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Figure 1: Given a single image as input (top row), our framework allows to edit the appearance of objects using high-level perceptual
attributes. It produces realistic edits (bottom row) for a variety of real images depicting objects with different material appearance, illumi-
nation, and geometry. Note how illumination conditions are preserved in the edited results even though they were not explicitly modeled in
the framework. Arrows indicate a high (pointing up) or low (pointing down) value of the target perceptual attribute.

Abstract
Single-image appearance editing is a challenging task, traditionally requiring the estimation of additional scene properties
such as geometry or illumination. Moreover, the exact interaction of light, shape, and material reflectance that elicits a given
perceptual impression is still not well understood. We present an image-based editing method that allows to modify the material
appearance of an object by increasing or decreasing high-level perceptual attributes, using a single image as input. Our frame-
work relies on a two-step generative network, where the first step drives the change in appearance and the second produces an
image with high-frequency details. For training, we augment an existing material appearance dataset with perceptual judge-
ments of high-level attributes, collected through crowd-sourced experiments, and build upon training strategies that circumvent
the cumbersome need for original-edited image pairs. We demonstrate the editing capabilities of our framework on a variety of
inputs, both synthetic and real, using two common perceptual attributes (Glossy and Metallic), and validate the perception of
appearance in our edited images through a user study.

CCS Concepts
• Computing methodologies → Machine learning; Image processing; Neural networks; Perception;

1. Introduction

Material appearance is one of the most important properties that
determine how we perceive an object. The visual impression that
it elicits, whether it appears metallic, glossy, or matte, strongly im-
pacts how we manipulate such objects and expect them to behave.
This appearance does not only depend on the intrinsic properties of
the material itself, but also on external factors such as the geom-

etry or the illumination of the scene. Editing material appearance
based on a single image is therefore a very challenging task. A com-
mon approach is to estimate illumination, geometry, and reflectance
properties (inverse rendering), and modify the latter. This approach
faces two problems. First, inaccuracies in the estimation of any of
those scene properties can strongly impact the final result. Second,
even if they are correctly estimated, modifying the reflectance pa-
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rameters to obtain a certain visual impression of the material is not
a trivial task, since the exact interaction of light, shape, and mate-
rial reflectance that elicits a given perception of appearance is still
not well understood.

We present an image-based method for appearance editing that
does not rely on any physically-based rendering of the image, but
instead modifies directly the image cues that drive the perception
of the material. It takes a single image of an object as input and
modifies its appearance based on varying the intensity of high-level
perceptual attributes (see Figure 1). However, since the image cues
that drive the perception of such attributes can not be captured in
a few image statistics [FS19, SAF21], we rely on generative neural
networks to learn their relationship with appearance, and generate
novel images with the edited material. Our networks additionally
take as input a normal map that helps preserve the high-frequency
details of the input geometry in the reconstructed images. Since
normal maps are not available in photographs, we provide a normal
map predictor that extends the applicability of our method to real
input images.

A possible approach to training our framework would be to
collect pairs of (original, edited) images, where the edited ex-
emplars were manually produced given a target high-level at-
tribute value. This is not only cumbersome, but could also lead
to high variability that could hamper the learning process. In-
stead, and taking inspiration from existing works on face edit-
ing [LZU∗17, CUYH20, LDX∗19, KWKT15], we train our system
using perceptual judgements of the attributes of a large set of train-
ing images, that we collect through crowd-sourced experiments.
While these works benefit from a fixed camera location and exploit
the fact that faces share similar geometry and features, we deal with
a more unconstrained and varied set of potential input images. We
thus devise a two-step framework, where the first step drives the
change in appearance, while the second produces an image with
high-frequency details.

To demonstrate the editing capabilities of our framework on
a varied set of synthetic and real images, we focus on two at-
tributes that are both common and easy to understand by partici-
pants: Metallic and Glossy. Without loss of generality, this allows
us to collect robust human judgements of such attributes, while ad-
ditionally assessing the perception of the appearance in our edited
images through a user study. We validate our framework qualita-
tively, and by means of the aforementioned user study, as well as
ablating each of its components. We will make our dataset of per-
ceptual judgements publicly available to foster further research.

