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A Generative Framework for Image-based Editing of
Material Appearance using Perceptual Attributes

1. Additional Details on the Framework1

Our framework is composed of two encoder-decoder networks G12

and G2, the auxiliary latent discriminator networks LD1, LD2 and3

the auxiliary attribute predictor and discriminator C/D only used4

by means of a loss function during training.5

Generative networks Both generative networks G1 and G2 are6

composed of an encoder made of a series of convolutional blocks7

that reduce the spatial dimensions of the input by a factor of two,8

a set of residual blocks that transform the bottleneck features, and9

a decoder made of a series of convolutional blocks followed by bi-10

linear upsampling layers. The target perceptual attribute is spatially11

replicated to match the size of the latent code and concatenated to12

it at the beginning of the decoder.13

Let Ck denote a 4×4 Convolution layer with k filters and stride14

2, then followed by a Rectified Linear Unit (ReLU), Rk denotes15

a residual block that contains two 3× 3 convolution with k filters.16

Dk denotes a convolutional block (3× 3 convolution with k filters17

- leaky Rectified Linear Unit [XWCL15]) followed by a bilinear18

upsampling layer. Reflection padding is used in all convolutions.19

G1 takes input images at the resolutions 128× 128 and contains20

six layers both in the encoder and decoder and two residual blocks,21

resulting in the following architecture:22

Encoder: C32-C64-C128-C256-C512-C512-23

Bottleneck: -R512-R512-24

Decoder: -(b)D512-D256-(n)D128-(n)D64-(n)D32-25

(n)D826

where (b) indicates the concatenation of the target attribute and27

(n) indicates the concatenation of the normal map.28

G2 takes as input images at the resolution 256×256 and contains29

four layers in the encoder, three in the decoder and three residual30

blocks, resulting in the following architecture:31

Encoder: C32s1k7-C64-C128-C256-32

Bottleneck: -R256-R256-R256-33

Decoder: -(b)(n)D128-(n)D64-(n)D834

where C32s1k7 indicates a 7×7 Convolution-ReLU layer with35

32 filters and stride 1. This first convolution allows us to reduce the36

number of spatial resolution of the image while keeping the same37

receptive field.38

Each network ends with a last convolutional block with stride39

1 and 8 filters followed by a single convolutional layer with three40

output filters (corresponding to the RGB channels) and a hyperbolic41

tangent function (tanh) to bring the values into the range [−1,+1].42

Latent discriminator The latent discriminators, LD1 and LD243

take the features in the bottleneck of G1 and G2, respectively, and44

use them to predict the attribute a of the input image. The architec-45

ture of the latent discriminators LD1 is as follows:46

LD1: Cd512-FC256-FC147

LD2: Cd512-Cd512-Cd512-Cd512-pool-FC256-FC148

where Cdk represent a convolutional block ( 4× 4 convolution,49

leakyReLU, and dropout with probability 0.3), FCk refers to a fully50

connected layer with k features, and pool represent an average51

pooling operation. At the end, the output of the latent discrimina-52

tors goes through a tanh layer that outputs the attribute prediction53

â in the range [−1,+1].54

Attribute predictor and discriminator The attribute predictor55

and discriminator C/D take the image as input and outputs an at-56

tribute prediction b̂. The image goes first through an encoder. The57

features from such encoder then go to the discriminator, and the58

attribute predictor. The architecture is as follows:59

Encoder: C32-C64-C128-C256-C512-60

Discriminator: -C161

Attribute predictor: -pool-FC256-FC162

63

WGAN-GP loss formulation Generative Adversarial Networks64

(GANs) are complex to train. This is partially due to the in-65

stability of the loss function proposed in the original formula-66

tion [GPAM∗14]. WGAN-GP [GAA∗17] aims to alleviate such67

problems by introducing a new loss function that relies on the68

Wasserstein distance between distributions and a gradient penalty69

term LGP.70

Intuitively, the discriminator is trained to give a high score to real71

images and a low score to generated ones, aiming at disambiguate72

them:73

Ladv(D) =−‖D(I)‖2 +‖D(G(I,n,b))‖2 +LGP (1)

while the generator is trained such that the the discriminator be-74
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lieve that generated images are actually real (giving them a high75

score):76

Ladv(G) =−‖D(G(I,n,b))‖2 (2)

