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Data Diversity: not only a gender question !
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Example from the astrophysics domain

The Sloan Digital Sky Survey (SDSS): Mapping the Universe !
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Data and metadata from SDSS

SDSS J115851.16-002903.1

Look up common name Look up common name
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Data diversity

To cope with data diversity, key notions have be studied for years
in computer science:

@ data and metadata representation,
@ data uncertainty,

@ data inconsistency,
°

data heterogeneity ...
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Data diversity

To cope with data diversity, key notions have be studied for years
in computer science:

@ data and metadata representation,
@ data uncertainty,
@ data inconsistency,

o data heterogeneity ...

Dealing with data diversity remains the hardest thing in practise
= Require to understand what'’s hidden behind the data:

@ Where do they come from ? How are they produced ?

= Be as close as possible of the available data sources and experts
to better match their intended meaning



Data dependencies
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Classical example of data dependencies: functional
dependencies

riEX — Yiffforall ty,tp € r
If for all A€ X, t1[A] = t2[A] then for all B € Y, t1[B] = t2[B]

Turns out to be a very general notion, related to implications.

‘ a b ‘ a—b ‘ Many connections with lattice
0 0 1 theory, formal concept analysis
0 1 1 (Galois connection) and logics
10 0 (see for ex [11])

1 1 1

Crucial to understand relational database design
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Beyond database design

New and timely applications require some forms of FD:
@ Data quality: Analysing existing data to identify data quality
problems [17, 9]
@ Machine learning over relational databases: FD-aware
optimization for in-database learning [19]

@ Semantic query optimization: Query rewriting techniques
based on data dependencies [12]

= Many extensions of FD have been proposed to take into account
some forms of data diversity (e.g. see [10, 18] for a survey)

e Matching Dependencies, Denial constraints ...[17, 9, 15]

e Implications in Formal Concept Analysis (FCA) [7, 6]

@ Association rules .. .in Data mining [5]
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Data diversity and data dependencies
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Questions and Contributions

How to take into account data diversity for data dependencies ?
Does there exist unifying frameworks ?

Two contributions:

@ RQL: a query language to express implications over relational
databases (ISMIS 2005 [3], demo ICDM 2014 [13], TCS 2017

[14])

@ Structural properties on attribute domains (ongoing work)
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Contents

@ RQL query language
@ Preliminaries
@ Main result underlying RQL
@ The RQL language
@ RQL implementation
@ Summary
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Preliminaries

Important known results for FD

Let F be a set of FD over a schema R
CL(F) = {X C R|XZ = X} : a closure system of F
IRR(F) the set of irreducible elements of CL(F) by
intersection

Reasoning on F is equivalent to reasoning on CL(F), for instance:
Xf={AeR|FEX—=A=n{Y€eCLF)|XCY}

Let r be a relation over R.
The agree set of r is ag(r) = {ag(t1, t2) | t1, t2 € r} where
ag(t1, o) = {A € R| t1[A] = t[A]}

r is an Armstrong relation for F iff IRR(F) C ag(r) C CL(F) [8]
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Preliminaries

Example
Bar(B)  Beer(Be) Price(P)
t; | Nota bene Adelscott 2
to | Montagne 1664 15
t3 | Nota bene 1664 2
ty Ritz Adelscott 5
ts | Café Flore  Affligen 6

F={B— P P— B}
CL(F) = {0, Be, BP, BBeP}
IRR(F) = {Be, BP}

ag(r) = {0, Be, BP}, often represented as:

oy
@

= O O W

o = O

— O Ol T
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Preliminaries

Towards a rule query language

Focus on rules equivalent to implications (or FD)
= Armstrong axioms (reflexivity, augmentation, transitivity) have
to be sound and complete

Idea: Defining a rule query language (RQL) such that every RQL
statement turns out to deliver implications

Require to identify syntactic constraints such that we remain
within the reasoning of implications
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Semantics of implications

Let by be a binary relation (given by a {0, 1}-relation)
bo |:X—> Y & Vt € by
(VAe X tA=1)= (VAc Y tA=1)



16

Bridging the Gap between Data Diversity and Data Dependencies
RQL query language
Preliminaries