2. Related Work

2.1. Material Perception

The exact way in which our visual system infers material properties
from an image is yet to be understood [FDA03,FDA01]. It depends
not only on the intrinsic properties of the material, but also on fac-
tors like motion [MLMG19, DFY∗11], shape [VLD07, HFM16],
illumination [HLM06,KFB10,VBF17] or the interactions between
these [LSGM21].

A large body of work has been devoted to understand the vi-
sual cues that we use to infer isolated appearance properties such

as glossiness [CK15, WAKB09, PFG00], translucency [GXZ∗13,
XZG∗20, GWA∗15], or softness [SFV20, CDD21], while others
aimed at understanding the perceptual cues used by artists when de-
picting materials in realistic paintings [DCWP19, DSMG21]. Last,
recent works have suggested that material perception might be
driven by complex non linear statistics, similar to the ones extracted
by neural networks [FS19, SAF21, DLG∗20]; our method is thus
based on deep neural networks, which have the ability to model
these complex visual cues and manipulate them in relation to per-
ceptual data.

2.2. Editing of Material Appearance

Editing the appearance of materials is a complex task since there
is a disconnect between their physical attributes and our percep-
tion [FWG13, TFCRS11, CK15]. We provide here a brief cross-
section of different material editing approaches, and refer the in-
terested reader to the more comprehensive review by Schmidt et
al. [SPN∗16].

Several perceptually-based frameworks have been proposed to
provide users with more intuitive controls over parametric ap-
pearance models [FPG01, PFG00, BPV18, KP10, DRCP14]. Non-
parametric models such as measured BRDFs are harder to edit.
Different approaches have been proposed, such as fitting the non-
parametric BRDFs to parametric models [SJR18, BSH12, BP20],
inverse shading trees [LBAD∗06], polynomial bases [BAEDR08],
or using deep-learning techniques [ZFWW20]. Closer to our work,
other authors have proposed links between human perception and
editing of non-parametric BRDFs through a set of intuitive percep-
tual traits [MGZ∗17,SGM∗16,MPBM03]. However, these methods
only provide a new material definition that can later be used in a 3D
scene, but do not allow to modify the material directly in an existing
image.

Image-based material editing techniques allow the user to di-
rectly alter the pixels in an image without manipulating an underly-
ing BRDF nor requiring to re-render a scene. The work of Khan et
al. [KRFB06] exploits the fact that human vision is tolerant to many
physical inaccuracies to propose a material editing framework re-
quiring a single HDR image as input. Such approach was later ex-
tended to include global illumination [GSLM∗08] or weathering
effects [XWT∗08]. Other methods are based on frequency-domain
analyses [BBPA15], visual goals [NSRS13], or use a light field as
input [BSM∗18, JMB∗14].

Since geometry and illumination also play a role in mate-
rial appearance, several works focused on explicitly decompos-
ing the image into material, illumination and geometry informa-
tion [BM14, HFB∗09, YS19, GMLMG12, OKT∗19], allowing to
manipulate each of these properties independently. Recently, neu-
ral networks have also been used for such decomposition [LCY∗17,
MLTFR19,RRF∗16,LMF∗19,GLD∗19]. However, editing the ma-
terial with such methods requires a robust estimation of all three
layers. In contrast, we require only to estimate the geometry, pro-
viding plausible edits even under unknown lighting conditions.
Our image-based framework is not based on visual goals; instead,
it relies on appearance perception data, collected through crowd-
sourced experiments, used to train a learning network.
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3. Our Framework

3.1. Goal and Overview

The goal of our method is to take as input an image I of an object,
whose material appearance we wish to edit and without its back-
ground, and a target value bA ∈ [−1,1] for a high-level perceptual
attribute A (e.g., Glossy, or Metallic), and from them produce a
new image Îb that exhibits the same content as I, but features a
change in appearance according to the desired value of the percep-
tual attribute, bA (hereafter, we drop the subindex A for clarity).
Our method thus needs to extract or disambiguate the information
of such attribute from the input image, and allow its subsequent
manipulation to generate the final one. We leverage the success of
generative neural networks on image-based editing tasks, and pro-
pose a framework based on them.

