** Irreducible(C) \subseteq B \subseteq C
- Main result (cf LML 2013): Let Q be a SafeRL query over a DB d

THM: There exists a SQL query Q' over d such that Q' computes a base B of C(Q), the closure system associated to Q

Base of a query: the data-centric step

From the base B of Q in d, we can get:

- 7 The closure of an attribute set
- 7 The canonical cover of satisfied rules
- The cover of Gotlob&Libkin of approximate rules

and we can decide whether or not a given rule is satisfied

- If not, a counter example from d can be provided
- Nothing new here, cf related works

- Motivating examples
- SafeRL and Query rewriting
- RQL Web Application
- Conclusions

Outline

Architecture

RQL Web application

- Open to registered users (simple application form)
 - dedicated Oracle user, 200Ko quota
- Web Framework For Java
 - Play Framework (http://www.playframework.com/)
 - **→** DBMS: Oracle v11 (+ MySQL)
 - + specific development in C++, Java, C (Uno's code)
- Two modes: Sample (predefined schema) and SandBox (user schema)
- Try it out!

http://rql.insa-lyon.fr

Snapshot: sample mode

Counter example

Rule verification:

The rule Sal Educlevel → Bonus is false

Counter-example:

EMPNO	LASTNAME	WORKDEPT	JOB	EDUCLEVEL	SEX	SAL	BONUS	COMM	MGRNO
10	SPEN	C01	FINANCE	18	F	52750	500	4220	20
20	THOMP	null	MANAGER	18	М	41250	800	3300	null

Generated query:

```
1. SELECT t1.*, t2.*

2. FROM Emp t1, Emp t2

3. WHERE (t1.Sal >= t2.Sal AND t1.Educlevel >= t2.Educlevel)

4. AND CASE WHEN (t1.Bonus >= t2.Bonus) THEN 1 ELSE 0 END = 0

5. AND rownum <= 1
```

- Motivating examples
- RQL Web Application
- SafeRL and Query rewriting
- Conclusions

Outline

Conclusion

- From a logical query language for rules to the practical language RQL
 - Easy to use by SQL-aware analysts
 - No discretization
 - Promoting query processing techniques in pattern mining
- RQL: a practical Web application
 - For teaching
 - For research
- Future works: Data exploration with RQL through counter-examples

Merci! Questions?

Work partially supported by the French ANR project DAG (ANR DEFIS 2009)

- Query Rewriting for Rule Mining in Databases.
 B. Chardin, E Coquery, B. Gouriou, M. Pailloux, J-M Petit. In Languages for Data Mining and Machine Learning (LML) Workshop@ECML/PKDD 2013, Bruno Crémilleux, Luc De Raedt, Paolo Frasconi, Tias Guns ed. Prague. pp. 1-16. 2013
- On Armstrong-compliant Logical Query
 Languages. M. Agier, C. Froidevaux, J-M Petit, Y.
 Renaud, J. Wijsen. Dans 4th International
 Workshop on Logic in Databases (LID 2011)
 collocated with the 2011 EDBT/ICDT conference,
 Sweeden. pp. 33-40. ACM
- Unifying Framework for Rule Semantics: Application to Gene Expression Data. Marie Agier, Jean-Marc Petit, Einoshin Suzuki. Fundam. Inform. 78(4): 543-559 (2007)