Semantics of implications

Let by be a binary relation (given by a {0, 1}-relation)
bo |:X—> Y & Vt € by
(VAe X tA=1)= (VAc Y tA=1)

Let d = {ro, r1,..., rn} be a relational database
ro ':X—> Y &V, €ny
(VAeX 1. A=t0.A)= (VAcY t1i.A=h.A)
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Semantics of implications

Let by be a binary relation (given by a {0, 1}-relation)
bo |:X—> Y & Vt € by
(VAe X tA=1)= (VAc Y tA=1)

Let d = {ro, r1,..., rn} be a relational database
ro 'ZX—) Y &V, €ny
(VAeX 1. A=t0.A)= (VAcY t1i.A=h.A)

d):X% Y & Vi, b Eﬂx(O'F(r,'ODQ...DQr,'p))
(VA eX A= tz.A) = (VA eyY t1.A= t2.A)
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Preliminaries

Semantics of implications

Let by be a binary relation (given by a {0, 1}-relation)
bo |:X—> Y & Vt € by
(VAe X tA=1)= (VAc Y tA=1)

Let d = {ro, r1,..., rn} be a relational database
I0) 'ZX—) Y &V, €ny
(VAeX 1. A=t0.A)= (VAcY t1i.A=h.A)

d):X% Y & Vi, b Eﬂx(O'F(r,'ODQ...DQr,'p))
(VA eX A= tz.A) = (VA eyY t1.A= t2.A)

dEX—=Y eVt enx(op(r,>...>xar,)),
Vit, € Wx(UF/(rjo DA ... ] r,-n))
such that (ty.rank = tp.rank + 1)
(VA eX t.A= t2.A) = (VA ceyY t1.A= tQ.A)
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Preliminaries

Semantics of implications (cont'ed)

d ):X_> Y &V, b E7Tx(O‘F(rol>4...l>4rn))
(VA € X(2*x ABS(t1.A— t2.A)/(t1.A+ t.A) < 0.1))
= (VA€ Y(2x ABS(t1.A— 1. A)/(t1. A+ t5.A) < 0.1))
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Semantics of implications (cont'ed)

d ):X_> Y &V, b 67TX(O'F(f0[><]...[><]rn))
(VA € X(2*x ABS(t1.A— t2.A)/(t1.A+ t.A) < 0.1))
= (VA€ Y(2x ABS(t1.A— 1. A)/(t1. A+ t5.A) < 0.1))

d):X—> Y<:>Vt1,t2Eﬂ'x(O'/:(roDd...Ddrn))
(VA eX A< tQ.A) = (VA ceY A< t2.A)
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Preliminaries

Semantics of implications (cont'ed)

d ):X_> Y &V, b €7Tx(0‘f:(rol>4...l>4rn))
(VA € X(2*x ABS(t1.A— t2.A)/(t1.A+ t.A) < 0.1))
= (VA€ Y(2x ABS(t1.A— 1. A)/(t1. A+ t5.A) < 0.1))

d):X—> Y<:>Vt1,t2Eﬂ'x(O'/:(roDd...Ddrn))
(VA eX A< tQ.A) = (VA ceY A< t2.A)

o ':X—> Y & Vi, b, 13 € ny
(VA € X(t1.A < tr.A) A (t3.A < 1. A))
= (VA € Y(tl.A < t2.A) VAN (t’3.A < t2.A))
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Main result underlying RQL

Approach and contribution

Replaying part of the story underlying SQL and relational
languages, especially through Tuple Relational Calculus (TRC)

What we did:

e Extend TRC to support rule expression (SafeRL logical
language, see [14] for details)

@ Propose a new syntactic practical language (RQL) from
SafeRL

Q={X—=Y|Vty..Vty [¥(t1,....tn) —
(VA € X(3(A, tr, ... ta)) — YA € Y(8(A, t1, ..., tn)))] }
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Main result underlying RQL

Main result.

Let @ be a RQL query over a database d.

1. ans(Q, d) defines a closure system CL(Q) over sch(Q)

2. There exists a SQL query Q" over d such that @' computes a
base B(Q) of CL(Q), i.e. IRR(Q) C B(Q) C CL(Q)

@ B(Q): agree sets for FD and binary relation for implications

@ Proof of 1. similar to the proof given for Functional
Dependencies by Mannila and Raiha 1994 [21], Demetrovics
and Thi 1995 [16].