Producing a representation of I in which the information of the
attribute has been disambiguated requires a deep model that can
produce a compact latent code; however, such a model typically
encompasses the loss of high-frequency details from the input im-
age, hindering the reconstruction of the final image. We therefore
propose a framework based on two generative networks, G1 and
G2. G1 is a deeper network that aims at producing a compact latent
code of I that is easy to control, and can be used to produce the
final target appearance. Meanwhile, G2 is a shallower model that
has the task of reconstructing the final image with high-frequency
details, guided by the intermediate features of G1 that encode the
relevant information on the final target appearance. An overview of
our framework is shown in Figure 2, while the remainder of this
section provides the details on the architecture, loss functions and
training scheme used.

3.2. Model Architecture

Both networks, G1 and G2, are based on an encoder-decoder archi-
tecture, in which the target attribute value b is concatenated at the
bottleneck of each network (see Figure 2). Each encoder consists
of a series of convolutional blocks that downscale the image by
a factor of two, followed by a series of residual blocks. The out-
put of these residual blocks is the latent code zi (i ∈ {1,2}), which
we train to encode a representation of the input image I that does
not contain information about the perceptual attribute. In particu-
lar, we have six convolutional blocks for G1, and three for G2. Each
decoder consists of a series of convolutional blocks followed by bi-
linear upsampling that restore the original resolution of the image.
The complete description of the architecture of each network can
be found in the supplementary material.

One of the main drawbacks of encoder-decoder architectures
such as ours is the loss of high-frequency information when recon-
structing the image from the latent code zi. A popular strategy to
recover the missing information is to use skip connections, that for-
ward feature maps between the encoder and the decoder, explicitly
allowing to generate high frequencies. In our case, however, this
strategy cannot be applied: our latent space is trained to be invari-
ant to the attribute, so that the decoder can reconstruct the image
with the target attribute value; adding skip connections would ham-
per this by forwarding information from the encoder to the decoder.
We alleviate this problem by providing high-frequency information

to the decoder through a normal map n of the object. This normal
map is concatenated to the feature maps of the decoder at differ-
ent scales (illustrated in red in Figure 2), allowing it to incorporate
high-frequency information into the reconstruction of the target im-
age. In the case of real images, where the normal map is not directly
available, it can be obtained through a normal map predictor net-
work (see Section 5).

Even with the use of normal map information, a single network
such as G1 can succeed in obtaining an attribute-invariant latent
code z1, but struggles when generating a detailed reconstructed im-
age: image Îb,1 in Figure 2 has the desired appearance, but lacks
fine detail. We therefore use G1 not to produce the final result, but as
a means to generate a series of feature maps that encode a represen-
tation of the edited image with the target appearance. These feature
maps will be used by the second network, G2, a shallow network
capable of reconstructing high-frequency details. More precisely,
we use the three last feature maps from G1, which include informa-
tion at multiple scales, and concatenate them to the feature maps of
G2 (as illustrated by the green vertical arrows in Figure 2). In this
way, G2 is able to provide the output image Îb,2 = Îb, which fea-
tures the desired appearance specified by the target attribute value
b while preserving the relevant high-frequency information of the
input. As we will show in Section 5.1, the latent space of G2 alone
has too much information from the input image I to allow for ma-
nipulation of the desired attribute.

As explained, we need to train the latent spaces from G1 and G2
to be invariant to the attribute of interest, while learning to generate
a realistic target image Îb. To do this, during training, we use three
auxiliary networks. Two latent discriminators (LDi in Figure 2)
push the latent spaces zi to not contain information on the attribute,
while an attribute predictor and discriminator C/D, trained in an
adversarial manner, guides the network towards generating a real-
istic image with the target attribute value b. The next subsection
explains the training process and objectives.

3.3. Loss Functions and Training Scheme

Image reconstruction loss The first goal of each encoder-decoder
network Gi (for clarity, we will use G instead of Gi hereafter) is to
reconstruct the input image I when given the ground-truth percep-
tual attribute value a, and the normal map n. We use the L1 loss
between pixels as a measure of error, and define the reconstruction
loss as:

Lrec(G) = ‖I −G(I,n,a)‖1 . (1)

Attribute-invariant latent space loss In order to force the de-
coder to exploit the target attribute b, we draw inspiration from
FaderNet [LZU∗17], and push the encoder to produce a latent
space that does not contain information about the attribute. This is
achieved with an adversarial training on the latent space, for which
a latent discriminator LD is introduced. The goal of LD is to pre-
dict the ground truth attribute value a from the latent code z,