We refer the reader to the original manuscript for additional in-77

formation [GAA∗17].78

Data augmentation To have a more diverse set of input images79

and help the model generalize better, we perform a set of random80

data augmentation routines. First, input images are scaled to have81

size 512× 512 px and we perform random flips, 90-degree rota-82

tions, and a random crop with size 480×480 px. Then, to account83

for the bias in the BRDFs from the training dataset, we perform84

random changes in the saturation and the hue. Finally, the image is85

scaled to 256×256 and fed to the networks.86

2. Additional Details on the Normal Prediction87

Our normal map prediction module uses as input single-views88

of RGBA images. The architecture is based on the Pix2Pix net-89

work [IZZE17], which has been shown to perform reasonably well90

in normal prediction tasks [SSSJ20, NSH∗19, GFM∗19]. Our goal91

is to maintain as much geometrical detail as possible, while making92

the normal predictions invariant to changes in material and illumi-93

nation conditions in the input images.94

2.1. Architecture95

Our network takes RGBA images as input (RGB + background96

mask), and follows an encoder-decoder architecture, with 4 down-97

sampling blocks in the encoder and 4 upsampling blocks in the98

decoder. In each block we repeat twice the following structure:99

Convolution with kernel 4× 4, a batch-normalization layer, and a100

leakyReLU [XWCL15]. This is done in order to reduce the impact101

of specular reflections in the final predictions, putting more space102

between the skip connection and the final output of the network.103

We also included residual connections within each block, as pro-104

posed by ResNet [HZRS16]. Residual connections stabilizes the105

network and reduces the amount of high variance noise present in106

the predictions. In contrast to Pix2Pix, which uses transposed con-107

volutions, we use bilinear upsampling in order to reduce the risk of108

checkerboard artifacts. The final architecture is the following one:109

Encoder: R64-ER64-ER128-ER256-ER512-110

Bottleneck: -R512-111

Decoder: -DR512-DR256-DR128-DR64-R64112

where ER indicates an encoder block (downsampler) with resid-113

ual connections, DR a decoder block (upsampler) with residual con-114

nections, and R a convolutional block with residual connections.115

The number that follows them indicates the number of filters used116

in the convolutions. The output uses a hyperbolic tangent function117

(tanh), bounding the results of the predictions to [−1,1], which are118

then scaled to have unit length, and normalized to the range [0,1].119

The network’s weights are initialized with a zero-mean normal dis-120

tribution and a standard deviation of 0.02.121

2.2. Losses122

Our loss function is described in Equation 3 and it is composed123

of three different losses: an adversarial loss Ladv, a perceptual loss124

Lvgg, and a reconstruction loss Lrec.125

Adversarial loss To infer normal maps similar to their groundtruth126

distribution we rely on an adversarial loss Ladv with a binary cross127

entropy (BCE) function. We rely on the same discriminator model128

as the one proposed in Pix2Pix [IZZE17].129

Perceptual loss To keep high-frequency details in the inferred nor-130

mals we include a perceptual loss [JAFF16] Lvgg. To extract image131

features we employ the VGG16 [SZ15] model pretrained on Ima-132

geNet [DDS∗09] and compute feature differences with an L1 loss.133

Reconstruction loss To directly supervise the prediction of each134

normal we rely on a Mean Squared Error (MSE) function Lrec.135

Since normal vectors have unit-norm, the MSE is equivalent to a136

cosine distance, which has additional geometric properties.137

To obtain our final loss we set the different weights to λadv =138

0.25, λrec = 10, and λvgg = 1. Our final loss function is:139

L= λadvLadv +λrecLrec +λvggLvgg. (3)