@ Proof of 2. a bit more elaborated
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RQL: a Practical Language

RQL has 5 clauses (with the "look and feel” of SQL):

FINDRULES

OVER Ay, ..., A,

SCOPE tl(SQLl), ey tn(SQLn)
WHERE condition(t1, ..., tn)
CONDITIONON A IS (A, t1, ..., tn)

20
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The RQL language

Examples

FINDRULES

OVER Empno,Lastname,Workdept, Job,Sex,Bonus
SCOPE t1,t2 Emp

CONDITIONON A IS t1.A = t2.4;

FINDRULES

OVER Empno, Lastname, Workdept, Job, Sex, Bonus, Mgrno
SCOPE t1 Emp

CONDITIONON A IS tl.A IS NULL
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The RQL language

Examples

FINDRULES

OVER ...

SCOPE t1,t2,t3 sensors

WHERE t2.time = tl.time+interval 1 minute AND
t3.time = t2.time+interval 1 minute
CONDITIONON A IS t1.A < t2.A AND t2.A > t3.4;
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RQL query language
RQL implementation

RQL query processing.

RQL query
Rules %

&

Rule verifier

T

Base

Rule generator | generator

SQL
gen-
erator
RQL engine

RQL

parser

SQL
query

J

Optimizer

DBMS

Figure: RQL queries processing overview
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RQL Web Interface

In Sample mode, you have a database filled with data on which you can try some queries. Samples
are given below.

On the left you will find the list of the tables and views you have access to. Feel free to try your own
RQL and SQL queries on them!

Note that the first queries are SQL and will give you informations about the data in the database.

Learn more about Sample mode

SQL examples:

ot Submit your RQL or SQL . ConentorEmp
o query: N

FINDRULES RQL examples:
iR Eaueteved, Sal, Bons, Com
o v 1, 12 £ « (EXR vaasinem
ere ciemno = 2.0
uews CODITION O A 35 $1-A o 2.4 « [EEER) rurcions opencenciosenmp
A « ([EEER rurcions coponcrios n a susat ot e

. Socuotl pacrto o aragora ogoss

N

[ ewe wi epmave

Figure: RQL Interface
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RQL Web Interface

Rule verification:

The rule Sal Educlevel = Bonus is false

Counter-example:

EMPNO LASTNAME WORKDEPT JoB EDUCLEVEL SEX  SAL BONUS comm MGRNO
10 SPEN Cco1 FINANCE 18 F 52750 500 4220 20
20 THOMP null MANAGER 18 M 41250 800 3300 null

Generated query:

Emp t1, Emp t2

HERE (t1.Sal >= t2.Sal AND tl.Educlevel >= t2.Educlevel
SE WHEN (tl1.Bonus >= t2.Bonus) TH

END = (

ELSE 0

rownum <= 1

Figure: Counter-example with RQL
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Summary

@ RQL: a practical language to express different semantics for
implication

@ Discovery of implications seen as a query processing problem

@ Side effect: data analysts may interact with their data
through counter-examples

@ Advantages

o Easy to learn for SQL-aware data analysts (especially CS
students !)
e http://rql.insa-lyon.fr

26
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Contents

© Structural properties on attribute domains
@ Similarity map: a semilattice version
@ Data Dependencies with similarity maps
@ Main results
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Come back to functional dependencies

riEX = Yiffforall t,tp €r
If for all A€ X, t1[A] = t2[A] then for all B € Y, t1[B] = t2[B]

Let us focus on the equality t;[A] = t>[A] without defining new
predicates on t1[A] and t[A] values
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From equality to similarity

Two possibilities:
@ Replace "t1[A] = t[A]" by “t1[A] is similar to t[A]”
= Similarity seen as a reflexive and symmetric binary relation
@ Replace "t1[A] = t[A]" by "t1[A] and t2[A] are similar to
some similarity value s”
= Similarity seen as an idempotent and commutative map

= Focus on similarity map which appears to be less restrictive
than similarity relation
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Similarity relation

Let D4 be the domain of attribute A and u, v € Dy
Let S be a binary relation on Dy

S is a similarity relation if S is reflexive (S(u, u) = 1) and
symmetric (S(u,v) = S(v, u)).