Llat(LD) = ‖a−LD(z)‖1 , (2)
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Figure 2: Overview of the different components of our framework. The two networks G1 and G2 both take as input the image I, its normal
map n, and the target attribute value b. The image first goes through G1, whose decoder features are forwarded to the decoder of G2 (green
arrows). G2 is in charge of producing the final output image Îb. The three auxiliary networks (LD1,LD2 and C/D), shown in gray, are used
at training time to guide the networks towards correctly interpreting the target attribute value b.

while the goal of G is to prevent LD from being able to predict a
from z:

Llat(G) =−‖a−LD(z)‖1 . (3)

This adversarial training effectively pushes the encoder to generate
an attribute-invariant latent space z, thus forcing the decoder to use
the ground-truth attribute a to reach a good reconstruction.

Attribute predictor and discriminator losses Until this point,
the model has no feedback on its ability to edit images, since the
target attribute is the ground-truth attribute value of the input im-
age, b = a (recall that the training data lacks original-edited im-
age pairs). Therefore, in order to provide additional feedback to the
model regarding the edited image, we introduce an attribute predic-
tor C. This predictor is trained to predict the attribute value of an
image, using the following loss:

Lattr(C) = ‖a−C(I)‖1 . (4)

Meanwhile, the network G is trained so that the attribute value of
the edited image is correctly predicted by C, using:

Lattr(G) = ‖b−C(G(I,n,b))‖1 . (5)

However, trying to satisfy the attribute predictor can lead G to the
generation of unrealistic artifacts in the reconstructed image. Thus,
to additionally push the network to generate images that feature the
same distribution as the original input data, we introduce a GAN
loss together with an image discriminator D. In particular, we use
the losses from WGAN-GP [GAA∗17] on both networks G and D,
Ladv(G) and Ladv(D) (the complete formulation can be found in
the supplementary material).

Final loss functions G1 is trained jointly with its latent discrimi-
nator LD1, by using the losses Llat(G1) and Lrec(G1). We do not
include the attribute predictor and discriminator module because

G1 is intended to create a compact and editable latent space, rather
than a high-quality output image. The resulting loss functions are:

L(G1) = λ
G
recLrec(G1)+λ

G
latLlat(G1), (6)

L(LD1) = λ
LD
lat Llat(LD1). (7)

G2 is trained jointly with its latent discriminatorLD2, as well as the
attribute predictor and discriminator module C/D. The resulting
loss functions are:

L(G2) = λ
G
recLrec(G2)+λ

G
latLlat(G2) (8)

+λ
G
advLadv(G2)+λ

G
attrLattr(G2),

L(LD2) = λ
LD
lat Llat(LD2), (9)

L(C/D) = λ
D
advLadv(D)+λ

C
attrLattr(C). (10)

In practice, C andD share the same convolutions and are trained
as a unique network, thus the joint loss in Equation 10.

Training details We optimize all losses using the Adam opti-
mizer [KB14] with β1 = 0.9 and β2 = 0.999. To train the genera-
tors, we use a learning rate of 10−4. G1 is trained with the following
loss weights: λ

G
rec = 1, λ

G
lat = 5, while G2 is trained with λ

G
rec = 1,

λ
G
lat = 2.5, λ

G
adv = 0.02 and λ

G
attr = 2. Both latent discriminators are

optimized with a learning rate of 2.5 ·10−5 for 12 iterations for ev-
ery iteration on the generator. C/D is optimized with a learning rate
of 10−4 for seven iterations for every iteration on the generator with
loss weights λ

D
adv = 1 and λ

C
attr = 3. Our model is trained individ-

ually for each attribute. We first train G1 for 300 epochs, then train
G2 for 50 epochs, freezing parameters for G1. We implemented our
models using the Pytorch framework [PGM∗19] and trained them
using a Nvidia 2080Ti GPU. In total, training our framework took
two days per attribute. Before feeding the images to the network,
we fill the background with black color and add the mask of the
object as a fourth channel.
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Figure 3: Representative samples of the image dataset used for
training. The images show each of the 15 scenes in the dataset (13
distinct geometries, two of them with two different viewpoints, for a
total of 15 scenes), featuring different materials and illuminations.