2.3. Training140

The model was trained on synthetic data with paired ground-truth141

normal maps. The synthetic dataset was composed of 12 differ-142

ent geometries, with 5 different viewpoints, 6 different illumina-143

tion conditions, and 100 different materials each; accounting for144

a total of 42000 images of size 128× 128 px. We implemented145

several data augmentation techniques, including random 90 degree146

rotations, flips, and random gamma, hue, saturation, and brightness147

changes. Adam optimizer [KB14] is used with an initial learning148

rate of 0.0007, β1 = 0.9 and β2 = 0.999. Our network is imple-149

mented using Pytorch [PGM∗19] and Pytorch Lightning [Fal19]150

as our frameworks. The model was trained until evaluation losses151

plateaued for more than 10 epochs, which usually occurred af-152

ter around 70 epochs. Overall, training took 7 hours in a single153

NVIDIA RTX 3080 and an AMD Ryzen 9 5900x.154

3. Additional Details on the Perceptual Study155

Figure 1 shows a screenshot of the perceptual study, as seen by156

the participants. The stimuli is shown on the left part of the screen157

while the list of attributes to score are shown on the right.158

Training of participants Participants of our perceptual study first159

had to go through a training session in which they were shown with160

a text description and a few example images depicting materials161

with low and high score values for each attribute. We then show162

them the same screen as in the study and ask them to answer the163

attributes for two easy examples (shown in Figure 2, left). If an-164

swers of the participants were not the expected ones, we instructed165

them to look again at the image and check the description of the166

attributes.167

submitted to COMPUTER GRAPHICS Forum (2/2022).



/ A Generative Framework for Image-based Editing of Material Appearance using Perceptual Attributes 3

Figure 1: Screenshot of the perceptual study as seen by partici-
pants. Stimuli is shown on the left, the participant have to select a
score for the two attributes shown on the right.

Training Controls

Figure 2: Left: the two images used in our training session. Right:
the four images used as controls.

Control Questions In addition to the 15 stimuli, we added four168

control images in order to detect lazy users. These images contains169

materials with clear expected answers (shown in Figure 2 right).170

We rejected participants answering wrongly to more than one of171

these questions and rejected 20% of the participants based on this172

criteria.173

4. Additional Details on the Validation Study174

The layout of the user study is the same as the one used in the175

perceptual study (Figure 1) except that participants were asked to176

rate one attribute at a time.177

In Figure 3, we show the stimuli from the "edited images" set178

that we used in the validation user study. For each attribute, the top179

part shows the input images (synthetic) that we selected, covering180

different shapes, illuminations and reflectance properties. The bot-181

tom part shows the three edited images that we show in the study182

for each input (low attribute value, middle value and high attribute183

value), resulting in nine stimuli.184

In Figure 4, we show the answers that we collected for both at-185
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Figure 3: Input images and edited stimuli used in our user-study.
Top: input images to our framework. Bottom: The edited images
with three target attributes, leading to nine stimuli for each at-
tribute.
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Figure 4: Answers collected in our validation study for both at-
tribute Metallic and Glossy and for the two sets of images. The
blue dots show all the 15 ratings that we collected for each images,
where the density of the color indicates the number of answer, while
the red crosses indicates the average answer for each stimuli.

tribute Metallic and Glossy and for the two sets of images. The186

blue dots show all the 15 ratings that we collected for each im-187

ages, where the density of the color indicates the number of answer,188

while the red crosses indicates the average answer for each stimuli.189

While the answers for both sets of images appear to be strongly190

correlated, the answers collected on our edited images do not reach191

the full scale of the attribute, with a maximum score of 3.7 for the192
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Glossy attribute, and 4 for the Metallic attribute. The average vari-193

ances in the answers was higher for edited images than for training194

ones (0.42 and 0.62 respectively for Glossy, 0.5 and 0.84 respec-195

tively for Metallic).196

5. Full Results of the Quality User Study197

Figure 5 shows the answers collected in the quality user study for198

all the stimuli.199

6. Additional Results200

In Figure 6 and 7, we show results when editing real or synthetic201

images with the attribute Metallic and Glossy respectively, sam-202

pling the attributes at different values along their range.203
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Figure 5: Average scores of quality collected in the user study over the 20 edited images (top) and the 8 real photographs (bottom). We show
under each image the average scores along with their standard deviation.
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Input Metallic +-

Figure 6: Editing results by varying the perceptual attributes Metallic. First column is the input image, following ones show the edited image
when sampling the attribute as [−1, 0, 0.25, 0.5, 1].
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-0.5

Input Glossy +-

Figure 7: Editing results by varying the perceptual attributes Glossy. First column is the input image, following ones show the edited image
when sampling the attribute as [−1, −0.25, 0, 0.5, 1].
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