Extending Set-based Dualization: Application to Pattern Mining¹

Lhouari Nourine¹ Jean-Marc Petit²

¹Université Blaise Pascal, CNRS, LIMOS, France ²Université de Lyon, CNRS, INSA Lyon, LIRIS, France

> ECAI 2012 Montpellier, France

¹Funded by ANR DEFIS 2009 program, DAG project

Context: Mining interesting patterns in databases

Plenty of contributions over the last 20 years

- Patterns: itemsets, sequences, trees, graphs, functional dependencies, queries ...
- Databases: Relational DB, Transactional DB, XML DB ... or just a collection of patterns (supposed to be large)
- Interestingness criteria: frequency (and variants), satisfaction of some predicates

✓ Define a wide class of enumeration problems, some being studied for years in combinatorics, AI and databases

Frequent itemset mining (FIM): The most studied problem in data mining

A theoretical perspective

Main theoretical framework proposed by (Mannila and Toivonen, DMKD, 1997)

- Identifying *RAS*, the class of such problems reducible to FIM (i.e representable-as-sets)
 - **Isomorphism** between a poset of patterns and some set E ordered by inclusion
 - Identification of set-based dualization as the bottleneck for studying complexity
- \mathcal{RAS} is relatively large
- However, there is an interesting open question (Gunopulos and al, ACM TODS 2003)
 How to deal with 'non representable-as-sets patterns" such as sequences, episodes or trees ?

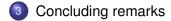
Contributions in a nutshell

- Identifying a pattern mining problem as simple as possible and not "representable-as-sets"
 - Frequent rigid sequences with wildcard
- Studying the associated dualization problem (SEQ)
- Proving that SEQ is polynomially equivalent to set-based dualization
- Proposing a new theoretical framework for pattern mining problems
 - 2 new classes of problems: WRAS and EWRAS

Plan

Preliminaries

- Beyond \mathcal{RAS}
- Weak representation as sets: The WRAS class
- Efficient WRAS: The EWRAS class



Preliminaries

Plan

- Weak representation as sets: The WRAS class
- Efficient WRAS: The EWRAS class

Notations (Mannila and Toivonen, DMKD, 1997)

A pattern mining problem:

- \mathcal{L} : set of patterns, \leq a partial order on \mathcal{L} .
- d: a database
- *Q*: a monotonic predicate to qualify interesting patterns *X* in **d**, noted *Q*(X,**d**).

The set of solutions is known as the theory (closed downward set) $Th(\mathcal{L}, \mathbf{d}, Q) = \{X \in \mathcal{L} \mid Q(X, \mathbf{d}) true\}$

Any closed downward set *S* can be represented by its **borders** $\mathcal{B}d^+(S)$ and $\mathcal{B}d^-(S)$.

7/22

Dualization ⇔ Relationship between the two borders

Preliminaries

Isomorphism with a boolean lattice

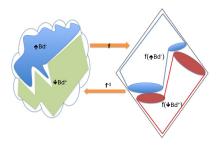
Basic ideas:

• a bijection f between patterns \mathcal{L} and some finite set R and

8/22

• structural isomorphism between (\mathcal{L}, \preceq) and $(2^R, \subseteq)$

 \mathcal{RAS} = The class of pattern mining problems for which a representation as sets exists



$\mathcal{RAS},$ dualization and minimal transversals of hypergraphs

Dualization for \mathcal{RAS} ?

equivalent to minimal transversal of hypergraphs (TrMin)

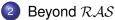
Theorem [Mannila & Toivonen, DMKD, 1997]

Let *P* be pattern mining problem, $S \subseteq \mathcal{L}$ and (R, f) a representation as sets of *P*. Then

 $\mathcal{B}d^+(\downarrow S) = f^{-1}(\overline{\text{TrMin}(f(\mathcal{B}d^-(\downarrow S)))})$

Main consequence: existence of incremental quasi-polynomial time algorithm for \mathcal{RAS} [Gunopulos et al., TODS, 2003]

Plan



- Weak representation as sets: The WRAS class
- Efficient WRAS: The EWRAS class

Limits of $\mathcal{RAS}(1/2)$

(1) The surjectivity constraint

 \Rightarrow the number of patterns has to be equal to 2^{*n*}, very unlikely in practice

Example with SEQ

Suppose an alphabet $\Sigma = \{a, b\}$ and an input sequence *S* of size 2. The set of all rigid sub-sequences of *S* is $\{\epsilon, a, b, aa, ab, ba, bb\}$.