4. Training Dataset

Training our model to edit a certain attribute of material appearance
requires images with realistic depictions of materials, on objects
with different shapes and a variety of illuminations. For each of
these images, we require the corresponding value for the attribute
of interest. Since we are targeting high-level perceptual attributes of
material appearance, this value needs to be obtained from subjec-
tive data gathered through subject responses. These image-attribute
(I,a) pairs are used to train our network towards correctly inter-
preting such attributes.

Image data We leverage the recent dataset by Lagunas et
al. [LMS∗19], designed specifically for learning tasks related to
material appearance. It is composed of realistic renderings of 13
geometries of varied complexity (with two additional viewpoints,
leading to 15 different scenes), illuminated with six captured envi-
ronment maps [Deb]. The objects are rendered with 100 measured
BRDFs from the MERL dataset [MPBM03], using the physically-
based renderer Mitsuba [Jak]. The dataset comprises a total of
9,000 renderings, of which representative samples are shown in
Figure 3.

Subjective attributes The image dataset we use [LMS∗19] in-
cludes associated subjective data, but in the form of similarity
judgements between pairs of images, unsuitable for our goal. Other
datasets include subjective measures of high-level perceptual at-
tributes of material appearance for the materials in the MERL
dataset, but for a single shape and illumination [SGM∗16]. Since
shape and illumination play an important role in the perception of
material appearance [LSGM21,VLD07,NS98], we set out to gather
our own subjective data of high-level perceptual attributes for the
Lagunas et al. image dataset.

To do so, we follow the same methodology as Serrano et
al. [SGM∗16]: we carry out a perceptual experiment in which, for

Figure 4: Example of the five viewpoints used in the perceptual
study on the bunny shape rendered with the Uffizi illumination and
alum-bronze material.

each image in the Lagunas et al. dataset, participants had to rate a
number of high-level attributes on a Likert-type, 1-to-5 scale. To
further increase the robustness of the obtained ratings, we augment
Lagunas et al.’s dataset by creating, for each combination of mate-
rial× shape× illumination, five different images with slight varia-
tions in the viewpoint (randomly sampled within a 45 degrees cone
around the original viewpoint). Examples of such images for the
bunny shape are shown in Figure 4. Similar to previous large-scale
studies, we relied on Amazon Mechanical Turk to collect the rat-
ings. A total of 2,600 paid subjects participated in the study, each of
them seeing 15 different random images. Participants in the study
had to go through a training session at the beginning of it, and con-
trol stimuli were used to reject invalid subjects. More details about
the experiment can be found in the supplementary material.

Through our perceptual study we gather, for each attribute,
39,000 ratings (13 shapes × 6 illuminations × 100 materials ×
5 viewpoints), leading to that number of image-attribute pairs.
It is important to note that, due to the vast size of our dataset,
we only gather one response per condition (per combination
of material×shape× illumination×viewpoint), which can lead to
variability in the data that may hinder the convergence of the train-
ing. In order to reduce it, we pool the perceptual ratings over view-
point and shape by means of the median, more robust to outliers
than the mean.

5. Results and Evaluation

In this section, we start by introducing our evaluation dataset, and
showing results of our framework by applying it to two perceptual
attributes: Glossy and Metallic. We then validate our design choices
through a series of ablation studies (Section 5.1), and analyze the
consistency of our editing across controlled geometry, illumination,
and material variations (Section 5.2). In addition, we perform user
studies to assess whether our edits of the attributes do correlate
with human perception (Section 5.3) and to evaluate the perceived
quality of our images (Section 5.4). Finally, we compare our results
with actual renderings of a modified scene (Section 5.5).

Evaluation data Our evaluation data is composed of both syn-
thetic images and real photographs. The synthetic images evalu-
ation dataset is composed of images never seen during training
by our framework. They are rendered using eight shapes collected
from free online sources, four illuminations obtained from HDRI-
Haven [HDR], and eight materials coming from Dupuy and Jakob’s
database [DJ18]. A representative subset is shown in Figure 5.

We collected real images for our evaluation dataset by brows-
ing online catalogues of decorative items, as well as photographing

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.