S subsumes the equality operator
Two meaningful values: true (1) and false (0)
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Assumptions on similarity map

Notations:

@ A is an attribute, D4 its domain

@ S new values denoting similarities for A (disjoint from Dj)
Assumption:

o For any subset of Dy US4, there is a unique similarity value.

P '/—‘\.\
/ \ // \
‘/ \\\ /// \
/ \\ / U v \\
¢ AN
N/
L Simila?ffity(u, )
Pred(u,v)=0or 1 ‘

y
//

\ / \ ,
\\ / \\\ ,/
L Mg /

S ~

Dy DaUSs
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Similarity map: a semilattice version

Let A be an attribute, S=DaUSpsand my:SxS5—+ 5 a
similarity map that is:
e ldempotent (ma(a,a) = a for all a € 5),
o Commutative (ma(a, d’) = ma(d, a) for all a,d’ € S),
e Associative (ma(a, ma(a’,3")) = ma(ma(a, '), a"”) for all
a,d,a" €5).

my induces a partial order < on S:
for every a,a’ € S,a < @ whenever my(a,d’) = a.

(S, =) is a semilattice where glb(a, a’) = ma(a, &) for all
a,a €8§.
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Similarity map: a semilattice version

Example with numerical interval values

Consider an attribute A whose domain is intervals of integer, i.e.
Da = {[i,]li.j € L..n,i < j}

@ What would be the similarity values Sa ?
= The set of closed sets of Dy by intersection

o Let {h,...,Im} CDaUSA. Similarity value of {l,...,In}?
= its intersection | = (\{h,...,Im}
= | is clearly unique
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Similarity map: a semilattice version

Two examples of similarity map

Equality can be defined as:

| x if x=y
ma(x,y) = { s otherwise

L means "not similar” or 0 (false)

Similarity over intervals can be defined as:

[ kb ifhNL#£D
ma(h, k) = { L otherwise
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Similarity map: a semilattice version

Underlying assumption

A dataset r has to be equipped with a semilattice structure for
every attribute domain

= Allow to be as close as possible of data values to quantify their
similarities and differences

= Require an important data pre-processing task, that could be
partially automated using data mining techniques

A different approach to address data diversity
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Structural properties on attribute domains
Data Dependencies with similarity maps

Running example

r A B C
t1 0.4 1,2 0.6
to 0.5 2,4 0.5
t3 | 0.6 3,56 0.6
tag 0.4 2,2 0.4
ts 0.5 3,5 0.4

0..4 )
L J
L(ow)
S
1

“2.(5

[ ]
Hligh)

ma = mg¢

= Semantics for my and m¢

27

A
[1‘2] g4
®
(2,2]
L
L
mp

@ The values L and H qualify the different values

@ | otherwise, i.e. not similar.

45,5]

®
[3,4]
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Data Dependencies with similarity maps

Application to functional dependencies

ri= X — Yiff forall ty,tr €r
forall Ae X, t1[A] = 2[A] = forall Be Y, t1[B] = t:[B]

can be reformulated as follows:

for all A € X, glb(t1]A], [A]) £ L =
for all B € Y, glb(t:[B], t2[B]) # L

glb(t1[A], t2[A]) # L means there exists a similarity between
the values of Aon t1,t
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Data Dependencies with similarity maps

Minimal degree of similarities

Assume now an expert provides for each attribute A a minimal

degree of similarity she expects.
Let sim : sch(r) — (DaUSa) \ {L} be such a map.

(DaUSa,xX)

20
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Data Dependencies with similarity maps

Examples

r=X—=Yiffforall t1,tr € r
forall Ae X, t1[A] = 2[A] = forall Be Y, t1[B] = t:[B]

becomes
r X = Yiffforall t;,t € r
for all A € X,sim(A) = glb(t1[A], t2[A]) =
for all B € Y,sim(B) < glb(t1[B], t2[B])

sim(A) = glb(t1[A], t2[A]) means the similarity level between
the values of A on t, t, is above the mimimum
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Data Dependencies with similarity maps

Example

Assume the expert tags those similarities: sim(A) = sim(C) = H
and sim(B) = [3,4]

% w5 & 32 g4 &

r A B C
| 04 [L2] 06 L VA ¥ VA
t | 05 [2,4 05 L(ow) (H(igh)) [2,2] 3,41)
ts | 0.6 [35] 06 s o
| 04 [22] 04 .
t | 05 [3,5] 0.4 bt s
1 1
ma = mc mp

r Esim A — B (or r =sim A, High — B, [3,4])

r [~sim C — B = for ex. see counter-example t1, t
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Main results

Many results follow ...