Limits of \mathcal{RAS} (2/2)

(2) Comparability of patterns

⇒The coding *f* guarantees the comparability of patterns, i.e. $\theta \leq \varphi \Rightarrow f(\theta) \subseteq f(\varphi)$.

Let us consider the following coding *f* of sequences into sets:

for each letter *x* occurring at position *i* in a sequence S ⇒create a pair (*i*, *x*).

Example

Consider now two sequences aa and baa.

•
$$f(aa) = \{(1, a), (2, a)\}$$

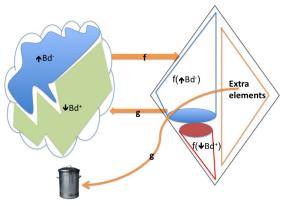
•
$$f(baa) = \{(1, b), (2, a), (3, a)\}$$

• $aa \leq baa$ but $\{(1, a), (2, a)\} \not\subseteq \{(1, b), (2, a), (3, a)\}.$

Weak representation as sets: The WRAS class

$\mathcal{WRAS}:$ a new class of problems

Intuition: two functions *f* and *g*, a new bottom \perp element "added" to \mathcal{L} , incomparability of patterns only



Beyond \mathcal{RAS}

Weak representation as sets: The \mathcal{WRAS} class

More formally

Definition

Let $(\mathcal{L}, \mathbf{d}, Q)$ be a pattern mining problem and \bot a special pattern, $\bot \notin \mathcal{L}$. A finite set *R* and a pair of total functions (f, g) with $f : \mathcal{L} \to \mathcal{P}(R)$ and $g : \mathcal{P}(R) \to \mathcal{L} \cup \bot$, denoted by the triple (R, f, g), is said to be a weak representation as sets of $(\mathcal{L}, \mathbf{d}, Q)$ if

< 日 > < 同 > < 回 > < 回 > < □ > <

14/22

f and g are polynomially computable

2) for all
$$heta \in \mathcal{L}$$
, $g(f(heta)) = heta$

$$𝔅$$
 for all θ, φ ∈ ℒ, f(θ) ⊆ f(φ)⇒θ \preceq φ

 \mathcal{WRAS} = The class of such problems

Beyond \mathcal{RAS}

Weak representation as sets: The WRAS class

 \mathcal{RAS} vs \mathcal{WRAS}

Notion of extra elements

Definition

Let us denote by \mathcal{E} the set of *extra elements* defined by $\mathcal{E} = \mathcal{P}(R) \setminus (\downarrow f(\mathcal{B}d^+(S)) \cup \uparrow f(\mathcal{B}d^-(S))).$

No extra element in \mathcal{RAS} ! **Property** $(\mathcal{L}, \mathbf{d}, \mathbf{Q}) \in \mathcal{RAS}$ implies $\mathcal{E} = \emptyset$

For WRAS, the idea is to push those extra elements towards the positive or negative borders

(a) < (a) < (b) < (b)

Beyond \mathcal{RAS}

Weak representation as sets: The WRAS class

\mathcal{WRAS} results

Theorem

Let $(\mathcal{L}, \mathbf{d}, Q)$ be a pattern mining problem, $S \subseteq \mathcal{L}$ a downward closed set and (R, f, g) a weak representation as sets of $(\mathcal{L}, \mathbf{d}, Q)$.