J. Delanoy, M. Lagunas, J. Condor, D. Gutierrez & B. Masia / A Generative Framework for Image-based Editing of Material Appearance using Perceptual Attributes

Figure 5: Representative images of our synthetic evaluation
dataset, showing the eight shapes and materials used in it. Each
column is rendered with one of the four illuminations used.

objects ourselves in uncontrolled setups. Within each image, we
masked the object of interest using an online API [Kal]. Since our
framework requires a normal map, which is not directly available
when using real photographs, we obtain the normal maps for these
objects by using a normal map predictor. Inspired by image-to-
image generative networks, we trained a new model to infer nor-
mal maps directly from the single-view RGB images. Our normal
map predictor consists of a modified Pix2Pix network [IZZE17].
We carefully designed our architecture and losses to minimize con-
volution artifacts, high variance noise in the resulting normals, and
maintain as much geometrical detail from the original images as
possible, while reducing the influence of varying reflectance and
illumination conditions. The model was trained on synthetic data
coupled with ground-truth normal maps. Additional details about
the architecture and losses used to train the normal predictor can
be found in the supplementary material. Representative examples
of our real evaluation dataset, together with their predicted normal
maps, can be seen in Figure 6.

Results Figure 1 shows editing results for a variety of real-world
objects photographed in uncontrolled setups under different condi-
tions, for our two attributes Glossy and Metallic. They include in-
door and outdoor scenarios, varied shape complexity, and different
types of materials, yet our framework can handle them gracefully,
producing compelling edits by just changing the high-level percep-
tual attribute. It is interesting to observe how, even though the illu-
mination is not explicitly modeled during training, the edits seem to
plausibly capture the lighting in the scene. Additionally, our frame-
work is trained so that the attribute of interest can be sampled along
its range, producing consistent results. This is shown in Figure 7 for
two real images, where both attributes exhibit a coherent variation
(see the supplementary material for additional results). Figures 1
and 7 also show that our normal map predictor is capable of yield-
ing a normal map that allows for realistic editing of photographs.

5.1. Ablation Studies

We evaluate the utility of each of the components of our method
through a series of ablation studies where the Metallic attribute
is used. We generate five ablated versions of our framework, for
which we show an illustrative result in Figure 8. First, the effect of
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Figure 6: Representative examples of our real images evaluation
dataset, comprised of photos from online catalogues (top), and ca-
sually photographed objects (bottom). For each image, we also
show its normal map, as obtained by our normal map predictor.

Glossy +-

Metallic +-Input

Figure 7: Editing results by varying the perceptual attributes
Metallic and Glossy. First column is the input image, follow-
ing ones show the edited image when sampling the attribute as
[−1, 0, 0.5, 0.75, 1] for Metallic and [−1, −0.25, 0, 0.25, 1] for
Glossy. Our method produces a realistic editing of the input over
the whole range.

the individual generative networks is shown in Only G1 and Only
G2. When using only G1, the resulting image features the desired
edit, but lacks high-frequency details. Meanwhile, G2 alone is able
to reconstruct the fine detail of the input image, but cannot convinc-
ingly edit the appearance towards the target increased metallicity.
We then investigate the effect of the auxiliary networks. When the
latent discriminator LD2 is removed (W/o LD2), the generated im-
age struggles to convey the appearance required by the target edit.
Additionally, without the attribute predictor and discriminator (W/o
C/D), the framework is only slightly able to improve the edited re-
sult from the first network G1. Finally, we investigate the effect of
the normal map information by removing them from the training
(W/o normals). Without this information, the framework cannot re-
construct the geometry, leading to unrealistic results.
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Figure 8: Ablation studies where we trained and tested out each of the individual components of our framework. The leftmost image shows
the input photograph, followed by the target attribute (Metallic +1). Then, from left to right: the resulting edited image using our method,
only the G1 network, only the G2 network, training without the latent discriminator LD2 and its associated loss function, training without
the attribute predictor and discriminator C/D and its associated loss function, and training without using the normal map information of the
input image. Our method qualitatively yields superior performance and allows for the creation of sharp highlights and realistic images.

5.2. Consistency of the Edits

We use our synthetic evaluation dataset to assess the consistency
of our edits under different conditions. Figure 9 (a) shows edits
performed when both material and geometry are the same in the
input image, and only the illumination changes. Our material edits
are perceptually consistent, while illumination properties are pre-
served within the edits. Figure 9 (b) shows results when only the
geometry changes in the input images. Our edits yield consistent
results across geometries, appearing to be all made of a similar
material (within each row). Last, in Figure 9 (c) we evaluate the
consistency of our edits using two different materials with similar
reflectance properties, namely acrylic-felt-orange and acrylic-felt-
green. Again our framework yields consistent, plausible results for
both attributes.