Many well-known results on FD can be re-defined in this new setting
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Agree sets

Agree sets can be extended naturally: instead of getting a set of
attributes (due to 0 and 1 interpretation values based on equality),
we obtain a set of similarities

ag(r) ={ag(t1,t2) | t1, 2 € r}
ag(t1, t2) = {ag(t1[A], t2[A]) | A € sch(r)}
ag(t1[A], 2[A]) = glb(t1[A], t2[A])

Example: ag(ti, t2) =< L,[2,2],H >
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Example
r A B C ag(r) A B C
t1 0.4 1,2 0.6 ag(tl, t2) L [2,2] H
tr | 0.5 [24 05 ag(ti,t3) | L L 0.6
t3 0.6 3,5 0.6 ag(ti, ta) 0.4 [2,2] 1
ty 0.4 2,2 0.4 ag(tl, t5) L N 1
ts 0.5 3,5 0.4 é?g(t‘z7 t3) H 3,4 H
ag(tz, t4) L 2,2 L
ag(t2, 1.'5) 0.5 3,4 L
ag(ts, ta) | L il il
ag(ts,ts) | H [35] L
ag(t4, t5) L 1 0.4

From ag(r), two interesting cases:

@ replacing all values occurring in r by 1 and all other values by
0 = classical FD with equality

e replacing L by 0 (or false) and all other values by 1 (true)
= classical FD extended to similarities
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Closures and agree sets

From the agree set of r, the family F, of closed sets by the glb
operation is:
'Fr = {glbjsch(r)(T)’ T g ag(r)}

(Fry Zsch(r)) is a semilattice

Let M(F,) be the meet irreducible elements of F,

M(F,) € ag(r) € Fr

r
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Similarity, attribute closure and implications

Let F be a family of closed sets, X C sch(r) and
sim(X) = {sim(A)|A € X}

X+

o) = DY € F | sim(X) =x Y})

r sim X = Y iff sim(Y) <y X
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Example with r =g, A — B with sim(A) = H and
sim(B) = [3, 4]

r A B C ag(r) A B C
t | 04 [12] 04 ag(t1, t) L 2.2 H
ty 0.5 2,4 0.5 ag(t1, t3) L 0.6
t3 | 06 [35] 06 ag(ti, t) | 04 [22] L
ty 0.4 2,2 0.4 ag(ty, ts) L 1 L
ty 0.5 3,4 0.4 ag(ty, t3) H 3,4] H
ag(ty, tg) L 2,2 L
ag(ty, ts) 0.5 3,4] L
ag(izta) | L L L
ag(t3, t5) H [3.4] L
ag(ta, ts) L 1 0.4
At = glb<,,.{< H,[3,4],H >, < 0.5,[3,4],L >, <

sim(A)
H,[3,4],L >} =< H,[3,4], L >

sim(B) =< H,[3,4], L >

=r ’:sim A7 ngh — 87 [374]
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Summary

@ Using similarity maps on attribute domains allows to
reconsider classical data dependencies

@ Require to change our mind: most of the effort has to be
done at the attribute domain level to define similarity map

o After this, the problem is embedded into a lattice structure
allowing to revisit many known results
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Conclusion

Two propositions to extend data dependencies

e First, through RQL, a query language devoted to implications
(or FD)

@ Second, through assumptions on attribute domains using
semilattice structure induced by similarity maps

= Both are elegant formalisms to extend functional dependencies
by taking into account data diversity
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Perspective

Theoretical question
= Under which conditions the second approach leads to
implications (Armstrong axioms) ?

Practical question
= Given a dataset D equipped with semilattice structures, how to
discover implications satisfied in D 7
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