(1)
$$\mathcal{B}d^+(S) = g(\overline{TrMin}(Min_{\subseteq}(\mathcal{E} \cup f(\mathcal{B}d^-(S))))))$$

(2) $\mathcal{B}d^-(S) = g(\overline{TrMin}(\overline{Max_{\subseteq}(\mathcal{E} \cup f(\mathcal{B}d^+(S)))})))$

\Rightarrow How to find a "condensed representation" for \mathcal{E} ?

Beyond \mathcal{RAS}

17/22

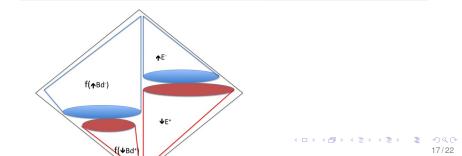
Efficient WRAS: The EWRAS class

Notion of separating pair for extra elements

Definition

Let $\mathcal{E}^+, \mathcal{E}^- \subseteq \mathcal{E}$. $(\mathcal{E}^+, \mathcal{E}^-)$ is said to be a *separating pair* of \mathcal{E} if

- $\mathcal{E}^+ \cap \mathcal{E}^- = \emptyset$,
- $\bullet \ \mathcal{E} \subseteq \downarrow \mathcal{E}^+ \cup \uparrow \mathcal{E}^-,$
- $f(\mathcal{B}d^+(S)) \cup \mathcal{E}^+$ and $f(\mathcal{B}d^-(S)) \cup \mathcal{E}^-$ are antichains.



Beyond \mathcal{RAS}

Efficient WRAS: The EWRAS class

Corollary

(1)	$\mathcal{B}d^+(\mathcal{S}) = Max_{\preceq}(g(\overline{\mathit{TrMin}(\mathcal{E}^- \cup f(\mathcal{B}d^-(\mathcal{S})))})))$
$\langle \mathbf{O} \rangle$	$\mathcal{D}_{\mathcal{A}} = \langle \mathcal{D} \rangle$

(2)
$$\mathcal{B}d^{-}(S) = Min_{\preceq}(g(TrMin(\overline{\mathcal{E}^{+} \cup f(\mathcal{B}d^{+}(S))})))$$

Definition

 $(\mathcal{E}^+, \mathcal{E}^-)$ is an efficient separating pair of \mathcal{E} if $|\mathcal{E}^+|$ and $|\mathcal{E}^-|$ are bounded by a polynom in the size of the borders of $Th(\mathcal{L}, \mathbf{d}, \mathbf{Q})$.

 $\mathcal{EWRAS} = \mathcal{WRAS}$ problems having an efficient separating pair

Main theorem

The dualization problem of any \mathcal{EWRAS} problem can be polynomially **reduced** to hypergraph transversal problem.

Efficient WRAS: The EWRAS class

Existence of separating pairs

Do not always exist

 \thickapprox Depend of the structural properties of (\mathcal{L}, \preceq)

Theorem

 $f(\mathcal{L}) \operatorname{convex} \Rightarrow$ there exists a separating pair of \mathcal{E} .

No characterization of efficient separating pairs ...

For SEQ, we have shown:

- SEQ belongs to WRAS
- 2 $f(\mathcal{L}_{\mathcal{S}})$ convex
- We have exhibited one particular efficient separating pair
- $\boldsymbol{\nleftrightarrow}$ It follows that SEQ belong to \mathcal{EWRAS}

Plan

- Weak representation as sets: The WRAS class
- Efficient WRAS: The EWRAS class

Concluding remarks

Concluding remarks

Concluding remarks

- New classes of pattern mining problems: $\mathcal{RAS} \subset \mathcal{EWRAS} \subset \mathcal{WRAS}$
- Existence of incremental quasi-polynomial time algorithms for *EWRAS*
- SEQ belongs to EWRAS

very useful to clarify existing pattern mining contributions

Perspectives

- \bullet Other pattern mining problems belong to \mathcal{EWRAS}
- Necessary and sufficient condition for the existence of a separating pair
- Algorithmic strategies for *EWRAS*

Long term objective: further developing declarative approaches in data mining

http://liris.cnrs.fr/dag

(a) < (a) < (b) < (b)