5.3. User Study

We run an additional user study to assess the perception of the ap-
pearance in our edited images. In the study, participants were asked
to rate the perceptual attribute in generated images in which such
attribute had been edited with our framework. While we include
here the main aspects, more details on the study, including the full
set of stimuli used, can be found in the supplementary material.

Stimuli We selected three images for each attribute (Glossy and
Metallic), varied in shape, illumination and material, and edited
them with our method by setting the target attribute value to −1,
0 and +1. This lead to two sets (one per attribute) of nine edited
images. We also incorporated, for each attribute, nine other images
from the training dataset, chosen such that they covered the whole
range of attribute values; we will term them training images. Note
that these images are unedited, and for each we have the “ground
truth” attribute value gathered through our perceptual study that
was used to train our framework (Section 4).

Procedure The stimuli were shown to participants in two separate
blocks, one per attribute. Each block thus consists of 18 images,
for which the participants had to rate the attribute on a Likert-type
1-to-5 scale.

15 participants took part in the study, leading to 15 ratings for
each image and attribute.

Table 1: Pearson correlation coefficients (along with their p-value)
between the expected attribute of the images shown in the user
study, and the answers of the participants (collected attribute).

Metallic Glossy

Edited images 0.90, p < 0.001 0.86, p = 0.003
Training images 0.92, p < 0.001 0.96, p < 0.001

Results For each image, we average the participants’ ratings to
obtain a perceived attribute value (to which we will refer here as
collected value). Table 1 shows the results of the Pearson correla-
tion between the collected and the expected attribute values. Note
that the expected attribute value is the target attribute value for the
edited images, and the “ground-truth” attribute value for the train-
ing images.

For both, edited and training images, there is a strong (and signif-
icant) correlation between the collected and the expected attribute
values. While for the Metallic attribute, the correlations for edited
images are on par with the ones for training images (0.90 and 0.92
respectively),

correlations for the Glossy attribute are lower for the edited im-
ages than for the training images (0.86 and 0.96 respectively). This
can be due to the fact that our edited images do not cover the full
range of glossiness, with the most glossy images (with a target at-
tribute set to +1) being scored between 3 and 3.7 (on a scale of 1
to 5). However, the correlations for the edited images remain high,
showing that our edited images are globally well perceived.

5.4. Perceived quality

During the development of this work, we noticed that users had dif-
ficulty telling a real image (photograph) from our edited results in
many cases (see second and third images in Figure 1 for instance).
We thus run an additional user study to evaluate the perceived sub-
jective quality of our edited results, both starting from rendered
images and real photographs. We took 20 edited images covering
a wide variety of appearances. Since compositing an edited image
over its original background can produce visual artifacts at the bor-
der of the object, we showed the images over a neutral background.
Following common practice on subjective image quality evaluation
(e.g., [MTM12]), we showed each image for 3 seconds, then asked
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Figure 9: Example results illustrating the consistency of our editing framework. (a) Same object and material, but different illuminations
in the input image; (b) Same illumination and material, but different geometry ; (c) same geometry and illumination, but different materials
with similar reflectance properties. Our framework is capable of producing compelling and consistent edits in all cases. Arrows pointing up
correspond to a target attribute value of +1, while arrows pointing down correspond to a value of −1.
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Figure 10: Example stimuli shown in the user study to evaluate the
perceived quality of the images. Top row: edited images with our
method. Bottom row: photographs (not edited). For each one, we
show its average rating and standard deviation.

the participants to rate its perceived quality according to the fol-
lowing scale: "bad", "poor", "fair", "good", "excellent". We report
the results numerically, associating to this scale scores between 1
and 5.

For comparison purposes, we run a similar study with 8 actual
photographs of real objects, also on a neutral background. The two
studies were completed by 10 and 11 participants respectively. We
also queried the experience in computer graphics of our participants
and collected the following answers: 9 "professional", 7 "interme-
diate", 1 "beginner" and 4 "no experience". A representative subset
of images is shown in Figure 10, along with their average rating
and standard deviation.

Our edited images were rated with an average score of 2.9
(standard deviation of 1.1) while the photographs were rated only
slightly better, 3.4 in average with a standard deviation of 1.0 (see
Figure 10). While this indicates that the perceived quality of our

edited images is comparable to the photographs, we believe that
the relative simplicity of the images (a single object on a neutral
background) may have played a role in the lukewarm scores ob-
tained in both cases (edited images and photographs). For instance,
the gray spoon in Figure 10 was rated between "poor" and "fair"
(average 2.6), despite being an actual photograph.

5.5. Comparison with BRDF editing

In addition, we compare our results on synthetic scenes to actual
renderings editing a BRDF attribute. We use the method proposed
by Serrano et al. [SGM∗16] and edit the Metallic or Glossy at-
tributes of several materials from the extended MERL dataset pre-
sented in the same work. Note that these materials were not present
in our training dataset. In particular, we first render an object of
material m into an image Im. We then manipulate a given mate-
rial attribute in two different ways: rendering a new image Im̂ with
the modified material attribute , and producing an edited image Îm
from the original one, using our method. Figure 11 illustrates the
results, making two objects less glossy and more metallic, respec-
tively. In general, our edited results match the rendered images well
when reducing glossiness (top row), while producing plausible but
less accurate results the other way around (bottom row). This makes
sense, since it is easier to remove existing information (highlights)
in the first example than it is to deal with missing information in
the second, such as the original lighting environment.

6. Discussion and Limitations

We have presented a framework to edit materials directly in images,
under unknown illumination and geometric conditions, through the
manipulation of high-level perceptual attributes. Our framework
is based on two generative networks aiming at providing an ed-
itable latent space, and reconstructing high-frequency details, re-
spectively. We have shown that our method produces plausible re-
sults, almost on par with real photographs, on an ample variety of

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.



J. Delanoy, M. Lagunas, J. Condor, D. Gutierrez & B. Masia / A Generative Framework for Image-based Editing of Material Appearance using Perceptual Attributes

Original image Material edit Image-based edit (ours)
ImImIm

Metallic Metallic

GlossyGlossy

Figure 11: Comparison with BRDF editing. Left: original rendered
image. Middle: rendered result modifying a BRDF attribute (fol-
lowing [SGM∗16]). Right: our edited results modifying the same
attribute. Our edited results match the rendered images well when
reducing glossiness, while producing plausible images when in-
creasing the presence of highlights.

(b)(a)

GlossyMetallicInput Normals Input

Figure 12: Limitations of our framework: (a) Noise in the pre-
diction of the normals may lead to unpredicted editing results
(left: input image, center: inferred normal map, right: edited image
with Metallic +1); (b) Due to the lack of skip-connections, almost
mirror-like reflections in the input image (left) are hard to model
during editing when trying to reach high glossiness (right: edited
image with Glossy +1).

input images (Figures 1 and 10). This was further validated through
a user study.

Our framework is not free of limitations, which open up several
possibilities for future work. Since no normal maps are provided
for real pictures, we have introduced a normal map predictor; in-
accuracies in its output may lead to distortions in the edited ob-
jects, especially visible around highlights, as shown in Figure 12
(a); our framework would thus benefit from better models to in-
fer normals. Besides, since our architecture does not allow for the
use of skip-connections, high-frequency illumination details such
as mirror-like reflections may also not be recovered properly when
trying to reach high glossiness values, as shown in Figure 12 (b).
Similarly, our framework can only create fuzzy highlights when
presented with an input image depicting a diffuse material that con-
veys only limited information about the illumination. It would be
interesting to combine our approach with recent neural rendering
techniques which can create such information about the illumina-
tion [TZN19, LSR∗20].

Our framework was trained using the dataset by Lagunas et
al. [LMS∗19] which contains synthetic data using the isotropic

BRDFs from MERL [MPBM03]. However, MERL materials are
biased in terms of albedo and reflectance. To mitigate this, we have
augmented our input data with changes in hue before feeding it to
our framework (see the supplementary material for more informa-
tion). Nevertheless, designing a dataset beyond isotropic BRDFs
could allow the framework to edit a wider range of appearances.
Moreover, since our dataset contains single-color objects, we cur-
rently cannot edit spatially-varying reflectance (such as the duck’s
beak in Figure 7).

We hope that our work inspires additional research and novel
perceptually-based applications. We will make our data and code
available for further experimentation, in order to facilitate the ex-
ploration of these possibilities.
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